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Abstract

■ Deficits in visuospatial attention are commonly observed after
different kinds of brain lesions. However, the structure–function re-
lationships are not well understood. We investigated whether our
response time (RT) model, strategies of visual search (STRAVIS),
combined with a linear model of brain lesions, enables us to relate
specific impairments in cognitive processes to specific sites of focal
brain lesions. In STRAVIS, RTs in overt visual feature search with
graded target-distractor similarity are decomposed into the dura-
tions of successive search steps. Fitting the model to an observerʼs
RTs yields individual estimates of the parameters “attentional focus
size,” “attentional dwell time,” and “movement time of attention
or the eyes.” In 28 patients with various focal lesions to the frontal,
parietal, and/or temporal cortex and 28 matched controls, we de-

termined with the help of linear models which lesions were most
predictive for each parameter. Predictions were validated with a
second sample of 12 patients and 12 controls. Critical lesion areas
for the STRAVIS focus size were the dorsolateral prefrontal cor-
tex and the temporal lobe, with dorsolateral prefrontal cortex le-
sions reducing the focus and temporal lesions enlarging it. The
STRAVIS dwell time was reduced in patients with lesions to the
anterior insula and the superior parietal lobe. Lesions to the fron-
tal eye fields, the superior parietal lobe, and the parieto-occipital
cortex were most detrimental to the STRAVIS movement time.
Applying linear models to a patient sample with heterogeneous
lesions may be a promising new method for investigating how dif-
ferent brain areas interplay in a complex task. ■

INTRODUCTION

Patient studies have a long history in neuropsychology
and are still an important tool to investigate structure–
function relationships in the human brain. However, the
diversity of individual lesions has been a constant problem
in the interpretation of patient data. A typical approach to
this problem is the analysis of overlapping lesion areas. Al-
though this approach may yield important insights, espe-
cially when samples with mutually exclusive overlap areas
are compared (e.g., Pollmann et al., 2007; Friedrich, Egly,
Rafal, & Beck, 1998; Lamb, Robertson, & Knight, 1990), se-
lection of the appropriate samples is often difficult, and
the lesion variability outside the overlap regions is ignored
(for details, see, e.g., Shallice, 1988).
Here, we present a mathematical modeling approach

in which lesion variability is not regarded impedimental
but instead used to gain insights into which brain areas
might be crucial for a cognitive task and how they might
interact. Two types of models are applied: On the side of
the brain, presence or absence of lesions in different brain
areas are linearly combined to predict cognitive measures.
On the cognitive side, not only global behavioral measures
are analyzed but the estimated parameters of a model that

reflects cognitive subprocesses hypothetically underlying
the behavior.

The topic of our analysis is visual search. Visual search
is crucial for goal-directed orienting and acting in everyday
life. It relies on selective attention in the feature as well
as the spatial domain. Deficits in visual search are com-
monly observed in a variety of psychiatric and neurologi-
cal conditions, for example, Parkinsonʼs disease (e.g.,
Horowitz, Choi, Horvitz, Cote, & Mangels, 2006), schizo-
phrenia (e.g., Davenport, Sponheim, & Stanwyck, 2006;
Carr, Dewis, & Lewin, 1998), hemispatial neglect (e.g.,
Schindler, Clavagnier, Karnath, Derex, & Perenin, 2006;
Sprenger, Kömpf, & Heide, 2002), autistic spectrum dis-
orders (e.g., Greenaway & Plaisted, 2005), or Alzheimerʼs
disease (for a review, Foster, 2001). In particular, onemight
expect such impairments after focal brain lesions to a
network that is involved in carrying out visuospatial and
selective attention tasks. In brain imaging studies, several
frontal, parietal, occipital, and temporal regions have con-
sistently been activated by such tasks, including the frontal
and supplementary eye fields, the superior parietal lobule
(SPL), intraparietal sulcus, TPJ, and the striate andextrastriate
visual cortex (Corbetta, Patel, & Shulman, 2008;Müller-Plath,
2008; Corbetta & Shulman, 2002; Pollmann & von Cramon,
2000; Gitelman et al., 1999; Corbetta et al., 1998). Accord-
ingly, visual search deficits have been demonstrated after
lesions to various cortices (e.g., Mannan et al., 2005; Ptak
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& Valenza, 2005; Humphreys & Riddoch, 2001; Husain
et al., 2001; Greenlee, Berg, Stuhr, & Mergner, 2000; Eglin,
Robertson, & Knight, 1991).

Mental activity in visual search is commonly viewed
as interplay of several cognitive and perceptual subpro-
cesses, like deploying attention to one or more items
(i.e., attentional top–down modulation of perception
within the so-called attentional focus), perceptually ana-
lyzing the items in the focus (including feature binding
and/or comparing the input to a mental target template),
shifting the attentional focus through space, decision
making, and motor response. On the other hand, visual
search tasks differ with respect to the number and the
salience of target defining features, the number of targets
and distractors in the display, and their spatial arrange-
ment. The classical view, assuming a dichotomy between
a parallel preattentive feature search and a serial attentive
conjunction search (Treisman & Gelade, 1980), has been
widely given up in favor of assuming a dynamical inter-
play and cooperation between parallel and focal mecha-
nisms in all variants of search tasks (Chelazzi, 1999), with
the above subprocesses being involved to different de-
grees. Accordingly, one might expect that a lesion to a
distinct component of the abovementioned cortical net-
work will affect specific cognitive subprocesses, so that,
depending on the site and the extent of the lesion, the
various search tasks are differentially affected. In contrast
to studies comparing overall search behavior between dif-
ferent tasks, for example, feature and conjunction search
(Nobre, Coull, Walsh, & Frith, 2003; Donner et al., 2002),
the present study aims at diagnosing deficits in the sub-
processes of a single task, namely, visual feature search.

Overt Visual Feature Search and the STRAVIS Model

In a typical visual search task, participants have to decide
as fast as possible whether a predefined target is present
in a set of distractor items or not. In feature search, the
target is defined by a single perceptual feature (e.g., color
or spatial frequency). If the target is sufficiently different
from the distractors, usually a pop-out effect is observed;
that is, the participant detects the target at first glance.
When targets and distractors become more similar, the
search becomes inefficient: The more similar the target
to the distractor items, the steeper the slope of the RT be-
comes as a function of item number (e.g., Wolfe, 1994,
1998; Duncan & Humphreys, 1989; Treisman & Gormican,
1988).

In the RT slope, number and duration of search steps are
confounded. In our earlier work, we developed and vali-
dated the RT model strategies of visual search (STRAVIS;
Müller-Plath & Pollmann, 2003) that decomposes the RT in
overt visual search tasks into the times of the hypothetically
underlying successive subprocesses. Participants perform a
feature search task with graded target-distractor similarity
and various set sizes. Each experimental condition is repre-
sented by a model equation. Fitting the set of model equa-

tions to the set of empirical mean RTs of a participant yields
individual parameter estimates for the average size of the
attentional focus (number of items), the average dwell time
of attention on each item group, the time for one move-
ment of the attention and the eyes, and a time that is as-
sumed constant across experimental conditions (e.g.,
initial display registration or motor response). STRAVIS
has been developed and tested against alternative models
with data from healthy subjects (Müller-Plath & Pollmann,
2003). It was successfully applied for analyzing fMRI data
(Müller-Plath, 2008), and central model assumptions were
validated with eye movement data (Heße, Wienrich, Melzer,
& Müller-Plath, submitted).

Linear Modeling of Brain Lesions

In the present article, we applied an abbreviated version
of the feature search task to patients who suffered from
focal lesions to diverse frontal, parietal, and/or temporal
cortex areas that, according to the literature, are involved
in subprocesses of overt visual feature search and to a sam-
ple of matched controls. The participantsʼ performance
in these subprocesses was estimated with the help of
STRAVIS. The relation between each subprocess and the
brain lesions was formulated in a linear model (LM) with
the lesion areas as (dichotomous) predictors and the re-
spective STRAVIS model parameter as criterion. LMs were
likewise fitted to the global behavioral measures error
rate and RT, and the standard measure of visual search,
the RT slope. For each criterion (three STRAVIS parameters
plus error rate, RT, and RT slope), we then determined
the subset of lesion areas that was best suitable for predict-
ing the criterion. To avoid artifacts from stepwise methods
of predictor selection, this was done with exhaustively
comparing the LM fits between all possible subsets of pre-
dictors. For an independent validation of the resulting LMs,
we recruited and tested a second sample of patients and
controls. We compared their data collected in the task—
the STRAVIS parameters as well as error rates, RTs, and
RT slopes—to those that the LMs predicted from their
brain lesions. Only for the three STRAVIS parameters but
not for the global behavioral measures, LM predictions
were validated. Thus, the LMs might indeed give a first
coarse description on how the presence or the absence
of various brain lesions affects subprocesses of visual
feature search.

