Gap vertex-distinguishing edge colorings of graphs

M. A Tahraoui E. Duchêne H. Kheddouci

Université Claude Bernard Lyon 1 - UFR-Informatique, Lab LIESP
43 bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
{mtahraou,educhene,hkheddou}@bat710.univ-lyon1.fr

Abstract

In this paper, we study a new coloring parameter of a graph called the Gap vertex-distinguishing edge coloring. It is a proper edge-coloring of a graph G which induces a vertex distinguishing labeling of G such that the label of each vertex is given by the difference between the highest and the lowest colors of its adjacent edges. The minimum number of colors required for a Gap vertex-distinguishing edge coloring of G is called the gap chromatic number of G and denoted by $\text{gap}(G)$. In this paper, we study the gap chromatic number for a large set of graphs G of order n and we even prove that $\text{gap}(G) \in \{n-1, n, n+1\}$.

Key words: graph, proper edge coloring, Gap vertex-distinguishing edge coloring.

1 Introduction and definitions

All graphs considered in this paper are finite and undirected. For a graph G, we use $V(G)$, $E(G)$, $\triangle(G)$ and $\delta(G)$ to denote its vertex set, edge set, maximum degree and minimum degree, respectively. For any undefined terms, we refer the reader to [5].

A vertex labeling of a graph G is said to be vertex-distinguishing if distinct vertices are assigned distinct labels. Let k be a non-negative integer. A k-edge-coloring of G is a mapping f from $E(G)$ to $\{1, 2, ..., k\}$. We say that an edge coloring is proper if no two adjacent edges have the same color. Many researchers investigated the question of edge coloring inducing a vertex distinguishing labeling. This is often referred to as vertex-distinguishing edge colorings. In the literature, three main different functions have been proposed to label each vertex v of G according to the colors of the edges incident with v. A vertex labeling l induced by an edge-coloring f is said to be:

Preprint submitted to Elsevier August 31, 2010
(1) vertex-labeling by sum if \(l(v) = \sum_{e \ni v} f(e), \forall v \in V \) (see [6])
(2) vertex-labeling by sets if \(l(v) = \bigcup_{e \ni v} f(e), \forall v \in V \) (see [1,4])
(3) vertex-labeling by multiset if \(l(v) = \biguplus_{e \ni v} f(e), \forall v \in V \) (see [2,3])

The problem of vertex-distinguishing edge colorings offers many variations and there seems to be a great interest for some years. In this paper, we define a new parameter called \textit{Gap vertex-distinguishing edge colorings} which is defined below.

\textbf{Definition 1.1} Let \(G \) be a graph and \(f \) be a mapping from \(E(G) \) to the set \(\{1, 2, ..., k\} \). For each vertex \(v \) of \(G \), the label of \(v \) is defined to be

\[
l(v) = \begin{cases} f(e)_{e \ni v} & \text{if } d(v) = 1 \\ \max_{e \ni v} f(e) - \min_{e \ni v} f(e) & \text{otherwise} \end{cases}
\]

The mapping \(f \) is called a \textit{Gap vertex-distinguishing} if distinct vertices have distinct labels. Such a coloring is called a \textit{gap-}k-coloring.

The minimum positive integer \(k \) for which \(G \) admits a gap-\(k \)-coloring is called the \textit{gap chromatic number} of \(G \) and is denoted by \(\text{gap}(G) \).

\textbf{Proposition 1.1} Every graph \(G \) has a \textit{Gap vertex-distinguishing edge coloring} if and only if it has no components which is isomorphic to \(K_1 \) or \(K_2 \).

\textbf{Proof} Since no isolated vertex of a graph \(G \) is assigned a label in an edge coloring of \(G \). Furthermore, if \(G \) contains a component \(K_2 \), then the two vertices of \(K_2 \) are assigned the same label in any edge coloring of \(G \). Hence, when considering \textit{Gap vertex-distinguishing edge coloring} of a graph \(G \), we may assume that the order of every component of \(G \) is at least 3. Let \(G \) be a graph without isolated edges and isolated vertices such that \(E(G) = \{e_1, e_2, ..., e_m\} \), if we define an edge coloring \(f \) by \(f(e_i) = 2^{i-1} \) for \(1 \leq i \leq m \), then a \textit{Gap vertex-distinguishing edge colorings} is produced.

\[\square \]

It easy to see that the following lemma give a lower bound for the \textit{Gap chromatic number}.

\textbf{Lemma 1} A graph \(G \) with \(n \) vertices, without components isomorphic to \(K_1 \) or \(K_2 \) has \(\text{gap}(G) \geq n \) if (i) \(\delta(G) \geq 2 \) or (ii) any vertex of degree greater than 1 has at least two adjacent vertices of degree 1; otherwise \(\text{gap}(G) \geq n - 1 \).

To illustrate these concepts, consider the graph \(G \) shown in Figure 1(a). A 6-edge coloring \(f_1 \) of \(G \) is given in Figure 1(b) and a 5-edge coloring \(f_2 \) of \(G \) is given in Figure 1(c). For example, in the Figure 1(b), the vertex \(w \) is incident
with two edges colored 2 and one edge colored 3, then $l_1(w) = 1$, while the
vertex z is incident with one edge colored 6, then $l_1(z) = 6$. The resulting
vertex labelings are distinct for the both figures. By lemma 1, $\text{gap}(G) \geq 5$, we
can immediately conclude that $\text{gap}(G) = 5$.

After a strong analysis of this problem, we raised the conjecture asserting that
there is no connected graph G having $\text{gap}(G) > n+1$.

Conjecture 2 For every connected graph G of order $n \geq 3$, we have

$$\text{gap}(G) \in \{n - 1, n, n + 1\}$$

In the following sections, we prove this conjecture for a large set of graphs and
we even decide the exact value of $\text{gap}(G)$. The presentation of our results is
organised in the following way: the results of section 2 confirms our conjecture
for a large part of graphs with minimum degree at least 2. In the section 3, we
prove our conjecture for some classes of graphs with minimum degree 1, such
as: path, complete binary tree and all trees with at least two leaves at a distance
2. This classification of results according to $\delta(G)$ is due to the definition of
our parameter, especially the definition of labels of vertices of degree 1.

2 Graphs with $\delta(G) \geq 2$

The main result of this section is the following.

