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Abstract:    In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a 
Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unscented particle filter 
(UPF) by an interaction step at the beginning. The framework (interaction/mixing, filtering, and combination) is similar to that in 
a standard IMM filter, but an UPF is adopted in each model. Therefore, the filtering performance and degeneracy phenomenon of 
particles are improved. The filtering method addresses nonlinear and/or non-Gaussian tracking problems. Simulation results show 
that the method has better tracking performance compared with the standard IMM-type filter and IMM particle filter. 
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INTRODUCTION 
 

With the increased demands in recent years of 
modern warfare, ground target tracking has become 
the focus of increased investigation. Tracking ground 
targets is quite different from tracking airborne and 
sea-surface targets in some aspects such as high target 
density, complex target kinematics, heavy clutter, low 
detection rate, and terrain and road constraints 
(Kirubarajan et al., 1998; Chong et al., 2000; 
Kreucher and Kastella, 2001). Variable terrain condi-
tions not only limit the maneuverability of targets but 
also degrade the quality of measurement data. As an 
alternative, terrain and road information are important 
sources for data to improve the tracking performance 
of ground targets. 

A single model cannot effectively model the 
complex variables and maneuvering complexity of a 
ground target tracking system. One popular technique 

for tracking maneuvering targets is the multiple 
model (MM) approach, especially the interacting 
multiple model (IMM) approach (Bar-Shalom et al., 
1989; 2005). The MM approach has proven to be a 
suboptimal method for handling such tracking prob-
lems. The IMM estimator performs much better than 
MM methods (Bar-Shalom and Li, 1993). The ap-
plication of IMM for tracking ground target is pre-
sented using a ground moving target indicator (GMTI) 
(Kirubarajan et al., 1998). 

Complex, multiple ground target tracking, with 
non-maneuvering, low maneuvering and high ma-
neuvering targets simultaneously, belongs to the class 
of linear/nonlinear and Gaussian/non-Gaussian fil-
tering problem. There is no way to obtain more ac-
curate estimates using only Kalman filter (KF) or 
extended Kalman filter (EKF). Gordon et al.(1993) 
proposed the first working particle filter (PF) or 
bootstrap filter. By using a large number of random 
samples (particles), the probability density of state 
distribution can be directly approximated. Paticle 
filter based methods, therefore, can deal with any 
nonlinearity or non-Gaussianity in the dynamical 
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state and measurement models. To improve the fil-
tering performance, an unscented particle filter (UPF) 
(van der Merwe et al., 2000; van der Merwe, 2004), 
which uses an unscented Kalman filter (UKF) (Julier 
and Uhlmann, 1997) to generate the importance 
proposal distribution, is used for updating stage of 
sequential importance sampling (SIS). The UPF 
method has two advantages: first, it makes efficient 
use of the latest available information; secondly, it 
has more heavy tails. To approximate the true mean 
and covariance of Gaussian random variable, the EKF 
method achieves only the first-order. The unscented 
filter, in contrast, accurately captures up to the third 
order (Taylor series expansions) for any nonlinearity 
(Wan and van der Merwe, 2000). Boers and Driessen 
(2003) and Hong et al.(2006) proposed an IMM par-
ticle filter which uses a regularized particle filter for 
the filtering step. 

Based on the IMM framework, an interacting 
multiple model unscented particle filter (IMMUPF) is 
presented for tracking ground maneuvering targets. 
The central idea is to integrate an UPF with the IMM 
estimator. The algorithm uses a multiple model 
framework with the number of particles fixed in each 
model. The interaction/mixing between models is 
accomplished by interaction of the particle mass from 
each model. In the filtering stage, some particle filters 
are used for updating. At the same time, the UKF is 
applied to update the true mean and covariance of the 
proposal distribution for improving estimate accuracy. 
Moreover, the residual resampling scheme is adopted 
to curtail the degeneracy of data by using a fixed 
number of particles. 

