
interaction of CD45 with its ligand may in-
duce its dimerization and in turn regulate the
activity of Lck. In the absence of ligand, both
wild-type and mutant CD45 molecules are
catalytically active monomers. In the pres-
ence of a CD45 ligand, both wild-type and
mutant CD45 may dimerize, with different
consequences for Lck activity. In cells ex-
pressing wild-type CD45, the catalytic site
of each molecule would be blocked by the
wedge containing glutamate 624 from the
partner molecule, inhibiting CD45 phos-
phatase activity. Consequently, Lck would
remain in the phosphorylated, inactive
conformation, and TCR signals would be
inhibited. In E624R-mutant CD45 mole-
cules, the wedge is altered so that the cat-
alytic sites are not occluded in the ligand-
induced dimer. CD45 phosphatase activity
would be retained and maintain Lck in its
active conformation.

We chose to mutate glutamate 624 of
CD45 because it is analogous to aspartate 228
within the putative inhibitory wedge of
RPTPa (8). Aspartate 228 of one monomer
contacts the mobile loop in the active site of
the opposing monomer through a hydrogen
bond between the side chain carboxyl moiety
of aspartate 228 and a backbone amide of the
loop. This interaction, along with other con-
tacts, would preclude the necessary movement
of the loop upon substrate binding, rendering
the phosphatase inactive. Mutation of gluta-
mate 624 of CD45 presumably disrupts the
analogous interaction in CD45 dimers, there-
by allowing the mobile loop to change con-
formation upon substrate binding, resulting in
an active CD45 phosphatase.

Ligand-induced dimerization plays an es-
sential role in the regulation of receptor
tyrosine kinases, leading to autophosphoryl-
ation and activation of protein tyrosine ki-
nase activity (15). Ligand-induced dimer-
ization may also play an essential role in the
regulation of RPTPs. However, instead of
leading to activation, dimerization of
RPTPs results in inhibition.
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Dissociated Pattern of Activity in Visual Cortices
and Their Projections During Human Rapid Eye

Movement Sleep
Allen R. Braun,* Thomas J. Balkin, Nancy J. Wesensten,

Fuad Gwadry, Richard E. Carson, Mary Varga, Paul Baldwin,
Gregory Belenky, Peter Herscovitch

Positron emission tomography was used to measure cerebral activity and to evaluate
regional interrelationships within visual cortices and their projections during rapid eye
movement (REM) sleep in human subjects. REM sleep was associated with selective
activation of extrastriate visual cortices, particularly within the ventral processing stream,
and an unexpected attenuation of activity in the primary visual cortex; increases in regional
cerebral blood flow in extrastriate areas were significantly correlated with decreases in the
striate cortex. Extrastriate activity was also associated with concomitant activation of
limbic and paralimbic regions, but with a marked reduction of activity in frontal association
areas including lateral orbital and dorsolateral prefrontal cortices. This pattern suggests a
model for brain mechanisms subserving REM sleep where visual association cortices and
their paralimbic projections may operate as a closed system dissociated from the regions
at either end of the visual hierarchy that mediate interactions with the external world.

Since its discovery in 1953 (1), the stage of
sleep characterized by electroencephalo-
graphic desynchronization and rapid eye

movements (REM sleep) has been the sub-
ject of unremitting scientific investiga-
tion. Exceptional interest in REM sleep
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has been sustained in part because it is the
stage during which intense visual imagery-
laden dream activity is most prevalent (2).
However, the neural mechanisms that un-
derlie generation of these images remain
uncharacterized.

Although visual imagery (formation of
an internally generated percept) and visual
perception (representation of an externally
generated stimulus) are behaviorally dis-
tinct, the extent to which this distinction is
predicated on activation of different por-
tions of the visual system is unclear.

It is not known, for example, whether
images can be evoked at higher levels of the
visual hierarchy—extrastriate cortices in-
cluding V4, V5, inferotemporal and occip-
itoparietal processing pathways, and their
anterior projections—or whether this pro-
cess requires the contribution of early visual
areas—V1 and V2 regions of the striate
cortex—that are normally involved in pri-
mary visual perception.