METHODS

Participants

Twenty-eight patients (7 women, 21 men) with visuospatial
attention problems after a frontal, parietal, and/or tem-
poral brain lesion and 28 age-matched controls (10 women,
18 men) participated in the original study. Visuospatial
attention was assessed with the Test for Attentional Perfor-
mance (Zimmermann & Fimm, 1994). A second sample
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consisting of 12 patients (3 women, 9 men) and 12 controls
(9 woman, 3 men) was tested for validating results. All
patients were former or present outpatients of the Day
Clinic for Cognitive Neurology, University of Leipzig, Ger-
many. All participants gave written informed consent to the
study. Included were patients with unifocal or multifocal
lesions affecting at least one of the fronto-parieto-temporal
cortex areas 1–7 as listed below. Excluded were patients
with low-level vision deficits (visual acuity, contrast vision,
or stereo vision), with visual field defects within 30° of
visual angle, or with a field of gaze smaller than 90°. For this
reason, occipital lobe lesions could not be investigated
within the framework of the study. Patients with a visual
hemineglect (clinical diagnosis and assessment with the
Neglect Test; Fels & Geissner, 1996) and patients with
memory or concentration problems impeding task execu-
tion, assessed with the d2 Test (Brickenkamp, 1962), the
Trail Making Test (Reitan, 1958), and the Paced Auditory
Serial Addition Test (Gronwall, 1977), were also excluded.
The age of the patients ranged from 23 to 73 years with

a mean of 52.5 years, that of controls ranged from 24 to
69 years with a mean of 51.8 years. The second patient
sample was aged between 38 and 62 years (mean =
51.9 years), and the second control sample aged between
23 and 61 years (mean = 49.0 years). The time interval
between lesion event and testing ranged from 4 months
to 22 years, with a median of 2.3 years. Clinical informa-
tion was collected to establish the following variables:
location(s) and lateralization of the lesion(s), etiology,
and further brain pathologies, in particular subcortical
lesions. The location(s) of the cortical lesion of each pa-
tient was coded in seven binary variables, representing
seven areas of interest. In each, it was indicated whether
the lesion affected the respective area (1) or not (0):

(1) dorsolateral prefrontal cortex (DLPFC): middle/superior
frontal gyrus, BA 9/46 (n = 13);

(2) FEF: junction of superior precentral and middle frontal
gyrus (Paus, 1996), BA 6 (n = 2);

(3) anterior insula, BA 13 (n = 17);
(4) inferior parietal lobule including the TPJ (IPL/TPJ):

BA 22/40 (n = 11);
(5) temporal pole: BA 38 (n = 6);
(6) SPL: BA 7 (n = 4); and
(7) parieto-occipital: precuneus/cuneus, BA 7/19 (n = 3).

The individual data of the original sample are shown
in Table 1. In relating them to the visual search perfor-
mance, one has to keep in mind that lesions to the dif-
ferent areas do not occur independently of each other.
Table 2 depicts the pairwise correlations of the seven
lesion variables in the given sample and the results of
the χ2 tests of independence.1 DLPFC lesions were sig-
nificantly positively associated with lesions to the ante-
rior insula and (marginally significantly) to the temporal
pole and significantly negatively associated with parieto-

occipital lesions. All other correlations failed significance
( p > .10).

Stimuli, Task, Design, and Procedure

Stimuli were displayed on a 20-in. computer monitor with a
viewing distance of 160 cm. Four, six, or eight items were
presented equidistantly on an imaginary circle with 16 po-
sitions (see Figure 1A) and a diameter of 8° visual angle. All
items were circular square-wave gratings with 1.3° visual
angle diameter. Target items differed from distractor items
in spatial frequency. The task was to decide as fast as pos-
sible whether there was a target present in the display or
not and to press one of two response keys. Subjects were
free to choose which two fingers they wished to use for
responding. A factorial design with four factors was con-
ducted. We varied the following:

(a) the task “search” versus “comparison.” In the “search”
task, the participant had to search for a target on any
position in an arc of items that appeared on either
the right of the left half of the screen. In the “compar-
ison” task, the target could appear only on the top
position of the screen, and the position of the arc
was randomized around it. The participant had to de-
cide whether the item on the top position was a tar-
get or not. (This condition was included for technical
reasons to obtain a stable model fit; see Müller-Plath
& Pollmann, 2003.)

(b) the similarity between target and distractors in spatial
frequency in three levels (see Figure 1B);

(c) the set size in three levels: four, six, or eight items; and
(d) the target presence: two thirds of the trials contained

targets.

The set size (c) was varied only in the task “search.” In the
“comparison” task, the set size was constantly six items.
Apart from that, the design was full factorial.

Each trial began with a 1000-msec fixation cross, fol-
lowed by the search display. The fixation cross appeared
at the position of the upcoming (possible) target in the
“comparison” task and in the center of the screen in the
“search” task. During the search, participants were free
to move their eyes. The display remained on the screen
until the participant responded. The intertrial interval was
1000 msec. Trials were presented in blocks of constant
task, similarity, and set size to allow the participant to adopt
and to maintain an optimal search strategy for each con-
dition. With three similarity levels and three “search” set
sizes plus one “comparison” set size, 12 different blocks re-
sulted. Within each block, target-present and target-absent
trials were randomized. Wrongly answered trials were re-
peated once at the end of the block. Each block consisted
of one dummy trial plus nine recorded trials plus the re-
peated trials. Three consecutive sessions were run, each
comprising all 12 different blocks. Between blocks, breaks
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Table 1. Patient Data: Gender, Age, Main Etiology of Lesion(s), Affected Brain Area(s), Lateralization, Distribution of Lesion, Size of
Lesion, and Further Pathologies

No. Gender Age Etiology
(1)

DLPFC
(2)
FEF

(3)
AntIns

(4)
IPL/TPJ

(5)
TPol

(6)
SPL

(7)
ParOc LH RH Dista Sizeb

Further
Pathologies

102 m 53 Infarction 1 0 1 0 0 0 0 1 1 0 1 VLPFC

150 m 29 TBI 0 0 0 0 1 0 0 1 1 0 1 Fronto-polar

204 f 45 Infarction 1 0 0 1 0 1 0 1 0 1 1

212 m 60 ICB 0 0 1 0 0 0 0 1 0 1 0 Left VLPFC

300 m 42 TBI 1 0 0 0 0 0 0 1 1 0 1 Fronto-polar,
VLPFC

325 m 42 AVM 1 0 1 0 1 0 0 1 0 0 1 Bil. thal, left
BG, VLPFC

342 m 34 TBI 1 0 1 0 1 0 0 1 1 0 1 Fronto-polar,
bil. VLPFC

380 f 62 Infarction 0 0 1 1 0 0 0 0 1 0 0

403 m 73 Infarction 1 0 1 0 0 0 0 1 0 0 0 Left VLPFC

432 f 23 AVM 0 0 0 0 0 0 1 1 0 0 0 Left thal, CC

441 m 60 Infarction 0 0 0 1 0 1 0 1 0 0 1

446 m 62 Infarction 1 0 0 0 0 0 0 1 0 0 0 Left VLPFC

550 m 71 Infarction 1 0 1 0 0 0 0 1 0 0 1 Left VLPFC

583 m 66 Infarction 0 0 0 0 0 1 1 1 0 0 0 Left frontal WM

662 m 61 Infarction 0 0 0 1 0 0 0 1 0 1 1

718 m 59 ICB 0 0 1 0 0 0 1 1 0 0 1

721 m 63 Subdur hem 0 1 0 0 0 0 0 0 1 0 1 Fronto-polar

739 m 38 Infarction 0 0 1 1 0 1 0 1 0 0 1

749 f 56 Infarction 0 0 1 0 0 0 0 1 0 0 0

753 m 53 Infarction 0 0 1 0 1 0 0 0 1 0 0 Right VLPFC

760 m 41 Infarction 1 0 1 1 1 0 0 1 0 1 0 Left VLPFC

790 f 57 Infarction 1 0 1 1 0 0 0 0 1 0 0 Right BG, thal

854 f 50 Infarction 1 0 1 0 0 0 0 0 1 0 1 right BG, thal,
VLPFC

1115 m 65 Infarction 0 0 1 1 0 0 0 0 1 0 1

1224 m 27 Infarction 1 0 1 1 1 0 0 0 1 1 0 Right VLPFC,
arachnoid cyst

1561 m 67 Infarction 1 1 1 0 0 0 0 1 0 0 1 Left VLPFC

1597 m 57 Infarction 0 0 0 1 0 0 0 1 0 0 0 Right thal, BG

1607 f 54 Infarction 0 0 0 1 0 0 0 1 0 0 0

n 13 2 17 11 6 4 3 21 11 5 15

AntIns = anterior insula; TPol = temporal pole; ParOc = parieto-occipital; TBI = traumatic brain injury; ICB = intracerebral bleeding; AVM =
arteriovenousmalformation; LH= left hemisphere; RH= right hemisphere; bil. = bilateral;WM=whitematter; BG=basal ganglia; thal = thalamic nuclei;
VLPFC = ventrolateral prefrontal cortex (inferior frontal gyrus).
aDistribution of lesion: 0 = unifocal, 1 = multifocal.
bSize: 0 = small, 1 = large according to expert rating.
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were allowed. The first session was a training session con-
taining a demonstration display at the beginning of each
block, in which the task was explained and the target shown.
Blocks were ordered in increasing difficulty, starting with
the easiest condition (Comparison, Similarity Level 1, Set
Size 4) and ending with the most difficult condition (Search,
Similarity Level 3, Set Size 8). The two recorded sessions
were identical, except that in the last session the block
order was reversed. Depending on individual RTs, errors,
and lengths of breaks, the total testing time was between
40 and 60 min. In each of the 12 experimental conditions,
18 regular trials were recorded, 12 of which contained
a target.
For the most dissimilar target, we expected a pop-out