The organization of this paper is as follows. The 
dynamic models for ground target tracking are de-
scribed in Section 2. The general UPF approach and 
an UPF algorithm based on the IMM frame for 
tracking ground maneuvering targets are presented in 
Section 3 and Section 4, respectively. To validate the 
IMMUPF algorithm, a ground target-tracking exam-
ple is given in Section 5. Finally, Section 6 concludes 
the paper. 
 
 
DYNAMIC SYSTEM 
 

A general dynamic system for multiple models 
in discrete time is rendered by 
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where f(·) and h(·) are the parameterized state transi-
tion and measurement functions; x(k)∈ún[M(k)] is the 
dynamic state of the system in mode M(k), and 
M(k)∈M⊂ù is the modal state of the system, and the 
system itself is a Markov chain with r states; w, v are 
the process noise and measurement noise with means 
w  and v  and covariances Q(k) and R(k), respec-
tively, and the two noise sequences are white and 
possibly mode-dependent; z(k)∈úp[M(k)] is the meas-
urement in mode M(k); g(·) is the input; tk is the sam-
pling time, in this context a constant variable.  

The model transition probability is modeled as a 
Markov chain with 
 

1{ | }, 
     , ,  {1, ..., },
ij k kProb M j M i

i j M M = r
π −= = =

∀ ∈
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where r is the number of possible models. In con-
tinuous time, M(k), under assumption, is in effect 
within the semi-closed interval (tk−1,tk]. 
 
 
UNSCENTED PARTICLE FILTER 
 

The PF is a recursive estimation method using 
Monte Carlo simulation within a Bayesian framework 
(Farina and Ristic, 2002; Arulampalam et al., 2002). 
The central idea is to obtain the MMSE (minimum 
mean-square error) of state from a set of random 
samples (particles) of state space to approximate the 
required probability density function (PDF). It is 
often impossible to directly sample from the posterior 
probability density. Thus, an importance proposal 
distribution, q(x0:k|Z1:k), with identical distribution to 
the posterior distribution is introduced, where Z1:k are 
all measurements from t=1 to t=k. The bootstrap filter 
(Gordon et al., 1993) simply takes the prior distribu-
tion as the proposal distribution by 
 

1: 10:( 1) 1 1( , ) ( ) ( ( ), )i i i i i
k kk k k k kq p N f −− − −= ≈x x Z x x x Q (4) 

 
in calculating the importance weights. However, it 
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would cause a larger error if there is little overlap 
between prior and the likelihood. To obtain more 
accurate proposal distribution within the particle filter 
frame, UKF may be used to update the mean and 
covariance of the Gaussian approximation to the state 
distribution given by 
 

 1:0:( 1) 1 |ˆ( , ) ( , ),   1,  ...,  ,i i i i
kk k k k kp N i N− −≈ =x x Z x P   (5) 

 
where N is the number of sampling particles. So the 
UPF can be derived (van der Merwe et al., 2000). For 
completeness, one cycle of the UPF algorithm can be 
described in detail as follows: 

1. Initialization 
Let 0 1{ }i N

i=x  be a set of particles sampled from the 
prior p(x0) at k=0 and set 
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2. Importance sampling 
(1) Update each particle with the UKF to obtain 

mean |ˆ i
k kx  and covariance |

i
k kP  (Julier and Uhlmann, 

1997; Julier, 2002). Let n-dimensional state vector 
xk−1 with mean ( 1)|( 1)ˆ k k− −x  and covariance P(k−1)|(k−1) be 
approximated by 2n+1 weighted samples or sigma 
points. Then one cycle of the UKF is as follows: 

(i) Calculate sigma points: 
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where ,nγ κ= +  the corresponding weights are 
given by 
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where κ is a scaling factor and | 1( )( )k k in κ −+ P  is 
the ith row or column of the matrix square root of  
(n+κ)Pk|(k−1) and wi is the weight associated with the 

ith point such that 2

0
1.n

ii
w

=
=∑  Numerically efficient 

and stable methods such as the Cholesky decomposi-
tion (Press et al., 1992) are needed for the matrix 
square root. 