Previous functional imaging studies, per-
haps because they utilized different visual
imagery–eliciting tasks during wakefulness,
have produced contradictory results (3, 4).
Functional imaging during REM sleep af-
fords a singular opportunity for study, be-
cause it is characterized by naturally occur-
ring visual imagery–laden mentation and is
defined by well-established, measurable cri-

teria. Moreover, the functional anatomy of
the visual system during REM sleep is of
significant interest and may provide clues
about the nature of this enigmatic “third
state” of consciousness (5).

We used positron emission tomography
(PET) and H2

15O to measure regional ce-
rebral blood flow (rCBF) within visual cor-

tices and their projections during REM
sleep, compared with both wakefulness and
stage 3–4 sleep [slow wave sleep (SWS)],
and evaluated the regional cerebral corre-
lates of the REMs that characterize this
sleep stage.

Ten healthy male volunteers (6) under-
went sleep deprivation and restriction pro-
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Fig. 1. Brain maps de-
picting changes in rCBF
during REM sleep. In-
creases and decreases in
rCBF during REM sleep
compared with postsleep
wakefulness (A) and SWS
(B) are illustrated as well as
positive and negative cor-
relations between rCBF
values and REM density
(C). In (A) and (B) stage-
specific changes in rCBF
were evaluated for AN-
COVA corrected data sets
[see (20)]; the resulting
SPM (Z ) maps are dis-
played on a standardized
magnetic resonance im-
aging (MRI) scan, which
was transformed linearly
into the same stereotaxic
(Talairach) space as the
SPM (Z ) data. Planes of
section are located at 210
mm (left), 0 mm (middle),
and 110 mm (right) rela-
tive to the anterior com-
missural–posterior commissural line. Values are Z-scores representing the significance level of changes
in normalized rCBF in each voxel; the range of scores is coded in the accompanying color table, with
blue-white designating Z-scores of 24.0 and below and with dark red designating Z-scores of 14.0 and
above. In (C) rapid conjugate eye movements recorded during the 180 s after the start of the scan were
summed and correlated with normalized rCBF images on a pixel-by-pixel basis. The map illustrates
these correlation coefficients displayed on the standardized MRI scan at the same planes of section. The
range of coefficients is coded in the accompanying color table, with blue-white designating coefficients
of 20.75 and below and with dark red designating coefficients of 10.75 and above. Location of local
minima and maxima for Z-scores and correlation coefficients are summarized in Table 1.

Table 1. Results of SPM contrasts and correlations between REMs
and rCBF. Regions where rCBF values differ from baseline (REM-wake
and REM-SWS) are tabulated with associated Z-scores and magni-
tude (Mag.) of rCBF differences (milliliters per 100 g per minute nor-

malized to a mean of 50). Regions in which rCBF rates are correlated
with REMs (REM Corrs) are tabulated with associated correlation
coefficients. In each case Talaraich coordinates indicate local maxima
or minima.

Regions Brodman
no.

REM-wake REM-SWS REM Corrs

X Y Z Mag. Z-score X Y Z Mag. Z-score X Y Z r

Extrastriate cortex
Fusiform, lingular gyrus 19, 37 24 260 28 4.22 3.10 230 254 28 3.29 3.22* 226 260 24 0.91†
Ventral lateral occipital–Inferotemporal cortex 19, 37 28 266 4 2.62 3.30 238 258 212 2.11 3.17 54 250 0 0.95†
Lateral occipital–middle temporal cortex 18 32 272 8 3.37 3.14 32 282 8 0.83‡
Dorsal lateral occipital cortex 18, 19 34 282 12 3.64 3.10 34 272 12 0.71

Striate cortex
Calcarine cortex 17 10 288 0 29.30 23.11 8 282 0 20.66

Paralimbic cortex
Parahippocampal gyrus–hippocampus 37 24 220 216 2.50 3.81 224 234 24 4.33 3.12 32 246 28 0.83‡