Theorem 2.1 For every k-edge-connected graph G of order n with $k \geq 2$,

$$\text{gap}(G) = \begin{cases} n & \text{if } G \text{ is not a cycle of length } \equiv 2, 3(\text{mod } 4) \\ n + 1 & \text{otherwise} \end{cases}$$

The proof of the previous theorem consists of several results mentioned below.
Theorem 2.2 Let C_n be a cycle of order n. Then

$$\text{gap}(C_n) = \begin{cases} n & \text{if } n \equiv 0, 1 \pmod{4} \\ n + 1 & \text{otherwise} \end{cases}$$

Proof Let $C_n = (v_1, v_2, \cdots, v_n, v_{n+1} = v_1)$. For each integer i with $1 \leq i \leq n$, let $e_i = v_i v_{i+1}$. We consider two cases:

Case 1: $n \equiv 0, 1 \pmod{4}$. By Lemma 1, we have $\text{gap}(C_n) \geq n$, it then suffices to prove that C_n admits a gap-n-coloring. Two subcases are considered:

Subcase 1.1: $n \equiv 0 \pmod{4}$. A mapping f from $E(C_n)$ to $\{1, 2, \cdots, n\}$ is defined as follows (see Figure 2(a)):

$$f(e_i) = \begin{cases} n + 1 - i & \text{if } i \text{ odd} \\ 1 & \text{if } i \equiv 2 \pmod{4} \\ 2 & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

This mapping induces the following Gap vertex labeling function:

$$l(v_i) = \begin{cases} n - i + 1 & \text{if } i \equiv 2 \pmod{4} \\ n - i & \text{if } i \equiv 0, 3 \pmod{4} \\ n - i - 1 & \text{if } i \equiv 1 \pmod{4} \end{cases}$$

Then it is easy to check that l is a bijection from $V(C_n)$ to $\{0, 1, \cdots, n - 1\}$. Hence $\text{gap}(C_n) = n$.

Subcase 1.2: $n \equiv 1 \pmod{4}$. A mapping f from $E(C_n)$ to $\{1, 2, \cdots, n\}$ is defined as follows (see Figure 2(b)):

$$f(e_i) = \begin{cases} i & \text{if } i \text{ odd} \\ n - 1 & \text{if } i \equiv 2 \pmod{4} \\ n & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

This mapping induces the following Gap vertex labeling function:

$$l(v_i) = \begin{cases} n - i & \text{if } i \equiv 1, 2 \pmod{4} \\ n - i + 1 & \text{if } i \equiv 0 \pmod{4} \\ n - i - 1 & \text{if } i \equiv 3 \pmod{4} \end{cases}$$

Then it is easy to check that l is a bijection from $V(C_n)$ to $\{0, 1, \cdots, n - 1\}$. Hence $\text{gap}(C_n) = n$.

Case 2: $n \equiv 2, 3 \pmod{4}$. We first prove that $\text{gap}(C_n) > n$. Let f be any edge-coloring of C_n which induces a Gap vertex-distinguishing l. We can note that:

$$\sum_{i=1}^{n} l(v_i) = |f(e_1) - f(e_n)| + \sum_{i=2}^{n} |f(e_i) - f(e_{i-1})| = \frac{n(n - 1)}{2}$$
In this formula, each term $f(e_i)$ appears two times with opposite (or same) signs, hence $\frac{n(n-1)}{2}$ is even. But this latter value is odd if $n \equiv 2, 3 (mod\ 4)$, which is a contradiction. Thus, $\text{gap}(C_n) \geq n + 1$. It then remains to show that $\text{gap}(C_n) \leq n + 1$, two subcases are considered according to whether $n \ mod\ 4 = 2$ or 3.

Subcase 2.1: $n \equiv 3 (mod\ 4)$. We know that C_{n+1} admits a gap-$(n+1)$-coloring. Necessarily, C_{n+1} must contain two successive edges of same color j where $1 \leq j \leq n + 1$. By merging these two edges into a single edge colored by j, we obtain a gap-$(n+1)$-coloring of C_n (see Figure 2(d)).

Subcase 2.2: $n \equiv 2 (mod\ 4)$. In this subcase, we define an edge coloring f from $E(C_n)$ to $\{1, 2, \ldots, n, n + 1\}$ by (see Figure 2(c)): $f(e_n) = f(e_{n-1}) = 2$, $f(e_{n-2}) = 3$ and

$$
\begin{align*}
\text{For } 1 \leq i \leq n-3, \quad f(e_i) &= \begin{cases}
 n + 2 - i & \text{if } i \text{ odd} \\
 1 & \text{if } i \equiv 2 (mod\ 4) \\
 2 & \text{if } i \equiv 0 (mod\ 4)
\end{cases}
\end{align*}
$$

This mapping induces the following Gap vertex distinguishing:

$$
\begin{align*}
\text{For } 1 \leq i \leq n-3, \quad l(v_i) &= \begin{cases}
 n - i & \text{if } i \equiv 1 (mod\ 4) \\
 n + 2 - i & \text{if } i \equiv 2 (mod\ 4) \\
 n + 1 - i & \text{if } i \equiv 0, 3 (mod\ 4)
\end{cases}
\end{align*}
$$

Then it is easy to check that l is a bijection from the vertex set of $E(C_n)$ to the set $\{0, 1, \ldots, n, n + 1\} \setminus \{3\}$. Hence $\text{gap}(C_n) = n + 1$.

![Figure 2](image-url)

Figure 2. A gap-n-coloring of C_n: (a) $n = 8$, (b) $n = 9$, (c) $n = 7$, (d) $n = 6$.

We now introduce a definition which plays a pervasive role in this section.
Definition 2.1 Let G be a graph of order n and let f be an edge coloring of G. For every vertex v of G, we define an interval vertex $I(v) = [\min_{e \ni v} f(e), \max_{e \ni v} f(e)]$. We say that f is balanced if and only if: $I(v_1) \cap I(v_2) \cap \cdots \cap I(v_n) \neq \emptyset$.

The following proposition summarizes an important property of our coloring parameter.

Proposition 2.3 Let G be a graph with $\delta(G) \geq 2$. If there exists a spanning subgraph H of G with $\delta(H) \geq 2$ and there exists a Gap vertex-distinguishing of H induced by a balanced edge coloring f with k colors, then $\text{gap}(G) \leq k$.

Proof Under the stated hypothesis, the Gap vertex-distinguishing of H is induced by a balanced edge coloring f of k colors. Therefore, there exists at least one integer j where $1 \leq j \leq k$ such that $\forall v \in V$, we have $j \in I(v)$. By coloring the edges of $G \setminus H$ with the color j, we get a gap-k-coloring of G. Hence $\text{gap}(G) \leq k$.

