Kernels and closures of soft set relations, and soft set relation mappings

Hai-Long Yanga,\ast, Zhi-Lian Guoa,b

a College of Mathematics and Information Science, Shaanxi Normal University, 710062, Xi’an, PR China
b College of Economics and Management, Northwest University of Politics and Law, 710063, Xi’an, PR China

\textbf{A R T I C L E I N F O}

Article history:
Received 6 September 2010
Received in revised form 6 December 2010
Accepted 6 December 2010

Keywords:
Soft sets
Soft set relations
Kernels
Closures
Soft set relation mappings
Inverse soft set relation mappings

\textbf{A B S T R A C T}

In this paper, the notions of anti-reflexive kernel, symmetric kernel, reflexive closure, and symmetric closure of a soft set relation are first introduced, respectively. Then, their accurate calculation formulae and some properties are obtained. Finally, soft set relation mappings and inverse soft set relation mappings are proposed, and some related properties are discussed.

© 2010 Elsevier Ltd. All rights reserved.

\section{Introduction}

To solve complicated problems in economics, engineering and environment, we cannot successfully use classical methods because of different kinds of incomplete knowledge. A wide range of theories such as probability theory, fuzzy set theory, intuitionistic fuzzy set theory, rough set theory, vague set theory and the interval mathematics are well known and often useful mathematical approaches for modeling uncertainty. However, what these theories can handle is merely a proper part of uncertainty. Each of these theories has its inherent difficulties as pointed out by Molodtsov[1]. The reason for these difficulties is, possibly, the inadequacy of the parametrization tool of these theories. Molodtsov[1] initiated the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the existing theoretical approaches. This theory has proven useful in many different fields such as decision making[2–7], data analysis[8], forecasting[9], simulation[10], and evaluation of sound quality[11].

The concept and basic properties of soft set theory were presented in[1,12]. In the classical soft set theory, a situation may be complex in the real world because of the fuzzy nature of the parameters. With this point of view, the classical soft sets have been extended to fuzzy soft sets[13,14], intuitionistic fuzzy soft sets[15–17], vague soft sets[18], interval-valued fuzzy soft sets[19], and interval-valued intuitionistic fuzzy soft sets[20], respectively. Up to the present, soft set theory has been applied to several algebra structures: groups[21,22], semirings[23], rings[24], BCK/BCI-algebras[25–27], d-algebras[28], ordered semigroups[29], and BL-algebras[30]. Xiao et al.[31] proposed the notion of exclusive disjunctive soft sets and studied some of its operations. Gong et al.[32] studied the bijective soft set with its operations. Ontology-based (or DL-based) soft set theory was presented in[33].

Algebraic structures of soft sets have been studied by some authors. Maji et al.[12] presented some definitions on soft sets such as a soft subset, the complement of a soft set. Based on the analysis of several operations on soft sets introduced in[12], Ali et al.[34] presented some new algebraic operations for soft sets and proved that certain De Morgan’s laws hold
in soft set theory with respect to these new definitions. Qin and Hong introduced the concept of soft equality and some related properties are derived in [35]. Kharal and Ahmad [36] introduced the notion of a mapping on the classes of fuzzy soft sets which is a pivotal notion for the advanced development of any new area of mathematical sciences. In [4], Çağman and Enginoğlu studied products of soft sets and uni-int decision function. Recently, Babitha and Sunil [37] proposed soft set relations and many related concepts are discussed. In the present paper, we attempt to conduct a further study along this line.

This paper is an attempt to expand the theoretical aspects of soft sets again. In order to refresh the fundamental concepts of set theory we refer to [38, 39]. The rest of this paper is organized as follows. The following section briefly recalls the notions of soft sets and soft set relations. In Section 3, we define anti-reflexive kernel and symmetric kernel of a soft set relation, respectively. Results involving them are obtained. Section 4 gives the concepts of reflexive closure and symmetric closure of a soft set relation, and proves some theorems based on them. In Section 5, we propose soft set relation mappings and inverse soft set relation mappings, and some related properties are discussed. The last section summarizes the conclusions and presents some topics for future research.

2. Preliminaries

In this section we will briefly recall the notions of soft sets, and soft set relations. See especially [1, 12, 37] for further details and background.

Definition 2.1 ([1]). Let U be an initial universe set and E be a set of parameters. Let $\mathcal{P}(U)$ denote the power set of U and $A \subset E$. A pair (F, A) is called a soft set over U, where F is a mapping given by $F : A \longrightarrow \mathcal{P}(U)$.

In other words, a soft set over U is a parameterized family of subsets of the universe U. For each $\varepsilon \in A$, $F(\varepsilon)$ may be considered as the set of ε-approximate elements of the soft set (F, A).

Definition 2.2 ([12]). For two soft sets (F, A) and (G, B) over a common universe U, we say that (F, A) is a soft subset of (G, B) if

(i) $A \subset B$.

(ii) $\forall \varepsilon \in A, F(\varepsilon)$ and $G(\varepsilon)$ are identical approximations.

We write $(F, A)\subseteq (G, B)$.

(F, A) is said to be a soft superset of (G, B), if (G, B) is a soft subset of (F, A). We denote it by $(F, A)\supseteq (G, B)$. Two soft sets (F, A) and (G, B) over a common universe U are said to be soft equal if (F, A) is a soft subset of (G, B) and (G, B) is a soft subset of (F, A).

Definition 2.3 ([12]). Let $E = \{e_1, e_2, e_3, \ldots, e_n\}$ be a set of parameters. The NOT set of E denoted by $\lnot E$ is defined by, $\lnot E = \{\lnot e_1, \lnot e_2, \lnot e_3, \ldots, \lnot e_n\}$, where $\forall i, \lnot e_i \neq e_i$.

Definition 2.4 ([12]). The complement of a soft set (F, A) is denoted by $(F, A)^c$ and is defined by $(F, A)^c = (F^c, \lnot A)$, where $F^c : \lnot A \longrightarrow \mathcal{P}(U)$ is a mapping given by $F^c(\lnot \alpha) = U - F(\alpha), \forall \alpha \in A$.

Definition 2.5 ([12]). A soft set (F, A) over U is said to be a NULL soft set denoted by Φ, if $\forall \varepsilon \in A, F(\varepsilon) = \emptyset, \text{(null-set)}$.

A soft set (F, A) over U is said to be an absolute soft set denoted by \bar{A}, if $\forall \varepsilon \in A, F(\varepsilon) = U$.

Proposition 2.6 ([12]). If A and B are two sets of parameters then we have the following

1. $\lnot (\lnot A) = A$;
2. $\lnot (A \cup B) = \lnot A \cap \lnot B$;
3. $\lnot (A \cap B) = \lnot A \cup \lnot B$.

Definition 2.7 ([12]). A union of two soft sets (F, A) and (G, B) over the common universe U is the soft set (H, C), where $C = A \cup B$, and $\forall e \in C$.

\[
H(e) = \begin{cases}
F(e), & \text{if } e \in A - B, \\
G(e), & \text{if } e \in B - A, \\
F(e) \cup G(e), & \text{if } e \in A \cap B.
\end{cases}
\]

We write $(F, A)\cup (G, B) = (H, C)$.