Prefrontal cortex
Lateral orbital cortex 10, 11, 47 38 38 212 25.10 23.63 246 26 24 24.06 24.07 246 40 24 20.67
Dorsolateral prefrontal cortex 9, 10, 46 32 44 20 22.78 27.98 244 8 24 22.41 23.10 224 40 24 20.73‡

*Left hemisphere only. †P , 0.001. ‡P , 0.01 (otherwise P , 0.05).
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cedures (7) before the scanning session (8).
Scans were performed during polysomno-
graphically defined uninterrupted sleep
stages 3–4 and during REM sleep (9). A
waking study was performed at the end of
the sleep period, after at least 15 min of
continuous wakefulness.

Within-subject between-stage contrasts
(REM-wake; REM-SWS) were analyzed by
statistical parametric mapping (SPM) (10),
and correlations between the frequency of
REMs (REM density) and rCBF during
REM sleep were examined (11). In addi-
tion, regional data were extracted from the
PET images and analyzed by covariance
techniques (principal component analyses
and regional intercorrelations) to assess
functional connections between regions of
the brain (12).

Comparison of REM sleep and waking
scans (Fig. 1A and Table 1) revealed focal
activations of the extrastriate (fusiform, in-
ferotemporal, and lateral occipital) cortices
during REM sleep, manifest in clusters of
significant spatial extent in both hemi-
spheres (13). These clusters did not encom-
pass the striate cortices (calcarine cortex and
contiguous portions of the cuneus, as delim-
ited in the Talairach atlas) where rCBF was
unchanged compared with wakefulness. No
hemispheral differences in the magnitude of

rCBF activations were detected.
Because the use of resting scans as base-

line may introduce a possible confound
(14)—failure to detect differences in the
primary visual cortex could be due to spon-
taneous production of visual imagery during
waking scans acquired at rest—we contrast-
ed REM sleep with SWS, a state in which
spontaneous visual imagery is unlikely to
have occurred (15).

This analysis not only confirmed the
dissociation of activity in striate and extra-
striate cortices but also showed that the
striate cortex was deactivated during REM
sleep compared with SWS (Fig. 1B and
Table 1). Focal deactivation of the primary
visual cortex was delimited in a single clus-
ter of significant spatial extent (16). Fur-
thermore, rCBF in the striate cortex was
lower during REM sleep than during SWS
even when absolute values corrected for
partial pressure of CO2 (PCO2) were evalu-
ated (although differences did not reach
statistical significance) (17).

In contrast, rCBF in extrastriate cortices
of the ventral processing stream—fusiform,
inferotemporal, and ventral lateral occipital
cortices—was significantly higher during
REM sleep than during SWS [Fig. 1B and
Table 1 (Z-scores exceeded threshold in the
left hemisphere only)]; these regions were
included in a larger cluster of significant
activation (18). rCBF in regions of the

dorsal processing stream was unchanged.
Contrasts of REM sleep with either

wakefulness or SWS (Fig. 1, A and B and
Table 1) also revealed significant changes
in regions that represent principal targets of
extrastriate projections, beyond the bound-
aries of the visual system (19). During REM
sleep, activity in the parahippocampal gyri
and the contiguous portions of the hip-
pocampus increased in parallel with the
extrastriate cortices, and rCBF in the ven-
trolateral (orbital) and dorsolateral prefron-
tal cortices was significantly decreased.
There were no hemispheral differences in
the magnitude of these changes (20).

The sleep-stage contrast results were
closely paralleled by the spatial distribution
of correlations between REM density and
rCBF (Fig. 1C and Table 1); REM density
was positively correlated with rCBF in ex-
trastriate cortices in both hemispheres, par-
ticularly within ventral regions. In contrast,
REM density was negatively correlated with
rCBF in the striate cortices. In addition,
REM density was positively correlated with
rCBF in hippocampus and in parahip-
pocampal gyri but was negatively correlated
with rCBF in lateral orbital and dorsolateral
prefrontal cortices.