search, reflected in a flat RT curve across set sizes. For tar-
gets more similar to the distractor, we expected the search
to become increasingly inefficient, which should be re-
flected in an increasing slope of the RT function.

Behavioral Data Analysis

Error rates in the visual search task were computed indi-
vidually across the regular trials of each block (repetition

trials not included). For RT analysis, we included only
trials in which a target was present and correctly identified
(12 trials per experimental condition minus the number
of trials wrongly answered twice). For each participant
and each condition, outlier RTs outside ±2 SDs from the
mean were excluded if existing (in most cases, there were
none), and the remaining RTs were averaged. Each par-
ticipant thus delivered a set of 12 error rates and a set of
12 RT means as measures of his or her observed overall
performance in the task (3 × 3 “search” + 3 “comparison”
conditions). The RT slopes were obtained from linear re-
gressions of the “search” RTs onto the set size at each of
the three similarity levels.

Describing Visual Search Processes: The
STRAVIS Model

A set of 12 model equations was fitted to the 12 RT means
of each participant. Because the STRAVIS model has been
extensively described in a previous article (Müller-Plath
& Pollmann, 2003), we give only a brief overview here.
STRAVIS is a two-stage model, in which the stationary
deployments of attention and spatial attentional shifts (in
overt search, usually accompanied by eye movements)
alternate. Integrating elements from Guided Search 2.0
(Wolfe, 1994) and the Attentional Engagement Theory
(Duncan & Humphreys, 1989, 1992), the central assump-
tion of STRAVIS is an attentional focus of variable size. Fur-
ther, an attentional dwell time of variable duration is
assumed. The attentional focus denotes the subset of
items to which attention is deployed in parallel to decide
whether to terminate the search or to move on. The maxi-
mum size of the focus, which a subject can search the
display accurately with, results from a “saliency map” (syn-
onym “activation map”) computed in parallel across the
whole display.2 It depends not only on physical values
like the target-distractor similarity and on the number
of homogeneous distractors but also on perceptual and
attentional capacities of the subject. With increasing target-
distractor similarity and with decreasing number of ho-
mogeneous distractors, the maximum focus size decreases
(see Figure 2, upper panel).3 Moreover, we assume that

Figure 1. (A, left panel)
Example of a search display.
In the comparison task, where
the target was always at the top
position, the position of the arc
of distractors was randomized.
(B, right panel) Appearance
and physical values of the target
item in the three similarity
levels and the (homogeneous)
distractor items. In all items,
the width of the first horizontal
stripe was randomized so
that subjects could not use it
for item discrimination.

Table 2. Pairwise Correlations between (Binary) Lesion
Variables and Significance of Association

DLPFC FEF Ins IPL/TPJ TPol SPL ParOc

DLPFC 1 −.02 .42* −.28 .31* −.23 −.37**

FEF 1 −.06 −.22 −.14 −.11 −.10

Ins 1 −.10 .24 −.30 −.19

IPL/TPJ 1 −.06 .30 −.28

TPol 1 −.21 −.18

SPL 1 .19

ParOc 1

Note that for two binary variables, r2 = ϕ2 = χ2 / n.

Ins = insula; TPol = temporal pole; ParOc = parieto-occipital.

p value ofχ2 test (df= 1): *p< .10; **p< .05; ***p< .01; ****p< .001.
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the focus size is open to conscious control: If the subject
knows in advance how target and distractors will look like,
he or she can adjust the focus to an adequate size. The
optimal focus size depends thus on intact “preattentive”
perceptual feature processing as well as on intact atten-
tional control processes.

In the model, the RT in each trial is decomposed into
the times of subprocesses that are assumed to interact in
quick alternation during task execution. The “search” task
is assumed to consist of the subprocesses onset regis-
tration, selection, shift, and response: After the initial
onset registration—and simultaneously or subsequently
(see Footnote 2) to the computation of a saliency map—
attention selectively modulates perceptual sensitivity to
the relevant feature and assesses this feature within a
“focus of attention” (subprocess selection). If the target
feature is not detected within the focus, a movement of
spatial attention is prepared and executed based on the
saliency map, usually accompanied by a saccade (sub-
process shift). When the target is found or when the
participant decides that there is none, a motor response
is prepared and executed. Selection and shift take place
the more often the smaller the attentional focus is. The
“comparison” task, which was included mainly for techni-
cal reasons (see above), is supposed to comprise only the
subprocesses onset registration, selection, and response,
each occurring once and the selection being of constant
spatial size.

The supposed cognitive subprocesses are conceptual-
ized in the model parameters as follows: In the subprocess
selection, attention modulates perception within the at-
tentional focus for a certain time duration, the dwell time.
During the dwell time, all items within the focus are com-

pared with each other (and to a target template) in parallel,
and a decision is prepared whether to move on with the
search. Because we assume a large overlap of attentional
modulation, perceptual comparison, and decision, these
processes are all subsumed under the term selection. The
size of the attentional focus is assumed to vary stochasti-
cally, with its mean fs,n depending on the target-distractor
similarity s (s = 1, 2, 3; see Figure 1B) and the set size n.
The value fs,n indicates how many items are on aver-
age selected in parallel. In case of pop-out search, fs,n
equals the set size; that is, all items in the display are
selected in one step. At the other pole of the continuum,
fs,n = 1 denotes strictly serial search; that is, the items
are selected one by one. The attentional dwell time ds
(s = 1, 2, 3) is assumed to depend on the target-distractor
similarity.
For the subprocess shift, a constant time amount m is

assumed, independent of how far attention (and the eyes)
are moved. Although saccade durations are linearly related
to saccade lengths, this relation is negligible in the spatial
range covered by the display (for details, see Müller-Plath
& Pollmann, 2003).
The total RT in an experimental trial is modeled as the

sum of the attentional/eye movement time (duration m)
multiplied by the number of movements, the dwell time
on each group of items (duration ds) multiplied by the
number of dwells, and a constant time c that comprises
all processes that occur only once in a trial and are inde-
pendent of the experimental condition. The lower panel
of Figure 2 shows a simplified form of the RT equations
for the tasks “search” and “comparison” and gives a list of
the model parameters.4 For each participant, the set of
STRAVIS model equations were fitted to the 12 RT means

Figure 2. Upper panel: Concept of a saliency map and an according size of the attentional focus. Lower panel: Hypothetical search process
and model parameters according to STRAVIS. For details, especially on the functions g and h specifying the mean number of movements
and dwells in a trial as a function of the focus size and set size, see Müller-Plath and Pollmann (2003).
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with a weighted least squares algorithm (Müller-Plath &
Pollmann, 2003; see also Figure 2), yielding individual pa-
rameter estimates for fs,n, ds, m, c. The estimated focus
sizes fs,n and the estimated dwell times ds were averaged
across the similarity levels s = 1, 2, 3 (and the set sizes
n= 4, 6, 8). Each participant was thus finally assigned four
parameter values as measures of the efficiency of the hy-
pothetical subprocesses selection (capacity: focus size f;
time duration: dwell time d), shift (movement time m),
and onset registration/response (constant time c).
Looking at the equations in Figure 2, one might suspect

that the correct estimation of the focus size crucially de-
pends on the assumption that the dwell and the constant
times (parameter ds and c) agree between the search
and the comparison task. However, this is not the case be-
cause the focus size was modeled as depending on the
similarity and the set size, whereas the dwell time de-
pended on similarity only. Empirically, we compared tasks
with and without the comparison condition in our earlier
work (Müller-Plath, 2000; Experiments 1 and 2). Without
the comparison condition, it was not possible to reliably
separate the movement time from the constant time and
from the dwell time in Similarity Level 1. However, the
differences between the dwell times and the focus size
estimations were preserved. Second, we validated the
focus size estimations with an independent experiment
(Müller-Plath & Pollmann, 2003, Experiment 2), in which
a subset of item positions was cued before the items ap-
peared. For every subject, search times were flat for sub-
sets smaller or equal the estimated focus size and rose as
soon as the cue size exceeded the estimated focus size. In a
recent eye movement study (unpublished), we were fur-
ther able to roughly confirm the assumption of identical
dwell and constant times between the two types of tasks.
Let us remark here that abnormal parameter values can

be interpreted according to the model assumptions: A
reduced focus size might result from perceptual feature
processing being ineffective, so that saliency maps are
less informative, or from attentional control processes be-
ing impaired, so that anticipative top–down adjustment of
the focus size is hampered. The latter might as well result
in an inadequately large focus. The dwell time will be pro-
longed if attentional modulation of perception is ineffective,
if perceptual comparison of features is impaired, or if deci-
sion making is slowed. A prolonged movement time may
indicate difficulties in disengaging attention, possibly result-
ing from computation of spatial coordinates for the move-
ment (“where”) being ineffective or from saccade initiation
being disturbed (“when”; see Findlay & Walker, 1999). The
constant time will be prolonged if the start of searching
behavior is delayed or if response execution is slowed.