Definition 2.8 ([40]). An intersection of two soft sets (F, A) and (G, B) over a common universe U is the soft set (H, C), where $C = A \cap B$, and $\forall e \in C, H(e) = F(e) \cap G(e)$.
Definition 2.9 ([37]). Let \((F, A)\) and \((G, B)\) be two soft sets over \(U\), then the Cartesian product of \((F, A)\) and \((G, B)\) is defined as, \((F, A) \times (G, B) = (H, A \times B)\), where \(H : A \times B \rightarrow \mathcal{P}(U \times U)\) and \(H(a, b) = F(a) \times G(b)\), where \((a, b) \in A \times B\).

i.e., \(H(a, b) = \{(h_1, h_2) ; \text{ where } h_1 \in F(a)\text{ and } h_2 \in G(b)\}\).

The Cartesian product of three or more nonempty soft sets can be defined by generalizing the definition of the Cartesian product of two soft sets. The Cartesian product \((F_1, A) \times (F_2, A) \times \cdots \times (F_n, A)\) of the nonempty soft sets \((F_1, A), (F_2, A), \ldots, (F_n, A)\) is the soft set of all ordered \(n\)-tuple \(\{h_1, h_2, \ldots, h_n\}\) where \(h_i \in F_i(a)\).

Example 2.10 ([37]). Consider the soft set \((F, A)\) which describes the “cost of the houses” and the soft set \((G, B)\) which describes the “attractiveness of the houses”.

Suppose that \(U = \{h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9, h_{10}\}\),
\[A = \{\text{very costly; costly; cheap}\}\] and \[B = \{\text{beautiful; in the green surroundings; cheap}\}\].

Let \(F\)(very costly) = \(\{h_2, h_4, h_7, h_8\}\), \(F\)(costly) = \(\{h_1, h_3, h_5\}\), \(F\)(cheap) = \(\{h_6, h_9, h_{10}\}\), and \(G\)(beautiful) = \(\{h_2, h_3, h_7\}\), \(G\)(in the green surroundings) = \(\{h_6, h_5, h_8\}\), \(G\)(cheap) = \(\{h_6, h_9, h_{10}\}\).

Now \((F, A) \times (G, B) = (H, A \times B)\) where a typical element will look like
\[H\text{(very costly, beautiful)} = \{(h_2, h_4, h_7, h_8) \times (h_2, h_3, h_7)\}\]
\[= \{(h_2, h_2), (h_2, h_3), (h_2, h_7), (h_4, h_2), (h_4, h_3), (h_4, h_7), (h_7, h_2), (h_7, h_3), (h_7, h_7), (h_8, h_2), (h_8, h_3), (h_8, h_7)\}.

Definition 2.11 ([37]). Let \((F, A)\) and \((G, B)\) be two soft sets over \(U\), then a soft set relation from \((F, A)\) to \((G, B)\) is a soft subset of \((F, A) \times (G, B)\).

In other words, a soft set relation from \((F, A)\) to \((G, B)\) is the form \((H, S)\) where \(S \subset A \times B\) and \(H(a, b) = H(a, b), \forall (a, b) \in S\) where \((H, A \times B) = (F, A) \times (G, B)\) as defined in Definition 2.9. Any subset of \((F, A) \times (F, A)\) is called a soft set relation on \((F, A)\).

In an equivalent way, we can define the soft set relation \(R\) on the soft set \((F, A)\) in the parameterized form as follows:
If \((F, A) = \{F(a), F(b), \ldots\}\), then \(F(a)RF(b)\iff F(a) \times F(b) \in R\).

A soft set relation on a soft set can be regarded as a special set. \(\mathcal{P}\mathcal{P}(F, A)\) will denote the family of all soft set relations on \((F, A)\).

3. Kernels of soft set relations

In this section, we will introduce the notions of anti-reflexive kernel and symmetric kernel of a soft set relation, and study their properties.

Definition 3.1 ([37]). Let \(R\) be a soft set relation on \((F, A)\), then

1. \(R\) is reflexive if \(H_1(a, a) \in R, \forall a \in A\).
2. \(R\) is symmetric if \(H_1(a, b) \in R \implies H_1(b, a) \in R, \forall (a, b) \in A \times A\).

Next, we will give their equivalent definitions, respectively.

Definition 3.2. Let \(R\) be a soft set relation on \((F, A)\), then

1. \(R\) is reflexive if \(F(a) \times F(a) \in R, \forall a \in A\).
2. \(R\) is symmetric if \(F(a) \times F(b) \in R \implies F(b) \times F(a) \in R, \forall (a, b) \in A \times A\).

Definition 3.3. Let \(R\) be a soft set relation on \((F, A)\), then \(R\) is anti-reflexive if \(F(a) \times F(a) \not\in R, \forall a \in A\).

Definition 3.4. Let \(I\) be a soft set relation on \((F, A)\). If \(\forall a, b \in A\) and \(a \neq b\), \(F(a) \times F(a) \in I, \) but \(F(a) \times F(b) \not\in I\), then \(I\) is called the identity soft set relation.

In what follows, we will denote the identity soft set relation by \(I\) later on.
Definition 3.5. (1) The inverse of a soft set relation \(R \) on \((F, A) \) denoted as \(R^{-1} \) is defined by \(R^{-1} = \{ F(b) \times F(a) \mid F(a) \times F(b) \in R \} \) (see [37]).

(2) The complement of a soft set relation \(R \) on \((F, A) \) denoted as \(R' \) is defined by \(R' = \{ F(a) \times F(b) \mid F(a) \times F(b) \notin R, a, b \in A \} \).

(3) The union of two soft set relations \(R \) and \(Q \) on \((F, A) \) denoted as \(R \cup Q \) is defined by \(R \cup Q = \{ F(a) \times F(b) \mid F(a) \times F(b) \in R \) or \(F(a) \times F(b) \in Q \). \)

(4) The intersection of two soft set relations \(R \) and \(Q \) on \((F, A) \) denoted as \(R \cap Q \) is defined by \(R \cap Q = \{ F(a) \times F(b) \mid F(a) \times F(b) \in R \) and \(F(a) \times F(b) \in Q \} \).

Example 3.6. Consider a soft set \((F, A) \) over \(U \) where \(U = \{ h_1, h_2, h_3, h_4 \}, A = \{ m_1, m_2 \} \) and \(F(m_1) = \{ h_1, h_2 \}, F(m_2) = \{ h_2, h_3, h_4 \} \). A soft set relation \(R \) on \((F, A) \) is defined as

\[
R = \{ F(m_1) \times F(m_1), F(m_2) \times F(m_1) \}.
\]

Then \(R' = \{ F(m_1) \times F(m_2), F(m_2) \times F(m_2) \} \).

Another soft set relation \(Q \) on \((F, A) \) is defined as

\[
Q = \{ F(m_1) \times F(m_1), F(m_2) \times F(m_2) \}.
\]

It is easy to verify that the union and the intersection of soft set relations satisfy commutative law, associative law, and distributive law.

Definition 3.7. Let \(R, Q \) be two soft set relations on \((F, A)\). \(\forall a, b \in A, \) if \(F(a) \times F(b) \in R \implies F(a) \times F(b) \in Q \), then we call \(R \subset Q \) (or \(R \preceq Q \)).