We illustrate the interest of Theorem 2.3 by considering the following example: Let G be a Hamiltonian graph of order $n \equiv 0(\text{mod} 4)$. In the proof of Theorem 2.2 (subcase 1.1), it is easy to check that the proposed edge coloring of C_n is balanced. Indeed, $\forall v \in V$, we have $2 \in I(v)$. Hence, we can augment the cycle C_n to G by weighting the added edges with color 2 without affecting the gap chromatic value of C_n. Thus, for every Hamiltonian graph G of order $n \equiv 0(\text{mod} 4)$, we have $\text{gap}(G) = n$.

The following proposition is useful for proving Theorem 2.1. Furthermore, it provides both a tool for proving other results.

Proposition 2.4 If $G = (V, E)$ is a 2-edge connected graph of order n, different from a cycle of length $\equiv 1, 2$ or $3(\text{mod} 4)$, then for all integer $a \geq 0$, there exists an $(a + n)$-edge-coloring f which induces the following Gap vertex-distinguishing function

$$l : V \rightarrow \{a, a + 1, \cdots, a + n - 1\}$$

Proof The proof of this proposition is done by giving a polynomial-time algorithm. We first start with some definitions used in the following. For every subset S of V, let N_S denote the set of neighboring vertices of S, not included in S.

$$N_S = \{u \in V \setminus S : \exists v \in S \text{ for which } (v, u) \in E\}$$

For every two adjacent vertices u and v of G such that $v \in S$ and $u \in N_S$, let $P(v, u)$ be the function which returns a path (or cycle) from v to a vertex $w \in S$ that passes through u, such that the set of vertices between v and w...
does not belong to S.
For every subgraph R of G, let $g(R)$ be a function defined on the set $E(R)$ like this:
\[g(R) = \min \{ f(e_i) : \forall e_i \in E(R), f(e_i) \neq 1, 2 \} \]
We denote by Q the set of all graphs that are isomorphic to a cycle of order multiple of 4 or a two cycles having at least one vertex in common.

Observation 2.5 Every 2-edge connected graph G, different from a cycle of length $\equiv 1, 2$ or $3(mod\ 4)$ contains at least one subgraph $H \in Q$.

It follows from the lemma hypothesis that if G is different from a cycle of length multiple of 4, then $\Delta(G) \geq 3$. Hence, the subgraph H can be always obtained from G.

The basic idea of our algorithm is to find a balanced edge-coloring f of a 2-edge connected spanning subgraph $G' = (V', E')$ of G. Initially, both sets V' and E' are empty set. During the algorithm, the updating of V' and E' is done gradually through specific edge coloring procedure (which is explained in more detail below). When an edge of G is colored by this procedure it is inserted to E'. A vertex $v \in V$ is inserted in V' if and only if it is incident with at least two colored-edges ($e, s \in E$). Note that when a vertex v is inserted in V', we set the label $l(v)$ as $l(v) = |f(e) - f(s)|$ and the interval $I(v)$ at $[\min(f(e), f(s)), \max(f(e), f(s))]$. Such an edge coloring ensures that for every interval $I(v)$, we have $2 \in I(v)$.

In more details, the proposed algorithm begins by coloring the edges of a 2-edge connected subgraph H of order k in G which induces a Gap vertex-distinguishing of H, such that the vertices of H are labeled by distinct numbers ranging from $n + a - k$ to $n + a - 1$. We can easily establish this labeling structure for every subgraph H of G which is isomorphic to a member of Q.

Then, we have proposed four edge-coloring functions to color the set of edges which construct a cycle that has a single and only single vertex in V' or a path between two vertices of V'. This last step is iterated until all vertices are labeled (i.e: $|V'| = |V|$).

In order to color the subgraph H, we need to define several edge-coloring functions. For a proper understanding of our algorithm, we are going to present the algorithm for a graph G which contains at least one cycle of length multiple of 4. Otherwise, all other edge-coloring functions of H are described in detail in the Appendix of this paper. The different steps of the algorithm are illustrated in the example of Figure 3 where $a = 12$.

Algorithm 1

Input: An integer a and a 2-edge-connected graph $G = (V, E)$ of order n, different from a cycle of length $\equiv 1, 2$ or $3(mod\ 4)$.

Output: A balanced $(a+n)$-edge-coloring f of G which induces a Gap vertex-distinguishing function $l: V \rightarrow \{a, a + 1, \cdot \cdot \cdot , a + n - 1\}$.

Begin of Algorithm
Step1: $V' \leftarrow \emptyset, E' \leftarrow \emptyset$. Let an index $t = 2$.

Step2: Take any subgraph $H = R_1 \in Q$ of G.

2.1 If $(R_1$ is a cycle of length $k \equiv 0 (mod\ 4))$ Then

Let $H = (v_1, v_2, \cdots, v_k, v_{k+1} = v_1)$. For each integer i with $1 \leq i \leq k$, let $e_i = v_i v_{i+1}$. A mapping f from $E(R_1)$ to $\{1, 2, \cdots, a + n\}$ is defined as follows:

$$\text{For } 1 \leq i \leq k, f(e_i) = \begin{cases} n + a - i + 1 & \text{if } i \equiv 2 (mod\ 4) \\ 1 & \text{if } i \equiv 0 (mod\ 4) \\ 2 & \text{if } i \equiv 0 (mod\ 4) \end{cases}$$

This mapping induces the following vertex labeling of R_1:

$$\text{For } 1 \leq i \leq k, l(v_i) = \begin{cases} n + a - i + 1 & \text{if } i \equiv 2 (mod\ 4) \\ n + a - i & \text{if } i \equiv 0, 3 (mod\ 4) \\ n + a - i - 1 & \text{if } i \equiv 1 (mod\ 4) \end{cases}$$

Then it is easy to check that l is a bijection from the vertex set of R_1 to the set $\{n + a - 1, n + a - 2, \cdots, n + a - k\}$.

Otherwise all other edge-coloring functions of R_1 are described in detail in the Appendix of this paper.

2.2 $V' \leftarrow V(R_1), E' \leftarrow E(R_1)$. And set $z = g(R_1)$

Step3: While ($V' \neq V$) do

Begin while

3.1 Take any two adjacent vertices u and v such that $v \in V'$ and $u \in N_{V'}$.

3.2 Let $R_t = P(v, u)$, we represent the obtained subgraph R_t by the walk $(v_1, v_2, \cdots, v_{k-1}, v_k)$. For each integer i with $1 \leq i \leq k - 1$, let $e_i = v_i v_{i+1}$. We now define a coloring f of the edges of R_t. We consider four cases according to the value of $k \ mod\ 4$.