Analyzing Brain Lesion Effects: Linear Models

Visual search data were evaluated at two levels: the level
of observed performance and the STRAVIS model level.
The observed performance was assessed by means of

error rates, RTs, and RT slopes. At the model level, the
individually estimated parameter values of STRAVIS were
analyzed (focus size, dwell time, and movement time),
which are supposed to reflect measures of performance
in the hypothetical attentional subprocesses of visual
search (see Figure 2). Thus, altogether, six dependent
measures (DMs) were assessed. Three different types of
analyses were run on them:

(1) We compared the DMs between patients and controls
to check whether the lesions had any effect at all.

(2) Because the lesions did not occur independently of
each other (Table 2), we did not run separate signifi-
cance tests on these effects. Instead, to investigate
which brain lesions might be most predictive for the
observed deviations from normality and how their spe-
cific effects might be quantified, we formulated an LM
for each DM in which the seven brain area variables
served as predictors. For each DM Y, let the full LM
be, Y ¼ β0 þ P7

j¼1
βjXj þ ε, where X1, …, X1 denote the

binary lesion variables 1–7, and ε is the vector of in-
dividual errors (see Appendix A). For each DM, a sub-
set of predictors was then selected that explained a
maximum amount of variance with a minimum num-
ber of predictors. This was achieved by the following
procedure (which circumvents most sources of arti-
facts of stepwise methods; see for example, Hocking,
1996): First, we fitted all possible subsets of predictors.
For each subset size (i.e., for one to seven predictors),
we then selected the subset that maximized R2. To de-
cide between the so-selected seven models, we tested
first whether each model accounted for a significant
portion of variance. Second, we tested each model
against its immediate submodel. Finally, we applied
several criteria suggested in the literature that relate
the portion of variance accounted for to the number
of predictors: Mallowsʼ Cp (Mallows, 1973), Akaikeʼs in-
formation criterion (Akaike, 1974), and adjusted R2. In
case the three criteria agreed on the same subset of
predictors, we chose this as themost conclusive LM pro-
vided it explained a significant (α= .05) portion of vari-
ance. Otherwise, we kept a priori the sparser one of the
suggested models unless a larger one explained signifi-
cantly more variance (α= .05). Although this procedure
ensures optimalmodel selection in the given sample, it is
still prone to sampling error, in particular when the initial
number of predictors is large compared with the num-
ber of cases and when predictors are intercorrelated.
Therefore, we kept the second-best model for the
chosen number of predictors in the analysis as well.

(3) For the same reason, we subjected the LMs to further
statistical tests. First, two “within-sample validations”
were performed:

(I.i) The observedmeanDMof those patients that were
declared unimpaired by the model (M0) was com-
pared with that of the control subgroup (Mc).
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(I.ii) The residual variance in the subgroup of patients
(ŜRes,p

2 ) was compared with the observed variance
in the subgroup of controls (Ŝc

2). The underlying
idea was that each DM shows considerable varia-
tion in the normal population. One can thus not
expect that variance in patients is completely ex-
plained by their brain lesions. Instead, we re-
garded a model appropriate that explained so
much variance that the residual variance in pa-
tients equaled the variance in controls.

Both comparisons were expected to reveal no difference.
We computed 90% confidence intervals (I.i) for the differ-
ence of the expected subsample means E(M0) − E(Mc),
which should contain 0 if the model were true, and (I.ii)
for the ratio of the expected residual (unexplained) vari-
ance in patients and the expected variance in controls
E Ŝ

2
Res;pð Þ

E Ŝ
2
cð Þ , which should contain 1 if the model were true.

For details on the construction of the two types of con-
fidence intervals, see the Appendix A.5

Second, we conducted a cross validation by applying
the models to a new sample of patients and controls.
The underlying idea was that if an LM held, it should re-
liably predict mean and variance of patients with any
combination of brain lesions that served as predictors
in the model. The rationale of the tests presented in this
section requires a little more formalism (for an illustra-
tion, you may consult Figure 5 in the Results section).
In an LM with m binary predictors, the 2m different pre-
dictor combinations (the combinations of lesions) define
so-called “prediction levels” (vertical lines in Figure 5). For
subjects at level k, the equation ŷðkÞ ¼ β̂0 þ

Pm
j¼1
β̂ j � xðkÞ; j

describes the proposed linear association between the
predicted mean DM and the presence of lesions in the
m brain areas selected as relevant. For cross validation, we
computed the so-called “prediction intervals” for the data
of new samples:

(II.i) the interval around β̂0 that should contain the
sample mean Mc2 of a new control sample with
probability .90 if the model were true; and

(II.ii) the intervals around the predicted values ŷ(k)
that should contain the DM of a new patient
at predictor level k 2 {1,…, 2m}, that is, with a
given combination of lesions, with probability
.90 if the model were true. This was done for
all possible lesion combinations. Because for
any new patient, probability is .90 that his or
her value would be within the respective inter-
val, in total about 90% of the new data (i.e.,
about 11 of the 12 patients) should be com-
prised by these intervals and mispredictions
can be systematically analyzed. However, to ac-
count for all new patients simultaneously, we
also computed the Bonferroni-adjusted predic-
tion intervals (which were larger by a certain
factor). Here, the global probability that all ob-

servations are within their respective interval is
.90 if the model is true. Model validation was re-
garded failed if there was any new observation
falling outside its .90 Bonferroni-adjusted pre-
diction interval. Details on the computation of
the intervals are provided in the Appendix A.

Because we were interested in telling apart the effects
of the lesions onto the distinct subprocesses of attention,
the six DMs were assessed independently of each other.
All statistical computations were run with the software R
(R Development Core Team, 2008).

RESULTS

The numbering in this section refers to the numbering in
the last part of the Methods section.

Performance of Patients and Controls

Observed Performance

Figure 3A depicts the error rates and the RTs of patients
and controls in the 12 experimental conditions. For both
measures, we conducted separate 2 × 3 × 3 ANOVAs with
the between-subjects factor Group (patients/controls) and
the within-subjects-factors Similarity (target-distractor sim-
ilarity levels 1, 2, and 3) and Set Size (search set sizes 4, 6,
and 8) with the Huyn–Feldt corrections of degrees of
freedom. The data of the “comparison” condition were
not included in this analysis.
The error rate increased significantly with the similarity

and the set size. The steeper the increase with the set size,
the more similar the target was to the distractors: main ef-
fect of Similarity, F(1.8, 100) = 44.8, p < .001; main effect
of Set Size, F(2,108) = 5.54, p= .012; Similarity × Set Size
interaction, F(3.3, 177) = 2.49, p = .044. Patients made
on average more errors than controls, but the difference
failed significance: main effect of Group, F(1,54) = 2.51,
p = .119. The increase of errors with increasing similarity
and with increasing set size was not significantly stronger
in patients than in controls: Group × Similarity interaction,
F(1.9, 100) = 2.10, p= .132; Group × Set Size interaction,
F(2,108)= 2.22, p= .166. TheGroup×Similarity× Set Size
interaction failed significance, F(3.3, 177) = .38, p= .826.
The RT also increased significantly with the similarity

and the set size, and again the steeper the increase with
the set size, the more similar the target was to the distrac-
tors: main effect of Similarity, F(1.4, 75.9) = 162, p <
.001; main effect of Set Size, F(2,108) = 95.6, p < .001;
Similarity × Set Size interaction, F(2.7, 145) = 31.3, p <
.001. The mean RT in patients was significantly longer
than in controls: main effect of Group, F(1,54) = 7.2,
p = .010. The increase with the similarity and also with
the set size was marginally significantly stronger in patients
than in controls: Group × Similarity interaction, F(1.4,
75.9) = 3.05, p = .071; Group × Set Size interaction,
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F(2,108) = 2.59, p= .080. The three-way Group × Similar-
ity × Set Size interaction was not significant, F(2.7, 145) =
.77, p = .50.
In both groups, the error rate as well as the RT re-

flected the increase in search difficulty with increasing
target-distractor similarity and with increasing set size.