Results of the principal component anal-
ysis are illustrated in Fig. 2. Striate and
extrastriate regions loaded on the same
component in both instances but with op-
posite signs—that is, across individuals in-
creases in rCBF in extrastriate regions dur-
ing REM sleep (compared with either wake-
fulness or SWS) were associated with con-
comitant decreases in the primary visual
cortex. Permutation tests indicated that
these components were significant in each
instance (P , 0.05, exact), and the inverse
relationship between striate and extrastriate
loadings was stronger for ventral extrastri-
ate regions (21). Inverse relationships be-
tween rCBF responses in selected regions of
the extrastriate and striate cortices are illus-
trated in Fig. 3.

These results suggest that a functional
dissociation between activity in the striate
and extrastriate visual cortices characterizes,
and may constitute a defining feature of,
REM sleep. REM sleep was associated with
selective activation of regions that are locat-
ed in higher or “downstream” portions of the
visual hierarchy. These include regions that
may constitute human analogues of V4 and
V5 as well as more anterior projections of
ventral object-processing and dorsal spatial-
processing pathways (22). REM-associated
activation in most instances was more robust
in extrastriate areas of the ventral stream. In
contrast, the striate cortices were not acti-
vated, and most analyses suggested that
rCBF in the primary visual cortex may be
significantly attenuated during REM sleep.

Fig. 2. Results of principal component analyses
depicting the first unrotated component for REM-
wake and REM-SWS. Principal component anal-
ysis was carried out on a difference matrix gener-
ated for each contrast. Values represent loadings
for each of the 20 regions in which weights ex-
ceeded 0.25 in absolute value. Extrastriate areas:
circles, fusiform-inferotemporal; triangles, lateral
occipital. Striate areas: squares. The first compo-
nent for REM-wake and REM-SWS contrasts ac-
counted for 80.8% and 78.2% of the total vari-
ance, respectively.

Fig. 3. Correlations between rCBF rates in striate
and extrastriate cortices. Values represent stan-
dardized difference scores—that is, increases or
decreases in rCBF during REM sleep compared
with wake (A) and SWS (B), Z-transformed in each
instance. rCBF responses in extrastriate ( Ta-
lairach x 5 230, y 5 288, z 5 24 in A; x 5 234,
y 5 258, z 5 28 in B) and striate (x 5 24, y 5
280, z 5 212, both A and B) cortices were neg-
atively correlated in both instances: r2 5 0.952,
REM-wake, P , 0.001; r 2 5 0.914, REM-SWS,
P , 0.001.
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These results were paralleled in the
analysis of correlations between rCBF and
REM density (23), suggesting a physiolog-
ical mechanism that may mediate the ef-
fects of REM sleep on the visual cortex. In
humans, REMs are associated with cere-
bral potentials that bear strong similarities
to Pontogeniculooccipital (PGO) waves,
which mediate the spontaneous central
excitation of the visual cortices during
REM sleep in animals (24). PGO waves
may have a disproportionate effect on the
excitability of extrastriate cortices, thus
accounting for the relatively selective ac-
tivation of these regions that was observed
in this study (25).

REMs also serve as indices of dreaming:
Although subjects were not awakened and
debriefed in this study, REM density has
been shown to correlate positively with the
likelihood of dreaming, with the intensity
and bizarreness of dream imagery, and with
the presence of more vivid and visually
active dreams (26). Our results thus suggest
that the spontaneous generation of visual
images that occurs during REM sleep may
be associated with isolated activation of the
extrastriate cortices (27 ).

Moreover, both principal component
and correlation analyses, which may serve
as a means of describing functional connec-
tions between brain regions, demonstrate a
reciprocal relationship between activity in
extrastriate and striate cortices during REM
sleep, an observation that has not previous-
ly been described in PET studies of visual
function during either waking or sleep (28–
30).