(ii) Propagation (time update): the sigma points 
are propagated and the estimated mean and covari-
ance of the state are computed as follows: 
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(iii) Measurement update: using h(·) to calculate 

the measurement sigma points |( 1)
i
k k−ξ  and update the 

mean and covariance by 
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(iv) Calculate filter gain:  
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(v) Output: 
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(2) Sample |ˆ i

k kx  can be drawn from 
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The normalized weight is given by  
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3. Selection or resampling 
To obtain N random particles 10: 0:

ˆˆ{ , }i i N
ik k =x P , it is 

necessary to resample N times from 10: 0:{ , }i i N
ik k =x P  

according to the importance weights. The procedure 
multiplies the high-weight particles and eliminates 
the low-weight particles in the state space to match 
the changes of the PDF over the state transition. Then, 
set the weights 1/ .i i

k kw w N= =  Note that the above 
resampling scheme reduces the degeneracy phe-
nomenon at the cost of increasing the computational 
load and losing the particle diversity. Other efficient 
resampling schemes, such as regularized particle 
filter (Musso et al., 2001) and MCMC (Markov chain 
Monte Carlo) step (Robert and Casella, 1999), may be 
applied to compensate the drawbacks. 

4. Output 
Via the output of a set of samples used to ap-

proximate the posterior distribution given by 
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the state is eventually updated by means of the parti-
cles as follows: 
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INTERACTING MULTIPLE MODEL UN-
SCENTED PARTICLE FILTER 
 

Integrating the IMM filter with an UPF, an 
IMMUPF algorithm is derived to address ground 
target tracking problems. First, the mixed initial con-
dition and the mixing probabilities at k−1 are calcu-
lated. Second, a set of particles is randomly sampled 
in each mode according to the prior probability den-
sity 0ˆ (( 1) | ( 1)).jp k k− −  The sample is used as the 
basis for the update. Third, the state and its covariance 
are updated for each mode with the UPF. The inno-
vations, residual covariance, likelihoods and weights 
at time step k are then computed simultaneously. The 
mode probability then may be updated and the new 
mixing probability can be calculated based on the 
likelihoods. Last, the state mean and covariance are 

combined for the next cycle. Starting from k−1, one 
cycle of the IMMUPF algorithm can be described in 
detail as follows: 

1. Interaction/mixing  
Based on the Markov model, the model likeli-

hoods and the posterior probability densities for the 
different modes at time step k−1, the initial densities 

0 0 1:( 1)ˆ ( ( 1) | )j j kp k −−x Z  are computed as Gaussian 
sum probability densities. At the beginning of the 
estimation cycle, state estimate and covariance for 
each filter are initialized as 
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where 0ˆ (( 1) | ( 1))j k k− −x  and 0̂ (( 1) | ( 1))j k k− −P  are 
the mixed initial condition for mode-matched filter j 
at time k−1. 

Then the Gaussian mixing probabilities are 
computed via the equations 
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where cj is a normalization factor. 

2. State update/importance sampling 
1,...,
1,...,

ˆˆ{ (( 1) | ( 1)), (( 1) | ( 1))}n Nn n
j j j rk k k k =

=− − − −x P  as 

the sample set is drawn from the state 0ˆ (( 1)| ( 1))j k k− −x  
with the probability 0ˆ (( 1) | ( 1)).jp k k− −  Then 
propagate and update the sample set by using the UPF 
to obtain the posterior samples ˆ{ ( | ), ( ),n n

j jk k w kx  
1,...,
1,...,

ˆ ( | )}n Nn
j j rk k =

=P  at k, where n
iw  is the normalized 

importance weight. So the innovations, residual co-
variance and likelihoods can be obtained as follows: 

Mean of propagate output over the sample set 
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Innovations 
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Residual covariance over the sample set 
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Likelihoods 
 

ˆ( ) ( ( );0; ( )).n l
jj jk N k k=L r S                 (25) 

 
3. Residual resampling 
Resample the sample set by evaluating the im-

portance weights of all particles for each model to 
ensure the particles are distinct for an accurate poste-
rior. The procedure, propagating the particles with 
higher weights and suppressing the particles with 
lower weights, is to generate a new sample set with 
identical weights 1,...,

1,..,ˆ{ ( | ),  ( ) 1/ } .n Nn n
j j j rk k w k N =

==x  
Here, a residual resampling scheme is adopted for its 
smaller Monte Carlo variance and favorable compu-
tation time (Arulampalam et al., 2002). 