STRAVIS Model Parameters

After having established that the patients performed the
visual search task only marginally less accurately but
more slowly and less efficiently than controls, the nature

of the latter differences was explored by analyzing the
STRAVIS model parameters. First, we assessed the model
fit errors to make sure that participants searched the
array in a systematic fashion as proposed by STRAVIS. In
patients, STRAVIS explained on average 91.6% (range =
78–98%) of the variance of the 12 individual RT means
compared with 93.8% (range = 78–99%) in controls. In
both groups, we regarded the model fit satisfactory for
interpreting the parameters.

The STRAVIS parameter values for focus size, dwell time,
movement time, and constant time are supposed to re-
flect the individual efficiency of the hypothetical attentional

Figure 3. (A) Error rates and RTs, and (B) STRAVIS parameters in patients and controls. Error bars give the SEMs.
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subprocesses selection (capacity and speed), shift (speed),
and initial perception/response (speed; see previous sec-
tion). Figure 3B contrasts the values of patients and con-
trols. According to the STRAVIS focus sizes, dwell times,
and movement times, the hypothetical performance of
visual-attentional processes in total differed significantly
between patients and controls [F(3,52) = 3.18, p = .032,
two-group MANOVA with three dependent variables]. Thus,
the above-observed differences in RT and RT slope seem
not only due to nonattentional processes [which are hy-
pothetically covered by the STRAVIS constant time, which
was also prolonged in patients; t(54) = 2.72, p = .009].
When looking at intercorrelations between the STRAVIS
parameter values, we found the correlation between focus
size and movement time to be r= .20 in patients and r=
.47 in controls. The positive correlation might indicate that
persons scanning the display with a larger focus make on
average fewer and larger movements, which take more
time. The correlation between focus size and dwell time
was r = .23 (patients) and r = .04 (controls) and between
dwell time and movement time was r = .43 (patients) and
r=−.24 (controls). Dwell and movement time being pos-
itively correlated is counterintuitive, given the STRAVIS
model assumptions. In patients, lesions that prolong the
dwell time and those prolonging the movement might
either be identical or co-occur in a large part of the sample.

Establishing Possible Associations between
Subprocesses of the Search and Brain Lesions

In the preceding paragraph, we found patients with var-
ious fronto-parieto-temporal lesions showing an inferior
level of performance in observed as well as hypothet-
ical measures of visual feature search compared with
controls. The following analysis aims at the question
how the brain areas under investigation might interplay
in carrying out the cognitive subprocesses underlying
these measures. The six DMs of this study—the two
observed measures error rate and RT, the standard effi-
ciency measure RT slope, and the three individually esti-
mated STRAVIS parameters focus size, dwell time, and
movement time—were evaluated separately. For each
of the six DMs and the seven brain areas under investiga-
tion, a pair of plots in Figure 4 contrast the mean DM of
patients with a lesion in the given area to that of patients
without and show both in relation to the control group
mean. To shed light on the question of which lesion
areas were most predictive for the observed differences
between patients and controls in each of the DMs and
how their effects might be quantified, we used the seven
binary lesion variables as predictors in LMs that were fitted
to the DMs.

The full set of seven predictors was then reduced so
that a maximum portion of variance was accounted for
with a minimum number of predictors. For all DMs (with
a single exception for the error rate, see Table 3), the se-

quence of selected models with one to seven predictors
was ordered in the sense that every model in the se-
quence was a supermodel to its predecessor, which is
not a trivial result when using the exhaustive—and not
a stepwise—method of predictor selection. It is further
noteworthy that the coefficient estimates were quite sta-
ble across differently large models. Third, for three of the
six DMs (the three STRAVIS model parameters), the
three selection criteria, although based on very different
theoretical grounds, agreed on the same subset of pre-
dictors. Finally, when F tests were performed to compare
each model against its immediately preceding submodel
(if existing among the selected models), for all models
bigger than the favored ones, F dropped sharply, mostly
to values below 1. These patterns might all be interpreted
as indications of the suggested solutions being quite ro-
bust. Table 3 shows for each DM the selected LM, the
second-best model with the same number of predictors,
the R2, the significance levels of R2 being larger than zero,
of the linear coefficients being different from zero, and
which of the predictor selection criteria (Akaikeʼs infor-
mation criterion, Mallowʼs Cp, and adjusted R2) favored
the model.
The left-hand panel of Figure 5 graphs the sample data

of patients and controls together with the hypothesized
distributions of the DMs according to the favored LMs
(predictor selections and coefficient estimates). They il-
lustrate the proposed linear associations as follows: Be-
low the graph, the 2m predictor levels are shown. The
theoretical means μ(k) in the respective subpopulations
are indicated by the line with slope 1 through the origin.
The horizontal position of each depicted subsample
shows the estimation of μ(k) by ŷ(k), that is, the LM pre-
diction, and the average vertical position of the data
points shows the estimation of μ(k) by the subsample
mean M(k) (see Methods section). If there were associa-
tions other than linear, the subsample means should ex-
hibit systematic deviations from this line. The portion of
variance R2 explained by an LM can be visualized in the
diagram if one compares the residual (i.e., unexplained)
variance in the subsamples to the variance in the patient
sample as a total. One might further judge from the dia-
gram whether the equal variance assumption across sub-
populations seems plausible. Because the sample sizes in
the subgroups of patients were occasionally very small,
we refrained from testing these notions statistically.
For the error rate, the seven brain lesion variables ac-

counted altogether for .27 of the variance. One single
predictor explained already .21 of it: a lesion to the tem-
poral pole. According to this model, the percentage of
errors, which was estimated on average 5.1% in controls,
was estimated to rise by on average 9.3 percentage points
in case of a temporopolar lesion. All other predictors
were negligible in this context. The second-best model,
which predicted the error rate from insular lesions, ac-
counted only for .06 of the variance. (Here one might think
about adding more predictors; however, then temporal
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Figure 4. Impact of lesions
on the seven areas under
investigation: For each of the
six DMs, the mean DM of
patients with a lesion in the
given area is shown in contrast
to that of patients without. The
SEM in the patient subgroups
is indicated by error bars, in
the control subgroup by
continuous lines. Areas selected
as relevant predictors in the
linear modeling (see next
section) are framed.
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Table 3. Linear Modeling of the Six DMs with the Seven Binary Lesion Variables as Predictors

Validation

Within-sample New Sample

Model Assessment

90% Confidence Interval Content of the .90 Prediction Interval

β̂0 β̂1 β̂2 β̂3 β̂4 R 2 Favored by

(I.i) Difference of
Means between
“Unimpaired”
Patients and
Controls

(I.ii) Ratio of
Residual Patient
Variance and

Control Variance

(II.i) The Sample
Mean of the

n = 12 Controls

(II.ii) x of the n = 12
Patient Values (All
Patient Values Are

within the Bonferroni-
adjusted Interval)

Error Rate (%)

5.1**** TPol 9.3**** .21**** Cp, AIC (−0.9, 2.3) (3.48, 12.8)a Noa x = 10 (yes)

5.1**** AntIns 3.2* .06* (−0.7, 3.0) (4.28, 15.7)a Noa x = 11 (yes)

RT (msec)

991**** AntIns 182* SPL 842**** ParOc 1039**** .54**** Cp, AIC (−136, 158) (2.44, 9.21)a Yes x = 7 (no)a

1022**** TPol 210 SPL 850**** ParOc 1067**** .53**** (53, 349)a (2.48, 9.36)a Yes x = 6 (no)a

RT Slope (msec per item)

67**** AntIns 39*** TPol −37** ParOc 73*** .34**** Cp (−15, 25) (1.08, 4.10)a Yes x = 8 (no)a

64**** AntIns 29*** SPL 29 ParOc 69*** .30**** (−29, 15) (1.19, 4.32)a Yes x = 10 (no)a
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Table 3. Linear Modeling of the Five DMs with the Seven Binary Lesion Variables as Predictors

STRAVIS Focus Size (Items)

3.8**** DLPFC −0.7** IPL/TPJ 1.0*** TPol 1.1** .24*** Cp, AIC, Radj
2 (−0.6, 0.7) (.79, 2.98) Yes x = 12 (yes)

3.8**** AntIns −0.5 IPL/TPJ 1.1*** TPol 1.0** .22*** (−1.2, 0.2) (.84, 3.17) Yes x = 10 (yes)

STRAVIS Dwell Time (msec)

391**** AntIns 98** SPL 255**** .25**** Cp, AIC, Radj
2 (−55, 122) (.72, 2.67) Yes x = 12 (yes)

411**** TPol 85 SPL 259*** .20*** (−17, −155)a (.78, 2.90) Yes x = 11 (no)a

STRAVIS Movement Time (msec)

51**** DLPFC −14 FEF 62*** SPL 35*** ParOc 34* .28*** Cp, AIC, Radj
2 (−16, 25) (.63, 2.41) Yes x = 11 (yes)

49**** TPol −12 FEF 57** SPL 32* ParOc 37* .26*** (−18, 16) (.77, 2.18) Yes x = 10 (yes)

For each DM, the predictor selection and coefficient estimates of the best model (boldface) and the second-best model with same number of predictors (plain face) are shown together with their
significance level. The “Assessment” columns give the proportion of variance accounted for by the model and by which of the three applied regression criteria the model was favored. The “Validation”
columns show the results of model validation within the sample and in a new sample of patients and controls. The confidence intervals (I.i-ii) were supposed to contain the 0 and 1, respectively, if the model
held (for details, see text).