Theorem 3.8. Let \(R, Q \) be two soft set relations on \((F, A)\). Then

1. \(R \) is symmetric iff \(R = R^{-1} \).
2. \((R')^{-1} = (R^{-1})' \).
3. \(R^{-1} \cap R \cap Q = (R \cup Q)^{-1} \).
4. \(R \cap Q \subset R \cap Q \subset Q \).
5. \(R \cap Q \subset R \cap Q \subset Q \).
6. \(R \cap Q \implies R^{-1} \subset Q^{-1} \).
7. If \(P \cap Q \) and \(P \cap R \), then \(P \cap R \).
8. If \(P \cap Q \) and \(P \cap R \), then \(P \cap R \).
9. If \(R \subset Q \) and \(R \cup Q = \) and \(R \cap Q = R \), then \(R \subset Q \).
10. \((R \cup Q)^{-1} \subset R^{-1} \cup Q^{-1} \), \((R \cap Q)^{-1} \subset R^{-1} \cap Q^{-1} \).
11. \((R \cup Q)^{-1} = R^{-1} \cup Q^{-1} \), \((R \cap Q)^{-1} = R^{-1} \cap Q^{-1} \).

Proof. Obviously, (3)–(9) hold. We only show (1), (2), (10), and (11).

(1) “\(" \forall a, b \in A, \) if \(F(a) \times F(b) \in R \), then \(F(a) \times F(b) \in R^{-1} \). \) Conversely, \(\forall a, b \in A, \) if \(F(a) \times F(b) \in R \), then \(F(a) \times F(b) \) is symmetric. \)

(2) \(\forall a, b \in A, \) if \(F(a) \times F(b) \in R^{-1} \), then \(F(a) \times F(b) \) is symmetric. \)

(10) \(\forall a, b \in A, \) if \(F(a) \times F(b) \in (R \cup Q)^{-1} \), then \(F(a) \times F(b) \in R \cup Q \).

(11) \(\forall a, b \in A, \) if \(F(a) \times F(b) \in (R \cup Q)^{-1} \), then \(F(a) \times F(b) \in R \cup Q \).

According to Theorem 3.8 (1) and (2), the complement of a symmetric soft set relation is also a symmetric soft set relation. For convenience, \(m \) (resp., \(M \)) will denote the minimal (resp., the maximal) soft set relation on \((F, A)\), then \(m = \emptyset, \) and \(M = \{ (F, A) \times (F, A) \mid a, b \in A \} \). It is easy to verify that \(m \) and \(M \) are two anti-reflexive soft set relations, \(m, M, \) and \(I \) are three symmetric soft set relations, \(M \) and \(I \) are two reflexive soft set relations. If \(R \) is not an anti-reflexive soft set relation, then there is no anti-reflexive soft set relation containing \(R \). If \(R \) is a reflexive soft set relation, then there is no reflexive soft set relation contained in \(R \). Moreover, if \(R \) is a reflexive soft set relation, then \(R \supset I \), and if \(R \) is an anti-reflexive soft set relation, then \(R \subset I' \).
Definition 3.9. Let \(R \) be a soft set relation on \((F, A)\).

1. The maximal anti-reflexive soft set relation contained in \(R \) is called anti-reflexive kernel of \(R \), denoted by \(ar(R) \).
2. The maximal symmetric soft set relation contained in \(R \) is called symmetric kernel of \(R \), denoted by \(s(R) \).

Theorem 3.10. Let \(R \) be a soft set relation on \((F, A)\). Then

1. \(ar(R) = R \cap I^c \). Therefore we obtain a mapping (called anti-reflexive kernel operator) \(ar: \mathcal{SSR}(F,A) \rightarrow \mathcal{SSR}(F,A) \).
2. \(s(R) = R \cap R^{-1} \). Therefore we obtain a mapping (called symmetric kernel operator) \(s: \mathcal{SSR}(F,A) \rightarrow \mathcal{SSR}(F,A) \).

Proof. (1) By Theorem 3.8(5), \(R \cap I^c \subset R \) and \(R \cap I^c \subset I^c \).

Step 1: \(\forall a \in A \), by the definition of \(I \), \(F(a) = F(a) \in I \), so \(F(a) \times F(a) \notin I^c \). Hence \(F(a) \times F(a) \notin R \cap I^c \), i.e. \(R \cap I^c \) is an anti-reflexive soft set relation on \((F, A)\) by Definition 3.3.

Step 2: If \(T \) is an anti-reflexive soft set relation on \((F, A)\) and \(T \subset R \). Then \(T \subset I^c \). Hence \(T \subset R \cap I^c \).

So \(ar(R) = R \cap I^c \).

(2) By Theorem 3.8(10) and (3), \(R \cap I^c = R^{-1} \cap (R^{-1})^{-1} = R^{-1} \cap R = R \cap R^{-1} \).

Therefore \(R \cap R^{-1} \) is a soft set relation on \((F, A)\) by Theorem 3.8(1). According to Theorem 3.8(5), \(R \cap R^{-1} \subset R \). On the other hand, if \(T \) is a symmetric soft set relation on \((F, A)\) and \(T \subset R \). By Theorem 3.8(6), \(T^{-1} \subset R^{-1} \). Then by Theorem 3.8(1) and (8), \(T = T^{-1} \subset R \cap R^{-1} \). So \(s(R) = R \cap R^{-1} \). \(\Box \)

Example 3.11. Let \(U = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7\} \), \(A = \{e_1, e_2, e_3\} \). The soft set \((F, A)\) is given by \(F(e_1) = \{u_1, u_2\} \), \(F(e_2) = \{u_2, u_3, u_4\} \), \(F(e_3) = \{u_1, u_5, u_6, u_7\} \). A soft set relation \(R \) on \((F, A)\) is given by \(R = \{F(e_1) \times F(e_1), F(e_2) \times F(e_2), F(e_3) \times F(e_1)\} \). Then

\[
\begin{align*}
ar(R) &= R \cap I^c \\
&= \{F(e_1) \times F(e_1), F(e_2) \times F(e_2), F(e_3) \times F(e_3)\} \\
&\cap \{F(e_1) \times F(e_2), F(e_2) \times F(e_3), F(e_1) \times F(e_3)\} \\
&= \{F(e_2) \times F(e_1), F(e_3) \times F(e_1), F(e_3) \times F(e_2)\} \\
&\cap \{F(e_1) \times F(e_1), F(e_3) \times F(e_3)\} \\
&= \{F(e_1) \times F(e_1), F(e_3) \times F(e_3)\}.
\end{align*}
\]

Theorem 3.12. The anti-reflexive kernel operator \(ar \) has the following properties:

1. \(ar(m) = m \), \(ar(I^c) = I^c \).
2. \(\forall R \in \mathcal{SSR}(F, A), ar(R) \subset R \).
3. \(\forall R, Q \in \mathcal{SSR}(F, A), ar(R \cup Q) = ar(R) \cup ar(Q), ar(R \cap Q) = ar(R) \cap ar(Q) \).
4. \(\forall R, Q \in \mathcal{SSR}(F, A), if R \subset Q, then ar(R) \subset ar(Q) \).
5. \(\forall R \in \mathcal{SSR}(F, A), ar(ar(R)) = ar(R) \).