Case 1: $k \equiv 0 (mod\ 4)$. A mapping f from $E(R_t)$ to $\{1, 2, \cdots, a + n\}$ is defined as follows: $f(e_{k-1}) = z - k + 2$ and

$$\text{For } 1 \leq i \leq k - 2, f(e_i) = \begin{cases} z - i & \text{if } i \text{ odd} \\ 1 & \text{if } i \equiv 0 (mod\ 4) \\ 2 & \text{if } i \equiv 2 (mod\ 4) \end{cases}$$

This mapping induces the following Gap vertex labeling of R_t: $l(v_{k-1}) = z - k$. And:

$$\text{For } 2 \leq i \leq k - 2, l(v_i) = \begin{cases} z - i - 1 & \text{if } i \equiv 1, 2 (mod\ 4) \\ z - i - 2 & \text{if } i \equiv 3 (mod\ 4) \\ z - i & \text{if } i \equiv 0 (mod\ 4) \end{cases}$$

Case 2: $k \equiv 2 (mod\ 4)$. A mapping f from $E(R_t)$ to $\{1, 2, \cdots, a + n\}$ is
defined as follows:

For $1 \leq i \leq k - 1, f(e_i) = \begin{cases} z - i & \text{if } i \text{ even} \\ 1 & \text{if } i \equiv 3 \pmod{4} \\ 2 & \text{if } i \equiv 1 \pmod{4} \end{cases}$

This mapping induces the following Gap vertex labeling of R_t

For $2 \leq i \leq k - 1, l(v_i) = \begin{cases} z - i - 1 & \text{if } i \equiv 0, 1 \pmod{4} \\ z - i - 2 & \text{if } i \equiv 2 \pmod{4} \\ z - i & \text{if } i \equiv 3 \pmod{4} \end{cases}$

Case 3: $k \equiv 1 \pmod{4}$. A mapping f from $E(R_t)$ to $\{1, 2, \cdots, a + n\}$ is defined as follows: $f(e_1) = z - 2$ and

For $2 \leq i \leq k - 1, f(e_i) = \begin{cases} z - i & \text{if } i \text{ odd} \\ 1 & \text{if } i \equiv 2 \pmod{4} \\ 2 & \text{if } i \equiv 0 \pmod{4} \end{cases}$

This mapping induces the following Gap vertex labeling of R_t: $l(v_2) = z - 3$, and

For $3 \leq i \leq k - 1, l(v_i) = \begin{cases} z - i - 1 & \text{if } i \equiv 0, 3 \pmod{4} \\ z - i - 2 & \text{if } i \equiv 1 \pmod{4} \\ z - i & \text{if } i \equiv 2 \pmod{4} \end{cases}$

Case 4: $k \equiv 3 \pmod{4}$. A mapping f from $E(R_t)$ to $\{1, 2, \cdots, a + n\}$ is defined as follows: $f(e_{k-1}) = z - k + 2$ and

For $1 \leq i \leq k - 2, f(e_i) = \begin{cases} z - i & \text{if } i \text{ even} \\ 1 & \text{if } i \equiv 3 \pmod{4} \\ 2 & \text{if } i \equiv 1 \pmod{4} \end{cases}$

This mapping induces the following Gap vertex labeling of R_t: $l(v_{k-1}) = z - k$, and

For $2 \leq i \leq k - 2, l(v_i) = \begin{cases} z - i - 1 & \text{if } i \equiv 0, 1 \pmod{4} \\ z - i - 2 & \text{if } i \equiv 2 \pmod{4} \\ z - i & \text{if } i \equiv 3 \pmod{4} \end{cases}$

Observation: In the previous four cases, it is easy to check that l is a bijection from the vertex set $V(R_t) - \{v_1, v_k\}$ to $\{z - 3, z - 4, \cdots, z - k\}$.

2.3 $V' \leftarrow V' \cup V(R_t)$, $E' \leftarrow V' \cup E(R_t)$. Set $z = g(R_t)$ and $t = t + 1$.

End while
Step 4: For all edges $e \in E \setminus E'$, set $f(e) = 2$.

End of algorithm

Figure 3. Illustration of Algorithm 1: (a) A 2-edge connected graph G. (b) Coloring of R_1. (c),(d),(e),(f) illustrates the coloring of R_2, R_3, R_4, R_5, respectively. (g) A balanced gap-30-coloring of a spanning subgraph G' of G. (h) A gap-30-coloring of G which induces a Gap vertex-distinguishing function $l : V \rightarrow \{12, 13, \cdots, 29\}$.

We now present the proof of correctness of the above algorithm. We first show that this algorithm achieves its goal without blocking, i.e., both actions in Step 3 (3.1 and 3.2) satisfy the following assertions:

\[
\text{If } |V'| < |V| \text{ then } N_{V'} \neq \emptyset.
\] \hfill (1)
For every vertex \(u \in N_{V'} \), there exists a path from \(u \) to a vertex \(v \in V' \) of order greater than 2.

By the connectivity hypothesis on \(G \), it is clear that the assertion (1) is valid. For a vertex \(u \in N_{V'} \) there exists, at last, an edge \((u, v) \in E \) such that \(v \in V' \). The 2-edge-connectivity hypothesis of \(G \) implies that every edge of \(G \) belongs to a cycle, then the two vertices \(u \) and \(v \) belong to the same cycle. Therefore, the assertion (2) also holds.

We now prove that our coloring algorithm gives a Gap vertex-distinguishing function \(l : V' \to \{a, a + 1, \cdots, a + n - 1\} \) of \(G' \) induced by a balanced edge coloring \(f \) with \(a + n \) colors. At the end of the loop of step 3, we obtain a bijection \(l \) from the set \(V' \) to the set \(\{a, a + 1, ..., a + n - 1\} \), i.e., for any two vertices \(u, v \) of \(V' \), we have \(l(u) \neq l(v) \). It then remains to show that \(f \) is a balanced edge-coloring and for every vertex \(v \) of \(V' \), we have \(\|v\| \) equal to \(\max_{e \in v} f(e) - \min_{e \in v} f(e) \) in \(G' \). By considering the degree in \(G' \) of each vertex \(v \), we have two cases:

Case 1. \(d(v) = 2 \): From the algorithm, it is clear that the label of vertex \(v \) of degree 2 which is incident with two edges \(e \) and \(s \) of \(E' \) is equal to \(|f(e) - f(s)| \).