Cp = Mallowsʼ Cp; AIC = Akaikeʼs information criterion; Radj
2 = adjusted R2; AntIns = anterior insula; TPol = temporal pole; ParOc = parieto-occipital.

aResult deviating from expectation.

*p < .10

**p < .05.

***p < .01.

****p < .001.
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pole came in again, and we arrived at the model already
selected as best.)
Regarding the RT, the seven predictors accounted alto-

gether for .56 of the variance. Remarkably, from one to
seven predictors, all selected models were highly signifi-
cant ( p < .001), but three predictors (anterior insular,
SPL, and parieto-occipital lesions) sufficed to explain this
variance almost entirely. According to this model, the
mean RT, which was estimated 991 msec without lesions,
should rise by 182, 842, and 1039 msec with insular, SPL,
and parieto-occipital lesions, respectively.
Regarding the RT slope, the seven predictors altogeth-

er explained .37 of the variance. Here, the three selected
predictors were the anterior insula, the temporal pole,
and the parieto-occipital cortex. The mean RT slope
was estimated 67 msec per item without any of these le-
sions and was predicted to rise by 39 and 73 msec per
item with anterior insular and parieto-occipital lesions,
respectively, and to drop by 37 msec per item with a le-
sion to the temporal pole.
Because the portion of RT variance accounted for by

the lesions was quite large, it was of particular interest
whether the STRAVIS parameters could provide informa-
tion in more detail which lesion might have affected
which of the subprocesses hypothetically contributing
to the RT and RT slope.
The STRAVIS focus size was best predicted by three le-

sion areas, accounting for R2 = .24 of the variance (all
seven lesion areas together accounting for .26). The
mean focus size in the absence of any lesions was esti-
mated 3.8 items. According to the LM, lesions to the
DLPFC should reduce the mean focus size by .7 items,
whereas lesions to the temporal lobe (IPL/TPJ area and
temporal pole) should enlarge it by 1.0 and 1.1 items, re-
spectively. Because in most of our patients the DLPFC le-
sion extended into the ventrolateral part of the prefrontal
cortex (VLPFC, see Table 1), it was difficult to distinguish
the impact of either. However, two patients had only the
VLPFC lesioned, and results were weakened when we
coded any LPFC lesion with 1. We thus suggest that the
dorsolateral portion of PFC being lesioned is crucial.
For the STRAVIS dwell time, the zero lesion estimate

was 391 msec. The seven lesion areas together accounted
for .32 of the variance. A two-predictor model was favored,
explaining .25 of the variance. It suggested an average
increase of the dwell time by 98 msec with lesions to the
anterior insula and by 255 msec with lesions to the SPL.
For the STRAVIS movement time, a mean value of

51 msec was estimated for persons without lesions. All
seven lesion areas together accounted for .31 of the vari-

ance. The favored model contained DLPFC, FEF, SPL, and
parieto-occipital lesions as predictors, altering the mean
movement time by −14, +62, −35, and +34 msec, re-
spectively, and accounting for .28 of the variance.

It should be noted that the above coefficient estimates
were not based on the partly very small subsamples (e.g.,
n = 2 patients with FEF lesions) but reflect the geomet-
rical structure of the entire 56 data points projected onto
a one- to four-dimensional predictor space. However,
estimates might be influenced by outliers. To strengthen
empirical evidence, we subjected the LMs (coefficient se-
lection and estimation) to further tests.

Model Validation

To further validate the LMs proposed above, we recruited
and tested a new sample of 12 patients and controls each.
For details on the patients, see Table 4. We used the LMs
obtained above for predicting visual feature search per-
formance of the new subjects, again at two levels of data:
the level of observed performance (error rates, RTs, and
RT slopes) and the level of hypothetical attentional sub-
processes (STRAVIS focus size, dwell time, and move-
ment time).

Assessment of Predictor Selection

In the left panels of Figure 5, the empirical mean of pa-
tients classified as unimpaired and that of controls are
marked by two different horizontal lines. Their differences
provide the centers of the 90% confidence intervals for
the theoretical difference of means, which is zero if the
model holds. The intervals are shown in Table 3. For all
six DMs, the empirical mean of patients classified as un-
impaired was larger than that of controls. However, in
neither case, this difference was significant at level α =
.10 (the 90% confidence interval for the theoretical dif-
ference contained the 0). Because the degrees of free-
dom of the t fractions for the six DMs were quite large
(50, 36, 34, 36, and 37, respectively), the possibly insuf-
ficient power is less likely a result of insufficient sample
size but of effects being small. It might indicate that most
patients in the “unimpaired” group are truly unimpaired,
but not all, so a slightly different choice of predictors
would possibly yield a similar picture. Indeed, for four of
the six DMs, predictor selection was also confirmed for
the second-best model when using 90% confidence inter-
vals. The best models came out superior in five of the six
DMs (except STRAVIS movement time) only when com-
paring the precise significance levels of the t tests. In

Figure 5. Left panels: Distribution of the six DMs in (A–F) patients (n = 28) and controls (n = 28). Patients were split up into subgroups
according to their lesions determined as crucial for each DM (“prediction levels”). In the subgroup with zero lesions, the unfilled dots represent
the data of the control subjects, with two horizontal lines indicating the sample means of controls and “unimpaired” patients. The dotted curves
show the theoretical distribution as estimated from the LM fit of the DMs. The middle and right panels show the data of the second sample of
controls (n = 12) and patients (n = 12) used for model validation. The .90 prediction intervals for the sample mean (controls) and for individual
data (patients) are marked in gray. The lighter gray intervals give the latter with Bonferroni-adjustment. For details, see the Appendix A.
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Figure 5. (continued )
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sum, no model was rejected because of predictor selec-
tion, but the use of 90% confidence intervals (significance
level α = .10) did not seem particularly sensitive for as-
sessing every single predictor.

Assessment of Variance Explanation Achieved by
the Models

For the observed measures error rate, RT, and RT slope,
the 90% confidence intervals for the theoretical variance
ratio did not contain the 1 (see Table 3); the residual var-
iance in patients (Ŝ

2
Res; p) was thus significantly greater

than the variance in controls (Ŝc
2) atα= .10. This lets us con-

clude that in none of the three cases the model explained
the data satisfactorily (for error rate,

Ŝ2Res; p
Ŝ2c

was 6.67; for
RT, we obtained

Ŝ2Res; p
Ŝ2c

= 4.7; and for the RT slope, we found
Ŝ2Res; p
Ŝ2c

= 2.096). In contrast, for the three hypothetically un-
derlying measures STRAVIS focus size, dwell time, and
movement time, the residual variance in patients did not
significantly (α = .10) differ from the control variance.
More precisely, the respective empirical variance ratios
and F tests yielded

Ŝ2Res; p
Ŝ2c

= 1.52 ( p = .30) for the focus
size,

Ŝ2Res; p
Ŝ2c

= 1.38 ( p = .42) for the dwell time, and
Ŝ2Res; p
Ŝ2c

=
1.22 ( p = .62) for the movement time. Accordingly, we

here regarded the portion of variance explained by the
lesions satisfactory. For all six DMs, the second-best models
yielded a larger variance ratio and a lower p value than the
best ones and proved thereby inferior. It seems further
noteworthy that the absolute value of the explained por-
tion of variance R2 (Table 3) did obviously not reflect its
“goodness.”

Validation of Model Intercept with a New
Control Sample

For all DMs but error rate, the sample mean of the new
control sample met with its .90 prediction interval con-
structed around the model intercept β̂0 (see the middle
panels of Figure 5 and Table 3). The same was true for
the second-best models (which does not surprise, given
that the intercepts were estimated very similar). Thus,
the estimated intercept values were validated in all cases
except for error rate.