Proof. (1) By the anti-reflexivity of \(m \) and \(I^c \), obviously, \(ar(m) = m \), \(ar(I^c) = I^c \).

(2) \(\forall R \in \mathcal{SSR}(F, A), by Theorems 3.10(1) and 3.8(5), ar(R) = R \cap I^c \subset R \).

(3) \(\forall R, Q \in \mathcal{SSR}(F, A), by Theorem 3.10(1),

\[
ar(R \cup Q) = (R \cup Q) \cap I^c = (R \cap I^c) \cup (Q \cap I^c) = ar(R) \cup ar(Q),
\]

\[
ar(R \cap Q) = (R \cap Q) \cap I^c = (R \cap I^c) \cap (Q \cap I^c) = ar(R) \cap ar(Q).\]

(4) \(\forall R, Q \in \mathcal{SSR}(F, A), R \subset Q, by (3) and Theorem 3.8(4) and (9), ar(Q) = ar(R \cup Q) = ar(R) \cup ar(Q) \supset ar(R) \).

(5) \(\forall R \in \mathcal{SSR}(F, A), by Theorem 3.10(1), ar(R) = R \cap I^c \). Hence

\[
ar(ar(R)) = ar(R \cap I^c) = (R \cap I^c) \cap I^c = R \cap I^c = ar(R). \quad \Box
\]

Theorem 3.13. The symmetric kernel operator \(s \) has the following properties:

1. \(s(m) = m, s(M) = M, s(I) = I \).
2. \(\forall R \in \mathcal{SSR}(F, A), s(R) \subset R \).
3. \(\forall R, Q \in \mathcal{SSR}(F, A), s(R \cap Q) = s(R) \cap s(Q) \).
4. \(\forall R, Q \in \mathcal{SSR}(F, A), if R \subset Q, then s(R) \subset s(Q) \).
5. \(\forall R \in \mathcal{SSR}(F, A), s(s(R)) = s(R) \).

Proof. (1) By the symmetry of \(m \), \(M \) and \(I \), \(s(m) = m, s(M) = M, s(I) = I \).

(2) \(\forall R \in \mathcal{SSR}(F, A), by Theorems 3.10(2) and 3.8(5), s(R) = R \cap R^{-1} \subset R \).

(3) \(\forall R, Q \in \mathcal{SSR}(F, A), by Theorems 3.10(2) and 3.8(10), we have

\[
s(R \cap Q) = (R \cap Q) \cap (R \cap Q)^{-1} = (R \cap Q) \cap (R^{-1} \cap Q^{-1}) = (R \cap R^{-1}) \cap (Q \cap Q^{-1}) = s(R) \cap s(Q).
\]

655
(4) \(\forall R, Q \in \mathcal{S}(F, A), R \subset Q \), by (3) and Theorem 3.8(5) and (9), \(s(Q) = s(R \cap Q) = s(R) \cap s(Q) \subset s(Q) \).

(5) \(\forall R \in \mathcal{S}(F, A) \), by Theorem 3.10(2), \(s(R) = R \cap R^{-1} \). Hence

\[
s(s(R)) = s(R \cap R^{-1}) = (R \cap R^{-1}) \cap (R \cap R^{-1})^{-1} \\
= (R \cap R^{-1}) \cap (R^{-1} \cap (R^{-1})^{-1}) \\
= (R \cap R^{-1}) \cap (R^{-1} \cap R) \\
= R \cap R^{-1} \\
= s(R). \]

According to Theorem 3.13, the symmetric kernel operator \(s \) is an interior operator in topology [41].

4. Closures of soft set relations

In this section, we will introduce the concepts of reflexive closure and symmetric closure of a soft set relation, and study their properties.

Definition 4.1. Let \(R \) be a soft set relation on \((F, A)\). The minimal reflexive soft set relation containing \(R \) is called reflexive closure of \(R \), denoted by \(\overline{R}(R) \).

Definition 4.2. Let \(R \) be a soft set relation on \((F, A)\). The minimal symmetric soft set relation containing \(R \) is called symmetric closure of \(R \), denoted by \(\overline{R}(R) \).

Theorem 4.3. Let \(R \) be a soft set relation on \((F, A)\). Then

1. \(\overline{R}(R) = R \cup I \). Therefore we obtain a mapping (called reflexive closure operator) \(\overline{R} : \mathcal{S}(F, A) \rightarrow \mathcal{S}(F, A) \).
2. \(\overline{R}(R) = R \cup R^{-1} \). Therefore we obtain a mapping (called symmetric closure operator) \(\overline{R} : \mathcal{S}(F, A) \rightarrow \mathcal{S}(F, A) \).

Proof.

1. By Theorem 3.4(4), \(R \cup I \supset R \). \(\forall a \in A \), \(F(a) \times F(a) \in I \subset R \cup I \), so \(R \cup I \) is reflexive. On the other hand, if \(T \) is a reflexive soft set relation on \((F, A)\) and \(T \supset R \). By the reflexivity of \(T \), \(T \supset I \), thus by Theorem 3.8(7), we have \(T \supset R \cup I \). So \(\overline{R}(R) = R \cup I \).

2. By Theorem 3.8(10), \((R \cup R^{-1})^{-1} = R^{-1} \cup (R^{-1})^{-1} = R^{-1} \cup R = R \cup R^{-1} \), i.e. \(R \cup R^{-1} \) is a symmetric soft set relation on \((F, A)\), and \(R \cup R^{-1} \supset R \) by Theorem 3.8(4).

If \(T \) is a symmetric soft set relation on \((F, A)\) and \(T \supset R \). By Theorem 3.8(6), \(T^{-1} \supset R^{-1} \). According to Theorem 3.8(1) and (7), \(T^{-1} \supset R^{-1} \). So \(\overline{R}(R) = R \cup R^{-1} \).

Example 4.4. Let \(U = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7\} \), \(A = \{d, e, f, g \} \). The soft set \((F, A)\) is given by \(F(d) = \{u_1, u_2\}, F(e) = \{u_2, u_3, u_4\}, F(f) = \{u_1, u_5, u_6\}, F(g) = \{u_7\} \). Consider a soft set relation \(R \) defined on \((F, A)\) as

\[
R = \{F(d) \times F(e), F(e) \times F(g), F(f) \times F(f)\}. \text{ Then }
\]

\[
\overline{R}(R) = R \cup I \\
= \{F(d) \times F(e), F(e) \times F(g), F(f) \times F(f)\} \cup \{F(d) \times F(d), F(e) \times F(e), F(f) \times F(f), F(g) \times F(g)\} \\
= \{F(d) \times F(d), F(d) \times F(e), F(e) \times F(e), F(e) \times F(f), F(f) \times F(f), F(g) \times F(g)\} \\
\overline{R}(R) = R \cup R^{-1} = \{F(d) \times F(e), F(e) \times F(g), F(f) \times F(f)\} \cup \{F(d) \times F(d), F(e) \times F(e), F(f) \times F(f), F(g) \times F(g)\} \\
= \{F(d) \times F(d), F(e) \times F(e), F(e) \times F(f), F(f) \times F(f), F(g) \times F(g)\}.
\]

Theorem 4.5. The reflexive closure operator \(\overline{R} \) has the following properties:

1. \(\overline{R}(M) = M, \overline{R}(I) = I \).
2. \(\forall R \in \mathcal{S}(F, A), R \subset \overline{R}(R) \).
3. \(\forall R, Q \in \mathcal{S}(F, A), \overline{R}(R \cup Q) = \overline{R}(R) \cup \overline{R}(Q), \overline{R}(R \cap Q) = \overline{R}(R) \cap \overline{R}(Q) \).
4. \(\forall R, Q \in \mathcal{S}(F, A), \text{ if } R \subset Q \text{, then } \overline{R}(R) \subset \overline{R}(Q) \).
5. \(\forall R \in \mathcal{S}(F, A), \overline{R}(\overline{R}(R)) = \overline{R}(R) \).