4. Update of the mode probabilities: 
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5. Combination (output) 
Taking into account the mode probabilities, a 

combined state estimate can be obtained by averaging 
over the samples in Step 3 as follows: 
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The mean and covariance of state at k are given by 
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AN EXAMPLE OF GROUND MANEUVERING 
TARGET TRACKING 
 

In this section, the IMMUPF algorithm is ap-
plied to a ground target tracking scenario, and its 
performance is compared with that of the IMMPF 
method (Boers and Driessen, 2003) and a standard 
IMMEKF filter (Mazor et al., 1998). 
 
Nonlinear models 

To accurately model ground target dynamics, 
two models based on lateral and longitudinal accel-
erations are utilized to describe the kinematics of both 
non-maneuvering and maneuvering ground target 
(McGinnity and Irwin, 2000; Kreucher and Kastella, 
2001; Cui et al., 2005). The target state is defined as 
x=[x, y, θ, ν]T, where (x, y) is the target’s Cartesian 
location in the x-y plane, θ is the target heading, and v 
is the target velocity. 

Model 1: a constant model (CV) is modeled by 
(Kreucher and Kastella, 2001; Cui et al., 2005) 
 

0
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[ ( , )] / ( , ) ( ),
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v v v x y x y w v

θ

θ θ

θ θ θ τ θ
τ

= =


= − − +
 = − − +

        (31) 

 
where θ0(x,y) and τθ(x,y) are the preferred heading and 
the mean time to take heading correction, respectively; 
ν0(x,y) and τν(x,y) are the varying preferred speed and 
the mean time to speed correction, respectively; w(θ) 
and w(v) are respectively zero-mean Gaussian white 
noise processes with variances given by 
 

2 2( , ) 2 / ( , ),  ( , ) 2 / ( , ),v v vq x y x y q x y x yθ θθσ τ σ τ= =  (32) 
 
where 2

θσ  and 2
vσ  are the variances of heading and 

velocity deviation from their preferred values, re-
spectively. 

Model 2: a general constant lateral acceleration 
model with non-zero mean noise is defined as 
(McGinnity and Irwin, 2000; Cui et al., 2005) 
 

latcos , sin ,  / ,  0,x v y v u v vθ θ θ= = = − =    (33) 
 
where ulat is a constant lateral acceleration. This 
model is called a coordinate turn (CT) model. 
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To meet the research needs, it is necessary to 
make Models 1 and 2 discrete. The general dynamic 
discrete system for the multiple models is defined in 
Eqs.(1) and (2), where M∈{1,2}; M=1 and M=2 cor-
respond to Model 1 (CV) and Model 2 (CT), respec-
tively.  

Measurement model: the measurement function 
h(·) is mode-independent and time-independent, and 
the measurement model is given by 
 

2 2

( ) ( ( ), , ( )) ( ( ), ( ))

 ,
arctan( / )

k

k

k

rk k

k k

k h k t M k v k M k

vx y
vy x φ

= +

   +
= +   

  

z x x
     (34) 

 
where v is a zero-mean Gaussian noise with variance 
R(k)=diag(σr

2, σθ2), and σr, σθ are standard deviations 
for the range and bearing, respectively. The sensor is 
assumed at the original point. 
 
Scenario and simulation 

From the location of x=y=3 km, the target starts 
to make an almost CV movement for 150 s with an 
initial velocity of 20 m/s and heading of 30°. Then it 
turns for 350 s with a positive turn rate of about 
0.15°/s. At last, the target resumes a CV motion for 
100 s. The true trajectory for a maneuvering target is 
shown in Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The mode transition matrix is given by 

 

2 2

0.97 0.03
( ) .

0.03 0.97ijp ×

 
= =  

 
π                 (35) 

 
The model parameters are set as ulat=−0.2 rad/s2 

for Model 2. The standard deviations of Model 2 are 

taken to be: qx=qy=3 m, qθ=0.05°, qv=0.005 m/s for 
the process noise and σr=4 m, σθ=1.15° for the 
measurement noise. For the IMMPF and IMMUPF 
algorithms, the total particle number is set as N=1000 
with 500 particles for each model at the initiation 
stage.  