Model Validation with a New Patient Sample

For each of the six DMs, we compared the data of the pa-
tients of the new sample with the values predicted from

Table 4. Validation Sample: Gender, Age, Main Etiology of Lesion(s), Affected Brain Area(s), Lateralization, Time Interval between
Lesion Event and Testing, Distribution of Lesion, and Further Pathologies

No Gender Age Etiology
(1)

DLPFC
(2)
FEF

(3)
AntIns

(4)
IPL/TPJ

(5)
TPol

(6)
SPL

(7)
ParOc LH RH Dista Sizeb

Further
Pathologies

103 f 62 Infarction 0 0 1 1 0 0 0 1 0 0 1 Left BG

197 f 60 ICB 1 0 1 0 1 0 0 1 1 0 0 Bil CC, BG,
VLPFC

328 m 46 Infarction 0 0 1 1 0 0 0 0 1 0 1 (unc. fasc.)

640 m 59 Infarction 1 1 1 1 1 0 0 0 1 0 1 Right VLPFC

857 m 57 Infarction 1 0 0 1 0 1 1 1 1 1 0 Bil VLPFC

898 m 57 Infarction 1 0 1 0 0 0 0 1 0 0 1 Left unc. fasc.,
VLPFC

905 m 52 Infarction 1 0 0 1 0 1 1 1 0 1 1 Left VLPFC

942 f 42 CNS vascular 1 1 0 0 0 1 1 1 1 1 0 Bil VLPFC

1021 m 38 Tumor OP 1 0 0 0 0 0 0 1 0 0 0 Fronto-polar,
left VLPFC

1097 m 58 Infarction 0 0 0 0 0 1 1 0 1 1 0

1205 m 53 AVM 0 0 0 1 0 0 0 1 0 0 0

1476 m 39 Tumor OP 1 0 0 0 0 0 0 0 1 0 0 Right VLPFC

n 8 2 5 6 2 4 4 8 7 4 5

AntIns = anterior insula; TPol = temporal pole; ParOc = parieto-occipital; TBI = traumatic brain injury; ICB = intracerebral bleeding; AVM =
arteriovenous malformation; LH = left hemisphere; RH = right hemisphere; WM = White matter; BG = basal ganglia; thal = thalamic nuclei; VLPFC =
ventrolateral prefrontal cortex (inferior frontal gyrus); unc. fasc. = uncinate fasciculus.
aDistribution of lesion: 0 = unifocal, 1 = multifocal.
bSize: 0 = small, 1 = large according to expert rating.
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their lesions according to the above LMs. The right-hand
panels in Figure 5 plot the two sets of values against each
other. The diagrams resemble those of the original sam-
ple as shown in the left-hand panels of the figure except
that the theoretical distributions are left out. In each, the
dotted line shows the theoretical position of mean pre-
dictions if the model held. Around this, the .90 prediction
intervals for the single data and the Bonferroni-adjusted
.90 prediction intervals for n = 12 are depicted (see
Methods section and Appendix A). In the last column of
Table 3, it is summarized for each model how many of
the n = 12 observations were within their .90 prediction
interval and whether all 12 observations were within their
Bonferroni-adjusted intervals. If the latter was not the
case, the validation was considered failed. For error rate
as well as RT and RT slope, the observed values did obvi-
ously not agree well with the predictions. For error rate,
the correlation between predictions and observations
was even slightly negative (Figure 5). Note that here, prob-
ably because of the large portion of unexplained variance,
the Bonferroni prediction intervals were not sensitive
enough for indicating the failure. For the RT slope, predic-
tions were better than for the absolute RT but obviously
still not satisfactory. The diagram in Figure 5 suggests that
in particular three or four patients, Patients 1021, 857, 942,
and possibly 103, were not adequately treated by the mod-
el. Patient 1021 had a single but large lesion to the DLPFC
and was clearly slowed in visual search time and efficiency.
Neither the RT nor the RT slope model covered DLPFC
lesions. The same might apply to Patient 942. On the
other hand, Patient 857 had bilateral lesions, which included
the DLPFC, the IPL/TPJ, the SPL, and the parieto-occipital
cortex. His search time was on average normal but faster
in displays with eight than with four or six items, leading to
a negative slope. Because his parieto-occipital lesion should,
according to the model, enhance the slope, it was grossly
overestimated by the model. A similar problem might ap-
ply to Patient 103, who had a single insular lesion which
should, according to the model, lead to an enhanced RT
slope, that is, reduced efficiency in standard visual search
terms. But contrary to prediction, her slope was normal
(or even reduced).

For the three STRAVIS parameters, the picture was dif-
ferent: As the diagram in Figure 5 shows, the patients
with a lesion to the DLPFC had, as predicted, on average
a reduced focus size, whereas in patients with temporal
lesions, the average focus size was enlarged. All 12 ob-
served patient values fell into their .90 prediction inter-
vals. The model was thereby validated.

The STRAVIS dwell time was assumed to rise with in-
sular and parietal (SPL) lesions. This model was also val-
idated in the new sample: The mean dwell times were
quite accurately predicted, as again every single observa-
tion was within its .90 interval.

The STRAVIS movement time in the new sample was,
as predicted, on average prolonged with FEF and pari-
etal lesions and reduced with DLPFC lesions (with the

exception of Patient 1021). Accordingly, 11 of the 12 ob-
servations were within their .90 prediction interval. Be-
cause the Bonferroni intervals covered all observations,
we did not reject the model. It further seems particularly
noteworthy that the only new patient with all three cru-
cial lesions (FEF, SPL, parieto-occipital) had, as predicted,
the longest STRAVIS movement time.
For all six DMs, themodels originally classified as second-

best ones came out worse with the new sample as well
(Table 3), thereby confirming the original ranking.

Exploring Further Sources of Variance

Additional Predictors

Beside the seven brain areas coded here, there were fur-
ther brain pathologies present in some of the patients.
The contribution of BG (Fimm et al., 2001) and of thalamic
nuclei (Soto, Humphreys, & Rotshtein, 2007; Robinson
& Petersen, 1992; Crick, 1984) to visual search has been
repeatedly stated in the literature. We thus ran the linear
modeling algorithm (see Methods section) again with
these two lesion areas as additional predictors. First, we
found that with nine predictors, the sequences of subsets
selected for each subset size (one, two, etc., predictors)
were not ordered anymore, indicating the solutions not
being as robust as above. Although it goes without saying
that R2 of the full model was larger with nine than with
seven predictors, the finally preferred subsets and models
were identical to the ones originally favored in all cases. In
particular, for the STRAVIS dwell time, the two additional
predictors added almost nothing.
Not only anatomical sites but also other lesion param-

eters like the distribution (whether there were one or more
foci), the size, or the time since the lesion event might
affect the cognitive processes under investigation. The
pairwise associations between these variables and the six
DMs were mostly weak. However, they might reveal their
influence only in combination with other predictors, in par-
ticular by moderating the effect of the anatomical site of a
lesion. In linear modeling, moderator effects are expressed
by including interaction terms in the model equation. This
is explored in the following.

Nonlinear Relations

The effects of lesions to the various brain areas have been
treated as additive so far. However, it seems much more
plausible that the interplay between different lesion areas
is more complex. For example, subcortical structures like
BG or thalamic nuclei might possibly not supply indepen-
dent contributions but rather subserve mediating func-
tions in communicating attention-related signals in the
brain (Soto et al., 2007; Robinson & Petersen, 1992; Crick,
1984). A lesion to such a mediating structure would then
attenuate or even annihilate the effect of a lesion to the
primary structure. A similar case probably holds for the
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lesion lateralization as additional (moderating) variable and
for nonanatomical factors like the size of a lesion, which
might moderate the influence of the above lesions rather
than add a constant amount to their effect. In the same
way, the lesion areas already selected as relevant predictors
might not act in a simple additive way but rather interact
themselves.
Statistically, this can be addressed by including inter-

action terms in the LM and by running the exhaustive
predictor selection algorithm as above and see whether
interaction terms remain in the favored subset of pre-
dictors. Our sample was much too small to do this ex-
haustively, that is, to include all interactions between
the seven (or nine) lesion sites and the three nonanatom-
ical variables as predictors, because with the inclusion of
every moderating variable, the number of predictors is
doubled. However, we explored the notion by starting
from the predictor subsets chosen above and examined
pairwise interactions between the selected areas and
(1) each of the other selected areas, (2) the BG and tha-
lamic lesions, and (3) the lesion size (binary-coded) ac-
cording to two independent expert ratings (0 = small,
1 = large). Models of Types 1–3 were run independently.
With three “primary” predictors, Types 1 and 3 resulted
in a six-predictor model for start and Type 2 resulted in a
nine-predictor model. From this set of predictors, we
choose the best subset with the algorithm described
above and, if different from the original model, applied
the validation procedure (comparison of residual vari-
ance with control group variance and comparison of
“observed” with predicted values in the second patient
sample; see Methods section). Although in some cases
the inclusion of interaction terms yielded models that
explained more variance (e.g., R2 = .68 instead of .54
in case of RT, and R2 = .33 instead of .28 in case of the
STRAVIS movement time), in neither case predictions in
the new samples were improved. In a similar way, it
could in principle be tested whether the hemisphere of
a lesion had an impact. Because for each structure, two
interaction terms need to be added; this has to be left to
future studies with larger samples.