Proof.

1. By the reflexivity of \(M \) and \(I \), \(\overline{R}(M) = M, \overline{R}(I) = I \).
2. \(\forall R \in \mathcal{S}(F, A), \text{ by Theorems 4.3(1) and 3.8(4), } \overline{R}(R) = R \cup I \supset R \).
3. \(\forall R, Q \in \mathcal{S}(F, A), \text{ by Theorem 4.3(1), } \overline{R}(R \cup Q) = (R \cup Q) \cup I = (R \cup I) \cup (Q \cup I) = \overline{R}(R) \cup \overline{R}(Q) \),

\[
\overline{R}(R \cap Q) = (R \cap Q) \cup I = (R \cup I) \cap (Q \cup I) = \overline{R}(R) \cap \overline{R}(Q) .
\]
Theorem 4.6. The symmetric closure operator \bar{s} has the following properties:

1. $\bar{s}(m) = m, \bar{s}(M) = M, \bar{s}(I) = I$.
2. $\forall R \in \mathcal{R}(F, A), \bar{s}(R) \supset R$.
3. $\forall R, Q \in \mathcal{R}(F, A), \bar{s}(R \cup Q) = \bar{s}(R) \cup \bar{s}(Q)$.
4. $\forall R, Q \in \mathcal{R}(F, A), \text{if } R \subset Q, \text{then } \bar{s}(R) \subset \bar{s}(Q)$.
5. $\forall R \in \mathcal{R}(F, A), \bar{s}(\bar{s}(R)) = \bar{s}(R)$.

Proof. (1) By the symmetry of m, M and $I, \bar{s}(m) = m, \bar{s}(M) = M, \bar{s}(I) = I$.
(2) $\forall R \in \mathcal{R}(F, A), \text{by Theorem 4.3(2), } \bar{s}(R) \cup R^{-1} \supset R$.
(3) $\forall R, Q \in \mathcal{R}(F, A), \text{by Theorems 4.3(2) and 3.8(10), we have}$
\[\bar{s}(R \cup Q) = (R \cup Q) \cup (R \cup Q)^{-1}, \]
\[= (R \cup Q) \cup (R^{-1} \cup Q^{-1}) \]
\[= (R \cup R^{-1}) \cup (Q \cup Q^{-1}) \]
\[= \bar{s}(R) \cup \bar{s}(Q). \]

(4) $\forall R, Q \in \mathcal{R}(F, A), \text{by Theorem 3.8(4.9), } \bar{s}(R \cup Q) = \bar{s}(R) \cup \bar{s}(Q) \supset \bar{s}(Q)$.
(5) $\forall R \in \mathcal{R}(F, A), \text{by Theorem 4.3(2), } \bar{s}(R) = R \cup R^{-1}. \text{ Hence}$
\[\bar{s}(\bar{s}(R)) = \bar{s}(R \cup R^{-1}) = (R \cup R^{-1}) \cup (R \cup R^{-1})^{-1} \]
\[= (R \cup R^{-1}) \cup (R^{-1} \cup R^{-1})^{-1} \]
\[= R \cup R^{-1} \]
\[= \bar{s}(R). \]

According to Theorem 4.6, the symmetric closure operator \bar{s} is a closure operator in topology [41].

Lemma 4.7. $\forall R \in \mathcal{R}(F, A), \text{we have}$

1. $(\bar{s}(R^c))^c = ar(R)$.
2. $\bar{s}(ar(R)) = \bar{s}(R)$.
3. $ar(\bar{s}(R)) = ar(R)$.

Proof. (1) By Theorem 4.3(1), $\bar{s}(R^c) = R^c \cup I$. By Theorems 3.8(11) and 3.10(1), $(\bar{s}(R^c))^c = (R^c \cup I)^c = (R^c)^c \cap I^c = R \cap I^c = ar(R)$.
(2) By Theorems 3.10(1) and 4.3(1), $\bar{s}(ar(R)) = \bar{s}(R \cap I^c) = (R \cap I^c) \cup I = (R \cup I) \cap (I^c \cup I) = (R \cup I) \cap M = \bar{s}(R)$.
(3) By Theorems 3.10(1) and 4.3(1), $ar(\bar{s}(R)) = ar(R \cup I) = (R \cup I) \cap I^c = (R \cap I^c) \cup (I \cap I^c) = (R \cap I^c) \cup m = ar(R)$.

Theorem 4.8 (Six-relations Theorem 1). $\forall R \in \mathcal{R}(F, A), \text{six different soft set relations are the most soft set relations that can be obtained by using anti-reflexive kernel operator, reflexive closure operator, and complement operator.}$

Proof. $\forall R \in \mathcal{R}(F, A), \text{by Lemma 4.7(1), } (\bar{s}(R^c))^c = ar(R), \text{so we can replace the anti-reflexive kernel operator with the complement operator and the reflexive closure operator.}$

1. Take the complement operator first, then the reflexive closure operator on R. The following five different soft set relations are the most soft set relations that can be constructed:
\[R^c, \quad \bar{s}(R^c), \quad (\bar{s}(R^c))^c, \quad \bar{s}(\bar{s}(\bar{s}(R^c))^c), \quad \bar{s}(\bar{s}(\bar{s}(\bar{s}(R^c))^c))^c. \]

It is because that by Lemma 4.7(1, 2) and Theorem 3.8(3),
\[\bar{s}(\bar{s}(\bar{s}(\bar{s}(R^c))^c))^c = \bar{s}(\bar{s}(\bar{s}(\bar{s}(\bar{s}(R^c))^c))^c) = \bar{s}(\bar{s}(\bar{s}(\bar{s}(\bar{s}(R^c))^c))^c) = \bar{s}(\bar{s}(\bar{s}(\bar{s}(\bar{s}(R^c))^c))^c) = \bar{s}(\bar{s}(\bar{s}(\bar{s}(\bar{s}(R^c))^c))^c) = \bar{s}(\bar{s}(\bar{s}(\bar{s}(\bar{s}(R^c))^c))^c) = \bar{s}(\bar{s}(\bar{s}(\bar{s}(\bar{s}(R^c))^c))^c), \]
which implies that the sixth is the same as the second. This is repeated emergence.
(2) Take the reflexive closure operator first, then the complement operator on R. By Lemma 4.7(1) and (2), $\bar{s}(R) = \bar{s}(ar(R)) = \bar{s}(\bar{s}(R^c))^c$, which implies that the first is the same as the fourth in (1). This is repeated emergence.
(3) Take the reflexive closure operator successively or the complement operator successively on R. By Theorems 3.8(3) and 4.5(5), $(\bar{s}(R))^c = R, \bar{s}(\bar{s}(R)) = \bar{s}(R).$ This is repeated emergence.