Case 2. \(d(v) > 2 \): Let \(R(v) = \{R_d, R_{d+1}, R_{d+2} \cdots R_{d+p}\} \) denote the set of all subgraphs having a common vertex \(v \). From the algorithm, we can remark that: (see Figure 3(g))

- For any two subgraphs \(R_i \) and \(R_j \) of \(R(v) \), we have \(E(R_i) \cap E(R_j) = \emptyset \).
- \(v \) is incident with exactly two edges \(e_d \) and \(s_d \) of \(E(R_d) \). Let \(f(e_d) \geq f(s_d) \), then the label of \(v \) is fixed as \(l(v) = f(e_d) - f(s_d) \).
- For every subgraph \(R_i \) of \(R(v) \) where \(d + 1 \leq i \leq d + p \), \(v \) is incident with one or two edges of \(E(R_i) \).

Furthermore, according to the edge coloring \(f \), we can easily see that:

- For every vertex \(v \) of \(G' \), we have \(2 \in I(v) \).
- \(1 \leq f(s_d) \leq 2 \) and \(f(e_d) \geq g(R_d) \geq 2 \).
- For every subgraph \(R_i \) of \(R(v) \) where \(d + 1 \leq i \leq d + p \), we have \(\forall e \in E(R_i) \)
- For every edge \(e \) of \(E(R_i) \) where \(d + 1 \leq i \leq d + p \) with \(v \in e \), we have \(2 \leq f(e) \leq g(R_d) \).

From these observations we can conclude the following:

- The edge-coloring \(f \) is balanced.
- For every vertex \(v \) of \(V' \), \(\max_{e \in v} f(e) = f(e_d) \) and \(\min_{e \in v} f(e) = f(s_d) \).

At the step 4 of the algorithm, we know that the obtained edge coloring \(f \) of \(G' \) is balanced. Hence, we can augment \(G' \) to \(G \) by coloring the added edges with color 2 without affecting the vertex labeling function \(l : V' \to \{a, a + 1, \cdots, a + n - 1\} \).

\[\square \]
Now, we can state the proof of Theorem 2.1. To proceed, we introduce the following theorem.

Theorem 2.6 For every 2-edge-connected graph G of order n, different from a cycle of length $n \equiv 2$ or $3(\text{mod } 4)$, we have

$$\text{gap}(G) = n$$

Proof By Lemma 1, we have $\text{gap}(G) \geq n$. It then suffices to prove that G admits a gap-n-coloring. We know by Theorem 2.2 that if G is a cycle of length $n \equiv 0, 1(\text{mod } 4)$, then $\text{gap}(G) = n$. For otherwise, it is clear by Proposition 2.4 that if we set the integer parameter a at 0, we obtain a gap-n-coloring of G induced by a balanced edge coloring. Hence $\text{gap}(G) = n$.

\[\square \]

Since for all integer $k > 2$, every k-edge connected graph G has a 2-edge connected spanning subgraph G' different from a cycle. From Theorem 2.5, G' admits a gap-n-coloring induced by a balanced edge coloring, then we have the following corollary.

Corollary 2.7 Let G be a k-edge-connected graph ($k > 2$) of order n. Then

$$\text{gap}(G) = n$$

We can now conclude that the result of Theorem 2.1 is a direct consequence of Theorem 2.2, Theorem 2.5, and Corollary 2.6.

Here we generalize the previous results to a special case of disconnected graphs as follows.

Theorem 2.8 If G is a graph of order n with components G_1, G_2, \cdots, G_t such that each component of G is a k-edge connected graph (with $k \geq 2$) different from a cycle of length $\equiv 1, 2, 3(\text{mod } 4)$, then

$$\text{gap}(G) = n$$

Proof Let n_i be the order of G_i ($1 \leq i \leq t$). The proof is essentially due to Theorem 2.4 and its algorithm. The idea is to provide a Gap vertex distinguishing edge colorings for each component of G according to the parameter a of Theorem 2.4 as follows.

By the application of Theorem 2.4 for each component G_i of G, we can obtain the labeling function $l : V(G_i) \rightarrow \{a, a + 1, \cdots, a + n_i - 1\}$ induced by an edge coloring f with $a + n_i$ colors such that $a = n - \sum_{j=1}^{i} n_j$. From this, it is easy to check that l is a bijection from the vertex set of G to the set $\{0, 1, 2, \cdots, n - 1\}$. Thus $\text{gap}(G) = n$.

\[\square \]
3 Graphs with $\delta(G) = 1$

In this section we give the value of $\text{gap}(G)$ for some classes of graphs with $\delta(G) = 1$.

Theorem 3.1 Let P_n be a path of order n. Then

$$\text{gap}(P_n) = \begin{cases}
 n - 1 & \text{if } n \equiv 0, 1 \pmod{4} \\
 n & \text{otherwise}
\end{cases}$$

Proof The proof of this theorem is similar to the one of Theorem 2.2. Let $P_n = v_1, v_2, \ldots, v_n$. For each integer i with $1 \leq i \leq n - 1$, let $e_i = v_i v_{i+1}$. We consider two cases:

Case 1: $n \equiv 0, 1 \pmod{4}$. By Lemma 1, we have $\text{gap}(P_n) \geq n - 1$, it then suffices to prove that P_n admits a gap-$(n - 1)$-coloring. Two subcases are considered:

Subcase 1.1: $n \equiv 0 \pmod{4}$. A mapping f from $E(P_n)$ to $\{1, 2, \ldots, n - 1\}$ is defined as follows (see Figure 4(a)):

$$\text{For } 1 \leq i \leq n - 1, f(e_i) = \begin{cases}
 i \cdot \frac{1}{2} & \text{if } i \text{ even} \\
 \frac{n-2}{2} & \text{if } i \equiv 3 \pmod{4} \\
 n - 1 & \text{if } i \equiv 1 \pmod{4}
\end{cases}$$

This mapping induces the following vertex labeling function: $l(v_n) = \frac{n-2}{2}$

And for $2 \leq i \leq n - 1$, $l(v_i) = \begin{cases}
 \frac{n-i-2}{2} & \text{if } i \equiv 0 \pmod{4} \\
 n - 1 - \frac{i-1}{2} & \text{if } i \equiv 1 \pmod{4} \\
 n - 1 - \frac{i}{2} & \text{if } i \equiv 2 \pmod{4} \\
 \frac{n-i-1}{2} & \text{if } i \equiv 3 \pmod{4}
\end{cases}$

Then it is easy to check that l is a bijection from $V(P_n)$ to $\{0, 1, \ldots, n - 1\}$. Hence $\text{gap}(P_n) = n - 1$.