Five hundred Monte Carlo simulations with 
different measurement noises to the same trajectory 
have been done. The root mean square errors (RMSEs) 
plots of each state vector for the three filters (IM-
MEKF, IMMPF and IMMUPF) are shown in Fig.2. It 
can be seen from Fig.2 and Table 1 that the three 
filters had almost the same performance in the 
non-maneuvering phase (k<150 s and k>500 s); but in 
the maneuvering phase (k=150~500 s), the IMMPF 
and IMMUPF algorithms perform much better than 
the standard IMM nonlinear filters in reducing the 
state estimate errors. The reason for the enhanced 
performance is that the particle-based multiple model 
filters use the mixture of multiple Gaussians while the 
IMM-type filter (IMMEKF) only uses single Gaus-
sian mixing. When target maneuvering occurs, the 
single Gaussian approximation introduces large errors 
in the standard IMM filters. In contrast, the two par-
ticle filters matched have no limitation to the 
non-Gaussian condition. They can handle well any 
non-Gaussianity in the dynamic systems. Compara-
tively, the filtering accuracy of the IMMUPF algo-
rithm is superior to that of the IMMPF algorithm. The 
reason lies in that the UKF method is used to generate 
the importance proposal distribution. As a result, 
much more accurate mean and covariance can be 
updated. 

 
 
 
 
 
 
 

 
It is an undeniable fact that the particle-based 

filters are computationally expensive. However, cer-
tain parallel mechanism in implementing the 
IMM-based filtering approaches (including the parti-
cle-based filters and IMM-type filters) can reduce the 
computational burden. Except for the total time con-
sumed in each filtering approach, the computational 

Fig.1  A true trajectory for a maneuvering target 
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Filters RMSEs-x 
(m) 

RMSEs-y 
(m) 

RMSEs-θ 
(×10−3 rad) 

RMSEs-v 
(m/s) 

IMMEKF 56.81 67.46 7.1631 1.7220
IMMPF 15.31 17.54 4.3912 0.9332
IMMUPF 14.88 16.07 4.1284 0.7932

Table 1  Comparison of RMSEs for the three filters (100
runs) 
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complexity of per particle/model is compared simul-
taneously. Table 2 shows a comparison of total 
computational loads as well as the loads per parti-
cle/model for the scenario according to the CPU time 
(system configurations: Celeron (R) CPU 2.0 GHz, 
memory 512 MB). 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

In this research, a particle filter based on the 
IMM framework using UKF to generate the impor-
tance proposal distribution has been presented.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Besides the theoretical development of the filtering 
method, the simulation results demonstrated that the 
IMM particle filters perform well whereas the stan-
dard IMM-type filter behaves poorly when the target 
is in the maneuvering phase. Furthermore, the filter-
ing method, IMMUPF, performs much better than 
IMMPF. However, the computational complexity of 
IMMEKF is far lower than those of IMMPF and 
IMMUPF. Therefore, for maneuvering targets with 
weak nonlinearity, IMMEKF is the most efficient 
filter with acceptable performance; for maneuvering 
targets with strong nonlinearity, the choice of the 
filters depends on the user’s emphasis. If the parallel 
processing capacity is sufficient, the IMMPF or 
IMMUPF should be used to obtain better perform-
ance; if not, the IMMEKF should be chosen for 
computational saving. The priority for future work is 
to adjust adaptively the number of resampling parti-
cles according to the filtering performance. 
 
 

Filters Total time (s) Per particle/per model (s)
IMMEKF 0.8930 0.4465 
IMMPF 114.85 0.1098 
IMMUPF 483.67 0.4726 

Table 2  Comparison of computational complexity for the
three filters (1 run, N=500, 2 models) 

Fig.2  Comparison of the three filters. (a) RMSEs-x; (b) RMSEs-y; (c) RMSEs-θ; (d) RMSEs-v 
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