The proof of Theorem 4.8 is complete. \Box
The following example is presented to illustrate the basic idea developed in Theorem 4.8.

Example 4.9. Let $U = \{s_1, s_2, s_3, s_4, s_5\}$, $A = \{a, b\}$. The soft set (F, A) is given by $[F(a) = \{s_1, s_3, s_4\}, F(b) = \{s_2, s_3, s_5\}]$. A soft set relation R on (F, A) is given by $R = \{F(a) \times F(a), F(b) \times F(a)\}$. By using anti-reflexive kernel operator, reflexive closure operator, and complement operator, the following six different soft set relations are the most soft set relations that can be obtained:

\[R' = \{(a) \times (b), (b) \times (c)\}. \]
\[\overline{R}\! = \overline{(R')} = \{R^c \cup I = \{(a) \times (a), (a) \times (b), (b) \times (b)\}\}. \]
\[(\overline{R'})^c = \{(b) \times (a), (b) \times (b), (b) \times (a)\}. \]
\[\overline{(R')} = \{(a) \times (b), (b) \times (a), (b) \times (b)\}. \]
\[(\overline{(R'))^c} = \{(a) \times (b), (b) \times (b), (b) \times (a)\}. \]
\[R = \{(a) \times (b), (b) \times (b)\}. \]

Lemma 4.10. For all $\forall R \in \mathcal{S}(F, A)$, we have

1. \((R')^c = \mathcal{S}(R) \)
2. \(\mathcal{S}(R) = \mathcal{S}(R) \)
3. \(\mathcal{S}(R) = \mathcal{S}(R) \)

Proof. (1) By Theorem 4.3(2), \((R')^c = \mathcal{S}(R) \). By Theorems 3.8 and 3.10(2), \((R')^c = \mathcal{S}(R) \), i.e. the fourth is the same as the second. This is repeated emergence.

2. (2) and (3) The proofs are straightforward and follow from the definitions of symmetric kernel and symmetric closure. \(\square \)

Theorem 4.11 (Six-relations Theorem 2). For all $\forall R \in \mathcal{S}(F, A)$, six different soft set relations are the most soft set relations that can be obtained by using symmetric kernel operator, symmetric closure operator, and complement operator.

Proof. For all $\forall R \in \mathcal{S}(F, A)$, by Lemma 4.7(1), \((\mathcal{S}(R')^c) = \mathcal{S}(R) \), so we can replace the symmetric kernel operator with the symmetric closure operator and the symmetric closure operator.

1. Take the complement operator first, then the symmetric closure operator on R. The following three different soft set relations are the most soft set relations that can be constructed:

2. Take the symmetric closure operator first, then the complement operator on R. The following two different soft set relations are the most soft set relations that can be constructed:

The following example is employed to illustrate the basic idea developed in Theorem 4.11.

Example 4.12. Let (F, A) and R be the soft set and the soft set relation given in Example 4.9, respectively. By using symmetric kernel operator, symmetric closure operator, and complement operator, the following six different soft set relations are the most soft set relations that can be obtained:

\[R' = \{(a) \times (b), (b) \times (b)\}. \]
\[\mathcal{S}(R') = \mathcal{S}(R') \]
\[\mathcal{S}(R) = \mathcal{S}(R) \]
\[R = \{(a) \times (b), (b) \times (b)\}. \]

5. **Soft set relation mappings**

In this section, we will introduce the notions of soft set relation mappings and inverse soft set relation mappings, and discuss some related properties.
Definition 5.1 ([37]). Let R be a soft set relation from (F, A) to (G, B). Then the domain of R (dom R) is defined as the soft set (D, A_1) where $A_1 = \{a \in A \mid H(a, b) \in R \text{ for some } b \in B\}$ and $D(a_1) = F(a_1) \forall a_1 \in A_1$.

The range of R (ran R) is defined as the soft set $(R G, B_1)$, where $B_1 \subseteq B$ and $B_1 = \{b \in B \mid H(a, b) \in R \text{ for some } a \in A\}$ and $R G(b_1) = G(b_1) \forall b_1 \in B_1$.

Definition 5.2 ([37]). Let (F, A) and (G, B) be two nonempty soft sets. Then a soft set relation “$
ightarrow$” from (F, A) to (G, B) is called a soft set function if every element in domain has a unique element in the range. If $F(a) G(b)$ then we write $f(F(a)) = G(b)$.

Definition 5.3 ([37]). A soft set function f from (F, A) to (G, B) is called

1. injective (one-one) if $f(a) \neq f(b)$ implies $f(F(a)) \neq f(F(b))$, i.e. each element of the ran f appears exactly once in the function.
2. surjective (onto) if ran $f = (G, B)$.
3. bijective if f is both injective and surjective.

Definition 5.4. Let f be a soft set function from (F, A) to (G, B),

1. The soft set relation mapping induced by f, denoted by the notation f^\rightarrow, is a mapping from $\mathcal{SR}(F, A)$ to $\mathcal{SR}(G, B)$ that maps R to $f(R)$, where $f(R)$ is defined by $f(R) = \{(f(a_1)) \times f(F(a_2)) \mid F(a_1) \times F(a_2) \in R\}$.
2. The inverse soft set relation mapping induced by f, denoted by the notation f^\leftarrow, is a mapping from $\mathcal{SR}(G, B)$ to $\mathcal{SR}(F, A)$ that maps T to $f^\leftarrow(T)$, where $f^\leftarrow(T)$ is defined by $f(T) = \{(f_1) \times f(F_2) \mid f(F_1) \times f(F_2) \in T\}$.

Example 5.5. Let $U = \{p_1, p_2, p_3, p_4, p_5, p_6\}$, $A = \{a_1, a_2, a_3, a_4\}$, and $B = \{b_1, b_2\}$. Consider the soft sets (F, A) and (G, B) defined by $F(a_1) = \{p_1, p_2, p_3\}$, $F(a_2) = \{p_2, p_3, p_4\}$, $F(a_3) = \{p_4, p_5\}$, $F(a_4) = \{p_5, p_6\}$, and $G(b_1) = \{p_1, p_2\}$, $G(b_2) = \{p_2, p_5\}$. A soft set function f from (F, A) to (G, B) is given by $f = \{(F(a_1) \times G(b_1)), (F(a_2) \times G(b_1)), (F(a_3) \times G(b_2)), (F(a_4) \times G(b_2))\}$.

Next, we will discuss some basic properties of soft set relation mappings and inverse soft set relation mappings.

Theorem 5.6. Let f be a soft set function from (F, A) to (G, B). Then $Q, R \in \mathcal{SR}(F, A)$.