Subcase 1.2: $n \equiv 1 \pmod{4}$. A mapping f from $E(P_n)$ to $\{1, 2, \ldots, n - 1\}$ is defined as follows (see Figure 4(b)):

$$\text{For } 1 \leq i \leq n - 1, f(e_i) = \begin{cases}
 \frac{i}{2} & \text{if } i \text{ even} \\
 \frac{n-1}{2} & \text{if } i \equiv 3 \pmod{4} \\
 n - 1 & \text{if } i \equiv 1 \pmod{4}
\end{cases}$$

13
This mapping induces the following vertex labeling function:

\[
\text{And for } 2 \leq i \leq n - 1, l(v_i) = \begin{cases}
\frac{n-1-i}{2} & \text{if } i \equiv 0 \pmod{4} \\
-1 - \frac{i-1}{2} & \text{if } i \equiv 1 \pmod{4} \\
-1 - \frac{i}{2} & \text{if } i \equiv 2 \pmod{4} \\
\frac{n-i}{2} & \text{if } i \equiv 3 \pmod{4}
\end{cases}
\]

Then it is easy to check that \(l\) is a bijection from \(V(P_n)\) to \(\{0, 1, \ldots, n - 1\}\). Hence \(\text{gap}(P_n) = n - 1\).

Case 2: \(n \equiv 2, 3 \pmod{4}\). We first prove that \(\text{gap}(P_n) > n - 1\). Let \(f\) be any edge-coloring of \(P_n\) which induces a Gap vertex-distinguishing \(l\). We can note that:

\[
\sum_{i=1}^{n} l(v_i) = f(e_1) + f(e_{n-1}) + \sum_{i=2}^{n-1} |f(e_i) - f(e_{i-1})| = \frac{n(n-1)}{2}
\]

In this formula, each term \(f(e_i)\) appears two times with opposite (or same) signs, hence \(\frac{n(n-1)}{2}\) is even. But this latter value is odd if \(n \equiv 2, 3 \pmod{4}\), which is a contradiction. Thus, \(\text{gap}(P_n) \geq n\). It then remains to show that \(\text{gap}(P_n) \leq n\), two subcases are considered according to whether \(n \bmod{4} = 2\) or 3.

Subcase 2.1: \(n \equiv 3 \pmod{4}\). We know that \(P_{n+1}\) admits a gap-\(n\)-coloring. Necessarily, \(P_{n+1}\) must contain two successive edges of same color \(j\) where \(1 \leq j \leq n\). By merging these two edges into a single edge colored by \(j\), we obtain a gap-\(n\)-coloring of \(P_n\) (see Figure 4(c)).

Subcase 2.2: \(n \equiv 2 \pmod{4}\) In this subcase, we define an edge coloring \(f\) from \(E(P_n)\) to \(\{1, 2, \ldots, n\}\) (see Figure 4(d)) by: \(f(e_{n-1}) = n - 1\) and

\[
\text{For } 2 \leq i \leq n - 2, f(e_i) = \begin{cases}
\frac{i+1}{2} & \text{if } i \text{ even} \\
\frac{i}{2} & \text{if } i \equiv 3 \pmod{4} \\
n & \text{if } i \equiv 1 \pmod{4}
\end{cases}
\]

This mapping induces the following Gap vertex distinguishing: \(l(v_1) = n\), \(l(v_{n-1}) = \frac{n}{2} - 1\), \(l(v_n) = n - 1\)

\[
\text{And for } 2 \leq i \leq n - 2, l(v_i) = \begin{cases}
\frac{n-i-1}{2} & \text{if } i \equiv 0 \pmod{4} \\
-1 + \frac{i+1}{2} & \text{if } i \equiv 1 \pmod{4} \\
-1 - \frac{i}{2} & \text{if } i \equiv 2 \pmod{4} \\
\frac{n-i-1}{2} & \text{if } i \equiv 3 \pmod{4}
\end{cases}
\]

Then it is easy to check that \(l\) is a bijection from the vertex set of \(E(P_n)\) to the set \(\{0, 1, \ldots, n\} \setminus \{\frac{n}{2}\}\). Hence \(\text{gap}(P_n) = n\).

\(\square\)
The complete binary tree of height $h > 0$ will be denoted by BT_h, note that BT_h has exactly $2^{h+1} - 1$ vertices. The following theorem gives the gap chromatic number of BT_h.

Theorem 3.2 For any complete binary tree BT_h of order n and height $h \geq 2$, we have

$$\text{gap}(BT_h) = n - 1$$

Proof By Theorem 3.1 $\text{gap}(BT_1) = \text{gap}(P_3) = 3$. Hence, we may restrict our attention to $h \geq 2$. By Lemma 1, we have $\text{gap}(BT_h) \geq n - 1$, it then suffices to prove that BT_h admits a gap-$(n - 1)$-coloring. We define the level $l(u)$ of vertex u of BT_h as the number of edges along the unique path between it and the root. Similarly, the level of an edge $e = (u, v)$ of BT_h is $l(e) = \max\{l(u), l(v)\}$. We represent the vertices and the edges of BT_h, level by level, left to right by the sequence v_1, v_2, \ldots, v_n, and $e_1, e_2, \ldots, e_{n-1}$, respectively (see Figure 5(a)). We now define a mapping f from $E(BT_h)$ to $\{1, 2, \ldots, n - 1\}$ as follows:

For $1 \leq i \leq n - 1$, $f(e_i) = \begin{cases} 2h & \text{if } i \leq 2 \\ i + 2(h - l(e_i)) & \text{if } i \geq 3 \end{cases}$

This mapping induces the following Gap vertex labeling function: $l(v_i) = i - 1$ for $1 \leq i \leq n$. Then it is easy to check that l is a bijection from $V(BT_h)$ to $\{0, 1, \ldots, n - 1\}$. Thus $\text{gap}(BT_h) = n - 1$.

\[\square\]

Theorem 3.3 Let $T = (V, E)$ be a tree of order n which has two leaves u and v at a distance equal to 2. Then

$$\text{gap}(T) \leq n$$

Proof The proof of this theorem is done by giving a polynomial-time algorithm. We first start with some definitions used in the following: let $P = u, w, v$
be a path of \(T \) and let \(R \) be a subtree of \(T \) rooted in \(w \) and induced by the set \(V \setminus \{u, v\} \) (see Figure 6(a)). Let \(h \) be the depth of \(R \). For every level \(i \) of \(R \), let \(L_i \) denote the set of leaves at level \(i \). Let \(S \) be a subset of \(V(R) \), for every vertex \(x \) of \(V(R) \setminus S \), let \(P(x, S) \) be the function which returns a path from \(x \) to a vertex \(y \in S \), such that the set of vertices between \(x \) and \(y \) does not belong to \(S \). For every path \(P \) of \(T \), let \(g(P) \) be a function defined as follows:

\[
g(P) = \min\{l(v) : \forall v \in V(P)\}
\]

The different steps of Algorithm 2 are illustrated in the example of Figure 6.