What mechanism might account for
this? It has been hypothesized that, because
dreams typically consist of integrated and
coherent visual images, there should be re-
entrant activation of the striate cortex by
extrastriate back-projections during REM
sleep, as has been suggested to occur during
waking imagery tasks (31). Our results sup-
port an alternative hypothesis. Because in-
creased synaptic activity in extrastriate ar-
eas is coupled to decreased activity in the
primary visual cortex, firing of the extrastri-
ate back-projections may in fact be attenu-
ated—or actively inhibited—during REM
sleep. Rather than leading to reentrant ac-
tivation of V1 and V2, extrastriate activa-
tion during REM sleep may be linked to
suppression of activity in primary regions
connected to the external environment
(32).

Indeed, REM sleep appears to be char-
acterized by a double dissociation. Activity
in extrastriate regions appears to be recip-
rocally related not only with activity in V1
and V2 but also with that in higher order
frontal association areas to which extrastri-
ate cortices project—dorsolateral prefrontal

and lateral orbital cortices—heteromodal
regions in which visual information is
bound with that processed in other areas of
the brain (33). At the same time, however,
we observed concurrent activation of extra-
striate regions and limbic-related projection
areas—parahippocampal cortices and con-
tiguous portions of the hippocampus—and
activity in these mesial temporal regions
was positively correlated with REM density.
Of note, similar results were observed in the
anterior cingulate cortex (Fig. 1), to which
the parahippocampal cortices project.

This pattern suggests that pathways that
mediate the transfer of information be-
tween visual cortices and the limbic system
may be active during REM sleep, but path-
ways that mediate transfer of visual infor-
mation to prefrontal association cortices are
not.

Thus, during REM sleep, the extrastriate
cortices and paralimbic areas to which they
project may be operating as a closed system,
functionally disconnected from frontal re-
gions in which the highest order integration
of visual information takes place. Such a
dissociation could explain many of the ex-
periential features of dreams, including
heightened emotionality, uncritical accep-
tance of bizarre dream content, a dearth of
parallel thoughts or images, temporal disori-
entation, and the absence of reflective
awareness (34).

REM sleep may represent a state in
which the brain engineers selective activa-
tion of an interoceptive network, which is
dissociated from primary sensory and het-
eromodal association areas at either end of
the visual hierarchy that mediate interac-
tions with the external world.
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Discrete Start Sites for DNA Synthesis
in the Yeast ARS1 Origin

Anja-Katrin Bielinsky and Susan A. Gerbi*

Sites of DNA synthesis initiation have been detected at the nucleotide level in a yeast
origin of bidirectional replication with the use of replication initiation point mapping. The
ARS1 origin of Saccharomyces cerevisiae showed a transition from discontinuous to
continuous DNA synthesis in an 18–base pair region (nucleotides 828 to 845) from within
element B1 toward B2, adjacent to the binding site for the origin recognition complex,
the putative initiator protein.

An origin of bidirectional DNA replica-
tion is characterized by the transition be-
tween continuous DNA synthesis (proceed-
ing in one direction) and discontinuous
synthesis (proceeding in the opposite direc-
tion). We have developed replication initi-
ation point (RIP) mapping to determine
this transition in the autonomously repli-
cating sequence (ARS) 1 of the yeast Sac-
charomyces cerevisiae.

ARS1 functions as an origin of DNA
replication (ORI) both on a plasmid and in
its normal context on chromosome IV (1).

ARS1-containing plasmids respond normal-
ly to the cell cycle, duplicating once per
cycle (2), and replication is initiated by the
same cellular protein machinery acting on
chromosomes.

ARS1 is composed of subdomains A, B1,
B2, and B3 (3). Subdomains A and B1 are
recognized by the origin recognition com-
plex (ORC) (4), the putative initiator pro-
tein (5) indispensable for origin function
(6, 7). Element B2 is easily unwound DNA
(8) and element B3 is a binding site for the
ARS binding factor I (ABFI) (9).

RIP mapping, described here, has suffi-
cient sensitivity for study of eukaryotic
origins, unlike an earlier method (10). It
allows precise mapping of initiation sites
for DNA synthesis and was applied to a
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