1. $R \subseteq Q \Rightarrow f^\rightarrow(R) \subseteq f^\rightarrow(Q)$.
2. $f^\rightarrow(R \cup Q) = f^\rightarrow(R) \cup f^\rightarrow(Q)$.
3. $f^\leftarrow(R \cap Q) \subseteq f^\leftarrow(R) \cap f^\leftarrow(Q)$. If f is one-one, then $f^\leftarrow(R \cap Q) = f^\leftarrow(R) \cap f^\leftarrow(Q)$.

Proof. (1) $\forall G(b_1) \times G(b_2) \in f^\rightarrow(R)$, there exists $F(a_1) \times F(a_2) \in R$ such that $G(b_1) \times G(b_2) = f(F(a_1)) \times f(F(a_2))$ by Definition 5.4. Since $R \subseteq Q$, we have $F(a_1) \times F(a_2) \in Q$. Then $G(b_1) \times G(b_2) \in f^\rightarrow(Q)$. So $f^\rightarrow(R) \subseteq f^\rightarrow(Q)$.

(2) $\forall G(b_1) \times G(b_2) \in f^\rightarrow(R \cup Q)$, there exists $F(a_1) \times F(a_2) \in R \cup Q$ such that $G(b_1) \times G(b_2) = f(F(a_1)) \times f(F(a_2))$, where $G(b_1) \times G(b_2) \in f^\rightarrow(R \cup Q)$. Conversely, since $R \subseteq Q \subseteq R \cup Q \subseteq Q$, we have $f^\rightarrow(R \cup Q) \supseteq f^\rightarrow(R)$ and $f^\rightarrow(R \cup Q) \supseteq f^\rightarrow(Q)$ by (1). So $f^\rightarrow(R \cup Q) \supseteq f^\rightarrow(R) \cup f^\rightarrow(Q)$ by Theorem 3.8.7.

Therefore $f^\rightarrow(R \cup Q) = f^\rightarrow(R) \cup f^\rightarrow(Q)$.

(3) Since $R \subseteq R \subseteq R \subseteq Q$, we have $f^\rightarrow(R \cap Q) \subseteq f^\rightarrow(R) \cap f^\rightarrow(Q)$ and $f^\rightarrow(R \cap Q) \subseteq f^\leftarrow(R \cap Q)$ by (1). So $f^\rightarrow(R \cap Q) \subseteq f^\leftarrow(R \cap Q)$ by Theorem 3.8.8.

Conversely, $\forall G(b_1) \times G(b_2) \in f^\leftarrow(R \cap Q)$, we have $G(b_1) \times G(b_2) \in f^\leftarrow(R)$ and $G(b_1) \times G(b_2) \in f^\leftarrow(Q)$.

By Definition 5.4.1, there exists $F(a_1) \times F(a_2) \in R$ such that $G(b_1) \times G(b_2) = f(F(a_1)) \times f(F(a_2))$, and there exists $F((a_1)' \times (a_2)') \in Q$ such that $G((a_1)') \times G((a_2)') = f((a_1)') \times f((a_2)')$.

Therefore $f^\leftarrow(R) \cap f^\leftarrow(Q) \subseteq f^\leftarrow(R \cap Q)$. So if f is one-one, then $f^\leftarrow(R \cap Q) = f^\leftarrow(R) \cap f^\leftarrow(Q)$.

Theorem 5.7. Let f be a soft set function from (F, A) to (G, B). Then $T, S \in \mathcal{SR}(G, B)$.

1. $T \subseteq S \Rightarrow f^\leftarrow(T) \subseteq f^\leftarrow(S)$.
2. $f^\leftarrow(T \cup S) = f^\leftarrow(T) \cup f^\leftarrow(S)$.
3. $f^\leftarrow(T \cap S) = f^\leftarrow(T) \cap f^\leftarrow(S)$.
Proof. (1) \(\forall (a_1) \times F(a_2) \in f^{-}(T), f(F(a_1)) \times f(F(a_2)) \in T \) by Definition 5.4(2). Since \(T \subseteq S \), we have \(f(F(a_1)) \times f(F(a_2)) \in S \). Then \(F(a_1) \times F(a_2) \in f^{-}(S) \). So \(f^{-}(T) \subseteq f^{-}(S) \).

(2) \(\forall F(a_1) \times F(a_2) \in f^{-}(T \cup S), f(F(a_1)) \times f(F(a_2)) \in T \cup S \) by Definition 5.4(2), i.e. \(f(F(a_1)) \times f(F(a_2)) \in T \) or \(f(F(a_1)) \times f(F(a_2)) \in S \). Then \(F(a_1) \times F(a_2) \in f^{-}(T) \) or \(F(a_1) \times F(a_2) \in f^{-}(S) \), i.e. \(F(a_1) \times F(a_2) \in f^{-}(T \cup S) \). So \(f^{-}(T \cup S) \subseteq f^{-}(T) \cup f^{-}(S) \). Conversely, since \(T \cup S \supseteq T \) and \(T \cup S \supseteq S \), we have \(f^{-}(T \cup S) \subseteq f^{-}(T) \) and \(f^{-}(T \cup S) \subseteq f^{-}(S) \) by (1). So \(f^{-}(T \cup S) \subseteq f^{-}(T) \cup f^{-}(S) \) by Theorem 3.8(7). Therefore \(f^{-}(T \cup S) = f^{-}(T) \cup f^{-}(S) \).

(3) Since \(T \cap S \subseteq T \) and \(T \cap S \subseteq S \), we have \(f^{-}(T \cap S) \subseteq f^{-}(T) \) and \(f^{-}(T \cap S) \subseteq f^{-}(S) \) by (1). So \(f^{-}(T \cap S) \subseteq f^{-}(T) \cap f^{-}(S) \) by Theorem 3.8(8).

Conversely, \(\forall F(a_1) \times F(a_2) \in f^{-}(T) \cap f^{-}(S), f(F(a_1)) \times f(F(a_2)) \in f^{-}(T) \) and \(f(F(a_1)) \times f(F(a_2)) \in f^{-}(S) \) by Definition 5.4(2), \(f(F(a_1)) \times f(F(a_2)) \in f^{-}(T) \) and \(f(F(a_1)) \times f(F(a_2)) \in f^{-}(S) \). Then \(F(a_1) \times F(a_2) \in f^{-}(T \cap S) \) and \(F(a_1) \times F(a_2) \in f^{-}(T \cap S) \). So \(f^{-}(T \cap S) \subseteq f^{-}(T) \cap f^{-}(S) \). Therefore \(f^{-}(T \cap S) = f^{-}(T) \cap f^{-}(S) \). □

Theorem 5.8. Let \(f \) be a soft set function from \((F, A) \) to \((G, B), R \in \mathcal{SSR}(F, A), T \in \mathcal{SSR}(G, B)\). Then

(1) \(f^{-}(f^{-}(R)) \supseteq R \).
(2) \(f^{-}(f^{-}(T)) \subseteq T \).
(3) \(f^{-}(f^{-}(R)) \supseteq R \).

Proof. (1) \(\forall (a_1) \times F(a_2) \in f^{-}(R), f(F(a_1)) \times f(F(a_2)) \in f^{-}(R) \). By Definition 5.4(2), \(F(a_1) \times F(a_2) \in f^{-}(R) \). So \(f^{-}(f^{-}(R)) \supseteq R \).