Algorithm 2

Input: A tree \(T = (V, E) \) of order \(n \) with two leaves \(u \) and \(v \) at a distance equal to 2.

Output: A gap-\(n \)-coloring of \(T \).

Begin of Algorithm

Set a mapping \(f : E(R_1) \to \{1, n\} \) as follows: \(f(vw) = n, f(uw) = 1 \)

This mapping induces the following Gap vertex labeling of \(R_1 \). \(l(v) = n, l(w) = n - 1 \) and \(l(u) = 1 \).

Let a set \(S = \{w\} \), an integer \(z = n - 1 \) and an index \(t = 2 \).

For \(i = 1 \) to \(h \) **do**

Begin For

For every vertex \(x \) of \(L_i \) of the subtree \(R \) **do**

Begin For

Let \(R_t = P(x, S) \). We denote \(R_t \) by the sequence of vertices \(v_1 = x, v_2, \ldots, v_{k-1}, v_k \). For each integer \(i \) with \(1 \leq i \leq k - 1 \), let \(e_i = v_iv_{i+1} \). Set a mapping \(f \) of the edges of \(R_t \) as follows:

\[
For \ 1 \leq i \leq k - 1, f(e_i) = \begin{cases}
z - \frac{i+1}{2} & \text{if } i \text{ odd} \\
\frac{i}{2} & \text{otherwise}
\end{cases}
\]
This mapping induces the following Gap vertex labeling of R_t:

For $1 \leq i \leq k - 1$, $l(v_i) = z - i$

$$S \leftarrow S \cup V(R_t), \quad z \leftarrow g(R_t), \quad t \leftarrow t + 1$$

End for

End for

End of Algorithm

Now, we present the proof of correctness for the above algorithm. At the end of this algorithm, we obtain a bijection l from V to the set $\{1, 2, ..., n\}$. It then remains to show the property of our coloring parameter. By considering the degree of each vertex v of T, we have three cases:
Case 1. \(d(v) = 1\): From the algorithm, it is clear that \(l(v) = f(e)\) for \(v \in V\).

Case 2. \(d(v) = 2\): From the algorithm, it is clear that the label of vertex \(v\) of degree 2 which is incident with two edges \(e\) and \(s\) of \(E\) equal to \(|f(e) - f(s)|\).

Case 3. \(d(v) > 2\): Let \(R(v) = \{R_d, R_{d+1}, R_{d+2}, \ldots, R_{d+p}\}\) denote the set of all paths having a common vertex \(v\). We represent the distance between two vertices \(x, y \in V\) by \(\text{dist}(x, y)\). From the algorithm, we can remark that:

- Every path \(R_i\) of \(R(v)\) contains a leaf \(l_i\) of \(T\) which is an endpoint of \(R(v)\).
- For any two paths \(R_i\) and \(R_j\) of \(R(v)\), \(E(R_i) \cap E(R_j) = \emptyset\).
- \(v\) is incident with exactly two edges \(e_d\) and \(s_d\) of \(E(R_d)\). Let \(f(e_d) \geq f(s_d)\), then the label of \(v\) is fixed as \(l(v) = f(e_d) - f(s_d)\).
- For every path \(R_i\) of \(R(v)\) where \(d + 1 \leq i \leq d + p\), \(v\) is incident with one edge \(e_i\) of \(E(R_i)\).

Furthermore, according to the edge-coloring \(f\), we can see that:

- \(f(s_d) = \left\lfloor \frac{\text{dist}(v, l_i)}{2} \right\rfloor\)
- For every path \(R_i\) of \(R(v)\) where \(d + 1 \leq i \leq d + p\), we consider two cases for the value of \(f(e_i)\) according to the distance between \(v\) and \(l_i\):
 - \(\text{dist}(v, l_i)\) is even. We have \(f(e_i) = \frac{\text{dist}(v, l_i)}{2}\). Hence \(f(s_d) \leq f(e_i) \leq g(R_d) \leq f(e_d)\)
 - \(\text{dist}(v, l_i)\) is odd. We have \(f(e_i) = g(R_i) + \frac{\text{dist}(v, l_i) - 1}{2}\). Hence \(f(s_d) \leq f(e_i) \leq g(R_d) \leq f(e_d)\)

From these observations we can conclude that for every vertex \(v\) of \(V\), \(f(e_d) = \max_{e \ni v} f(e)\) and \(f(s_d) = \min_{e \ni v} f(e)\). Hence, \(T\) admits a gap-\(n\)-coloring.

\[
\square
\]

4 Conjecture

According to the results obtained from the above sections, we propose some conjectures.

Conjecture 3 For every graph \(G\) of order \(n\) with minimum degree \(\delta(G) \geq 2\), we have

\[
gap(G) = \begin{cases}
 n + 1 & \text{if } G \text{ is a cycle of length } \equiv 2, 3(\text{mod } 4) \\
 n & \text{otherwise}
\end{cases}
\]
Conjecture 4 For every tree T of order $n \geq 3$, we have

$$\text{gap}(T) = \begin{cases} n & \text{if condition (ii) of Lemma 1 is fulfilled} \\ n - 1 & \text{otherwise} \end{cases}$$

5 Appendix: Step 2 of Algorithm 1

In Step 2 of Algorithm 1, it remains to handle the case when R_1 is a subgraph of G which is isomorphic to a two cycles having at least one vertex in common. Let us recall that the goal is to define an edge coloring of R_1 (of order k) which induces the following gap vertex-distinguishing function $l : V(R_1) \to \{n + a - 1, n + a - 2, \ldots, n + a - k\}$.

It is clear that the edge set of R_1 can be partitioned into two sets generating graphs: cycle C and a path (cycle) P such that the endpoints of P belong to C. Let $C = (v_1, v_2, \ldots, v_q, v_{q+1} = v_1)$. For each integer i with $1 \leq i \leq q$, let $e_i = v_iv_{i+1}$. Let $P = (u_1, u_2, \ldots, u_t)$. For each integer i with $1 \leq i \leq t - 1$, let $s_i = u_iu_{i+1}$, we assume that $v_q = u_1$. In the following, we illustrate the coloring of R_1, several cases are considered according to the value of q and t.