Conversely, \(\forall F(a_1) \times F(a_2) \in f^{-}(R), f(F(a_1)) \times f(F(a_2)) \in f^{-}(R) \) by Definition 5.4(2). Then there exists \(F(a_1)' \times F(a_2)' \in R \) such that \(f(F(a_1)) \times f(F(a_2)) = f(F(a_1)') \times f(F(a_2)) \), which implies that \(f(F(a_1)) = f(F(a_1)') \) and \(f(F(a_2)) = f(F(a_2)) \). If \(f \) is one-one, then \(F(a_1) = f(F(a_1)) \) and \(F(a_2) = f(F(a_2)) \). Thus \(F(a_1) \times F(a_2) = F(a_1)' \times F(a_2)' \).

So if \(f \) is one-one, then \(f^{-}(f^{-}(R)) = R \).

(2) By Definition 5.4, \(\forall (b_1) \times (b_2) \in f^{-}(T'), f(F(a_1)) \times f(F(a_2)) \in f^{-}(T) \) such that \(G(b_1) \times G(b_2) = f(F(a_1)) \times f(F(a_2)) \). Then \(G(b_1) \times G(b_2) = f(F(a_1)) \times f(F(a_2)) \in f^{-}(T) \). So \(f^{-}(f^{-}(T)) \subseteq T \).

Conversely, \(\forall G(b_1) \times G(b_2) \in T, f \) is surjective, then there exist \(F(a_1), F(a_2) \in F(A) \) such that \(G(b_1) = f(F(a_1)) \) and \(G(b_2) = f(F(a_2)) \). Then \(f(F(a_1)) \times f(F(a_2)) \in f^{-}(f^{-}(T)) \), which implies that \(F(a_1) \times F(a_2) \in f^{-}(T) \). By Definition 5.4(1), \(G(b_1) \times G(b_2) \in f^{-}(f^{-}(T)) \).

So if \(f \) is surjective, then \(f^{-}(f^{-}(T)) = T \). □

Theorem 5.9. Let \(f \) be a soft set function from \((F, A) \) to \((G, B), R \in \mathcal{SSR}(F, A), \) Then

(1) \(f^{-}(f^{-}(R)) \supseteq R \).
(2) \(f^{-}(f^{-}(T)) \subseteq T \).
(3) \(f^{-}(f^{-}(R)) \supseteq R \).

Proof. (1) \(\forall (a_1) \times F(a_2) \in f^{-}(T), f(F(a_1)) \times \times f(F(a_2)) \in T \) by Definition 5.4(2). So \(f^{-}(f^{-}(T)) \subseteq f^{-}(R) \).

(2) \(\forall (a_1) \times F(a_2) \in f^{-}(R), f(F(a_1)) \times f(F(a_2)) \in f^{-}(R) \). If \(f \) is reflexive, then \(f(F(a_1)) \times f(F(a_2)) \in f^{-}(R) \). If \(f \) is anti-reflexive, then \(f(F(a_1)) \times f(F(a_2)) \notin f^{-}(R) \), i.e. \(f^{-}(R) \) is a reflexive soft set relation on \((F, A) \).

(3) \(\forall (a_1) \times (a_2) \in f^{-}(T), f(F(a_1)) \times f(F(a_2)) \notin f^{-}(T) \). If \(f \) is reflexive, then \(f(F(a_1)) \times f(F(a_2)) \notin f^{-}(T) \). If \(f \) is anti-reflexive, then \(f(F(a_1)) \times f(F(a_2)) \in f^{-}(T) \).

Next, we will give two main results of this section.

Theorem 5.11. Let \(f \) be a soft set function from \((F, A) \) to \((G, B), R \in \mathcal{SSR}(F, A)\). Then

(1) \(f^{-}(f^{-}(R)) = f^{-}(R) \).
(2) \(f^{-}(a)(R) = f^{-}(R) \).
(3) \(f^{-}(b)(R) = f^{-}(R) \).
(4) \(f^{-}(b)(R) = f^{-}(R) \).
Theorem 5.10. Let \(f: (A, T) \rightarrow (B, T) \) be a soft set function. Then for any \(T \in T(A) \),
\[
T \cap f^{-1}(T) \subseteq f^{-1}(T).
\]

Proof. Since \(f^{-1}(T) \) is a soft set, it is a subset of \(B \). Therefore, \(T \cap f^{-1}(T) \) is a subset of \(T \). Hence, for any \(x \in T \cap f^{-1}(T) \), we have \(x \in f^{-1}(T) \). This implies that \(T \cap f^{-1}(T) \subseteq f^{-1}(T) \). \(\square \)

Theorem 5.11. Let \(f: (A, T) \rightarrow (B, T) \) be a soft set function. Then for any \(T \in T(A) \),
\[
T \cap f^{-1}(T) = f^{-1}(T)\cap T = f^{-1}(T)\cap T.
\]

Proof. Since \(f^{-1}(T) \) is a soft set, it is a subset of \(B \). Therefore, \(T \cap f^{-1}(T) \) is a subset of \(T \). Hence, for any \(x \in T \cap f^{-1}(T) \), we have \(x \in f^{-1}(T) \). This implies that \(T \cap f^{-1}(T) \subseteq f^{-1}(T) \). \(\square \)

Example 5.12. Let \((A, T) \) and \((B, T) \) be soft sets. Then for any \(T \in T(A) \),
\[
T \cap f^{-1}(T) \subseteq f^{-1}(T)\cap T = f^{-1}(T)\cap T.
\]

Proof. Since \(f^{-1}(T) \) is a soft set, it is a subset of \(B \). Therefore, \(T \cap f^{-1}(T) \) is a subset of \(T \). Hence, for any \(x \in T \cap f^{-1}(T) \), we have \(x \in f^{-1}(T) \). This implies that \(T \cap f^{-1}(T) \subseteq f^{-1}(T) \). \(\square \)

Theorem 5.13. Let \(f: (A, T) \rightarrow (B, T) \) be a soft set function. Then for any \(T \in T(A) \),
\[
T \cap f^{-1}(T) = f^{-1}(T)\cap T = f^{-1}(T)\cap T.
\]

Proof. Since \(f^{-1}(T) \) is a soft set, it is a subset of \(B \). Therefore, \(T \cap f^{-1}(T) \) is a subset of \(T \). Hence, for any \(x \in T \cap f^{-1}(T) \), we have \(x \in f^{-1}(T) \). This implies that \(T \cap f^{-1}(T) \subseteq f^{-1}(T) \). \(\square \)
6. Conclusion

In the present paper the theoretical point of view of soft sets is discussed again. We construct kernels and closures of soft set relations, and soft set relation mappings by the use of soft set relations and functions. Some related properties are discussed. We also give some examples to explain these theories. Based on these results, we can further probe the applications of soft sets. Moreover, the concepts proposed in this paper can be extended in fuzzy soft sets and thus one can get more affirmative solution in decision making problems in real life situations.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and helpful suggestions. The works described in this paper are supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2010JM1005), and the National Natural Science Foundation of China (Grant No. 11071151).

References