Case 1 $q \equiv 2 \pmod{4}$ and $t \equiv 0, 1, 2 \pmod{4}$. A mapping f of $E(C) \setminus \{e_q, e_{q-1}\}$ is defined as follows:

$$\text{For } 1 \leq i \leq q - 2, f(e_i) = \begin{cases} a + n - i + 1 & \text{if } i \text{ odd} \\ 1 & \text{if } i \equiv 2 \pmod{4} \\ 2 & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

Then, the following cases define the coloring of the remaining edges of R_1.

Subcase 1.1 $t \equiv 0 \pmod{4}$. $f(e_q) = 2$, $f(e_{q-1}) = n + a - q + 2$ and

$$\text{For } 1 \leq i \leq t - 1, f(s_i) = \begin{cases} g(C) - i & \text{if } i \text{ even} \\ 1 & \text{if } i \equiv 1 \pmod{4} \\ 2 & \text{if } i \equiv 2 \pmod{4} \end{cases}$$

Subcase 1.2 $t \equiv 1 \pmod{4}$. $f(e_q) = 2$, $f(e_{q-1}) = a + n - q + 1$, $f(s_1) = g(C) + 1$ and

$$\text{For } 2 \leq i \leq t - 1, f(s_i) = \begin{cases} g(C) - i + 1 & \text{if } i \text{ odd} \\ 1 & \text{if } i \equiv 2 \pmod{4} \\ 2 & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

Subcase 1.3 $t \equiv 2 \pmod{4}$. We use the same coloring scheme as in Subcase 1.2 except that $f(s_{t-1}) = g(C) - t + 3$.

Case 2 $q \equiv 2 \pmod{4}$ and $t \equiv 3 \pmod{4}$. A mapping f of $E(R_1)$ is defined as
follows:

For $2 \leq i \leq q - 2$, $f(e_i) = \begin{cases}
 a + n - i - 2 & \text{if } i \text{ odd} \\
 2 & \text{if } i \equiv 2(\text{mod } 4) \\
 1 & \text{if } i \equiv 0(\text{mod } 4)
\end{cases}$

$f(e_1) = a + n$, $f(e_{q-1}) = a + n - 4$, $f(e_q) = 1$, $f(s_1) = a + n - 2$ and

For $2 \leq i \leq t - 1$, $f(s_i) = \begin{cases}
 g(C) - i + 1 & \text{if } i \text{ odd} \\
 1 & \text{if } i \equiv 0(\text{mod } 4) \\
 2 & \text{if } i \equiv 2(\text{mod } 4)
\end{cases}$

Case 3 $q \equiv 3(\text{mod } 4)$ and $t \equiv 0(\text{mod } 4)$. A mapping f of $E(R_1)$ is defined as follows:

For $1 \leq i \leq q - 1$, $f(e_i) = \begin{cases}
 a + n - i + 1 & \text{if } i \text{ odd} \\
 2 & \text{if } i \equiv 2(\text{mod } 4) \\
 1 & \text{if } i \equiv 0(\text{mod } 4)
\end{cases}$

$f(e_q) = 1$, $f(s_{t-1}) = g(C) - t + 1$ and

For $1 \leq i \leq t - 2$, $f(s_i) = \begin{cases}
 g(C) - i - 1 & \text{if } i \text{ odd} \\
 1 & \text{if } i \equiv 0(\text{mod } 4) \\
 2 & \text{if } i \equiv 2(\text{mod } 4)
\end{cases}$

Case 4 $q \equiv 3(\text{mod } 4)$ and $t \equiv 1(\text{mod } 4)$. A mapping f of $E(R_1)$ is defined as follows:

For $1 \leq i \leq q - 1$, $f(e_i) = \begin{cases}
 a + n - i + 2 & \text{if } i \text{ even} \\
 2 & \text{if } i \equiv 1(\text{mod } 4) \\
 1 & \text{if } i \equiv 3(\text{mod } 4)
\end{cases}$

$f(e_q) = a + n - t + 2$, $f(s_{t-1}) = g(C) - t + 1$ and

For $1 \leq i \leq t - 2$, $f(s_i) = \begin{cases}
 g(C) - i - 1 & \text{if } i \text{ even} \\
 1 & \text{if } i \equiv 1(\text{mod } 4) \\
 2 & \text{if } i \equiv 3(\text{mod } 4)
\end{cases}$

Case 5 $q \equiv 3(\text{mod } 4)$ and $t \equiv 2, 3(\text{mod } 4)$. A mapping f of $E(C) \setminus \{e_q\}$ is
defined as follows:

For \(1 \leq i \leq q - 1 \),
\[
f(e_i) = \begin{cases}
 a + n - i + 2 & \text{if } i \text{ even} \\
 1 & \text{if } i \equiv 1 \pmod{4} \\
 2 & \text{if } i \equiv 3 \pmod{4}
\end{cases}
\]

Then, the following cases define the coloring of the remaining edges of \(R_1 \).

Subcase 5.1 \(t \equiv 2 \pmod{4} \). \(f(e_q) = n + a - q + 1 \) and

For \(1 \leq i \leq t - 1 \),
\[
f(s_i) = \begin{cases}
 g(C) - i + 1 & \text{if } i \text{ even} \\
 1 & \text{if } i \equiv 3 \pmod{4} \\
 2 & \text{if } i \equiv 1 \pmod{4}
\end{cases}
\]

Subcase 5.2 \(t \equiv 3 \pmod{4} \). \(f(e_q) = n + a - q + 2 \), \(f(e_{t-1}) = g(C) - t + 2 \) and

For \(1 \leq i \leq t - 2 \),
\[
f(s_i) = \begin{cases}
 g(C) - i & \text{if } i \text{ even} \\
 1 & \text{if } i \equiv 3 \pmod{4} \\
 2 & \text{if } i \equiv 1 \pmod{4}
\end{cases}
\]

Case 6 \(q \equiv 1 \pmod{4} \) and \(t \equiv 1 \pmod{4} \). A mapping \(f \) of \(E(R_1) \) is defined as follows:

For \(1 \leq i \leq q - 1 \),
\[
f(e_i) = \begin{cases}
 a + n - i + 1 & \text{if } i \text{ odd} \\
 1 & \text{if } i \equiv 2 \pmod{4} \\
 2 & \text{if } i \equiv 0 \pmod{4}
\end{cases}
\]

\(f(e_q) = 2 \), \(f(s_1) = g(C) - 1 \) and

For \(2 \leq i \leq t - 1 \),
\[
f(s_i) = \begin{cases}
 g(C) - i - 1 & \text{if } i \text{ even} \\
 1 & \text{if } i \equiv 2 \pmod{4} \\
 2 & \text{if } i \equiv 0 \pmod{4}
\end{cases}
\]

References