DISCUSSION

Summary of Results

Patients with visuospatial attention problems after diverse
focal lesions to the frontal, temporal, and/or parietal lobe
showed impaired performance in a visual feature search
task with graded target-distractor similarity compared with
age-matched controls. They searched only marginally less
accurately but significantly more slowly and less efficiently.
When exploring the nature of this difference by decom-
posing the RT into the times of hypothetical subprocesses
of the task according to the STRAVIS model (Müller-Plath
& Pollmann, 2003), we found prolonged estimated dwell
times as well as prolonged estimated movement times of

attention. The core parameter of STRAVIS, the size of the
attentional focus, did not significantly differ between pa-
tients and controls.

We then applied LMs to the patient data to identify
those brain lesions that were most predictive for the
two observed measures error rate and RT and the stan-
dard measure of search efficiency, RT slope, as well as
for the three hypothetical measures STRAVIS focus size,
dwell time, and movement time and to quantify their
contribution. For each measure, a subset of lesion areas
was selected as (binary) predictors so that a minimum
number of predictors explained a maximum portion of
variance. The error rate was best linearly modeled by
temporopolar lesions as sole predictor. However, with
an independent patient sample, the model could not
be validated. The picture was not much better for the
RT: Although the best LM, which predicted the RT from
insular, parietal, and parieto-occipital lesions, accounted
for a large portion of the variance, the estimated effects
of these lesions were not validated by the second sam-
ple. The RT slope was best predicted by insular, parieto-
occipital, and temporopolar lesions, the latter reducing
the slope. Here, predictions for the second sample were
better but still not satisfactory in every detail. We con-
clude that it was not possible to satisfactorily predict
the global behavioral measures of the task by a linear
combination of the brain lesion areas under investigation.
Including interaction terms into the LMs did not change
results. One has to keep in mind that the same slope can
result from few long-lasting search steps as well as many
fast steps. With the model STRAVIS, it is possible to tell
the two patterns apart.

Indeed, the picture changed when we modeled mea-
sures of the hypothetically underlying attentional subpro-
cesses: The STRAVIS focus size, although not differing
between the patients in total and controls, depended
strongly on the site of lesion. Patients with a DLPFC le-
sion selected on average—according to STRAVIS—less
items into their focus compared with controls, whereas
in patients with temporal lesions (IPL/TPJ as well as tem-
poral pole), the focus size was enhanced. It might be in-
teresting to note here that temporal pole lesions were,
although not validated in the second sample, also pre-
dictive for an enhanced error rate. Under certain cir-
cumstances, an enlarged focus size might therefore be
as detrimental as a reduced one. The residual variance
was comparable to that of controls, and the LM was val-
idated with the second patient sample. A similarly good
explanation of variance was achieved when predicting the
other two attention-related STRAVIS model parameters
linearly from the presence of lesions in the investigated
brain areas. Most predictive for the dwell time were le-
sions to the anterior insula and the SPL, whereas the
movement time was best predicted by lesions to the
FEF, to the SPL, and to the parieto-occipital cortex, each
enhancing the movement time. Again, the residual vari-
ance was comparable to that of controls, and the data
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of the second sample agreed with themodel. Again, includ-
ing additional predictors or nonlinear relations did not
improve the models.

The Attentional Focus Size Is Predicted by Lesions
to the DLPFC and the Temporal Lobe

After specifying the relations between hypothetical cog-
nitive subprocesses and STRAVIS parameter values, ab-
normal parameter values can be interpreted according
to STRAVIS model assumptions (see the Methods sec-
tion). A reduced focus size might result from perceptual
feature processing being ineffective, so that saliency
maps are less informative, or from attentional control pro-
cesses being impaired, so that anticipative top–down ad-
justment of the focus size is hampered. The latter might
as well result in an inadequately large focus.

Although neural correlates of the attentional focus size
have been well documented in retinotopic visual areas
(Müller, Bartelt, Donner, Villringer, & Brandt, 2003;
Brefczynski & DeYoe, 1999), much less is known about
the areas which control attentional size changes. Adjust-
ment of the attentional focus size has been indirectly
linked to the temporal lobes by the finding that deficits
in focus size adjustments were observed in nondemented
carriers of the ε4-allele of the apolipoprotein E gene,
which is a risk factor for dementia of the Alzheimerʼs dis-
ease (AD; Greenwood, Sunderland, Friz, & Parasuraman,
2000). The same deficit has been observed in patients
with AD (Greenwood, Parasuraman, & Alexander, 1997).
Because temporal cortex is affected earliest by the neuro-
pathology of AD (Braak & Braak, 1991), the link between
apolipoprotein E ε4-carriers and focus size adjustment may
be due to early, subclinical, temporal processing deficits.

Dorsolateral prefrontal activation during divided atten-
tion has been reported (Corbetta, Miezin, Dobmeyer,
Shulman, & Petersen, 1991). This may be seen as a special
case of a large attentional focus. In agreement with this, a
recent imaging study observed lateral prefrontal activation
(BA 46) when the attentional focus was enlarged, whereas
during “zooming in” to a smaller focus activation along, the
anterior intraparietal sulcus was observed (Chen, Marshall,
Weidner, & Fink, 2009). This observation as well as the
stronger lateral prefrontal activation for divided versus se-
lective attention (Corbetta et al., 1991) fits quite nicely with
our finding of a small focus in patients with DLPFC lesions.
It may thus be that lateral prefrontal cortex supports not
focus changes in general but particularly enlarging of the
attentional focus, leading to an inadequate small focus in
our DLPFC patients.

The Attentional Dwell Time Is Predicted by Lesions
to the Anterior Insula and the SPL

The STRAVIS dwell time will be prolonged if attentional
modulation of perception is ineffective, if perceptual

comparison of features is impaired, or if decision making
is slowed. To our knowledge, the neuronal correlate of
the attention dwell time has not been directly investigat-
ed previously.
Attentional modulation of feature perception mainly in-

volves occipital visual areas (see, e.g., Kastner, DeWeerd,
Desimone, & Ungerleider, 1998), which were not investi-
gated here. The concept of the attentional dwell time is
further related to sensory decision making. Attention
dwells on a part of the search display until the observer
makes a decision about target presence or absence in
the attended area. Ramp-like neuronal responses, which
may reflect the accumulation of evidence needed to make
a sensory decision, have been found in area LIP (Shadlen
& Newsome, 1996) as well as in DLPFC (Kim & Shadlen,
1999) of nonhuman primates. One can further ask what
kind of processes may subserve these target decisions in
parietal and frontal cortex. Specifically in visual search, at-
tentional capture by salient stimuli is reduced by repetitive
TMS over posterior parietal cortex (Hodsoll, Mevorach, &
Humphreys, 2009). The intact SPL further supports in-
hibition of distractors (Pollmann et al., 2003). Thus, both
facilitatory and inhibitory mechanisms, which guide atten-
tion to the target in a search display, are disrupted after
superior parietal lesions. This, in turn, will result in pro-
longed dwell times needed to make a decision about tar-
get presence in a currently attended part of the search
display and about the landing position of the next saccade.
Recently, we conducted an fMRI study of STRAVIS

(Müller-Plath, 2008) in which we applied the same search
task as in the present study and correlated BOLD signal
changes with STRAVIS dwell time and movements across
the different task conditions within each individual. Be-
side lateral occipital activations, we found the right ante-
rior insula correlating with the dwell time, a finding that
was repeated here.
Our recent eye movement data (Heße et al., submitted)

showed that the dwell time is overestimated in individ-
uals who often return to previously visited items during
their search. Damage to the right intraparietal sulcus or
right inferior frontal cortex may lead to pathological for-
getting (and consequently revisiting) of previously visited
items during search (Mannan et al., 2005). This may have
contributed to the high dwell time estimates for SPL le-
sions (Figure 5). An updated model version STRAVIS 2.0
that distinguishes dwell times and number of reinspec-
tions is currently being developed (Müller-Plath, Heße,
Melzer, & Wienrich, in preparation).

The Attentional Movement Time Is Predicted by
Lesions to the DLPFC, FEF, and Parietal Cortex

A prolonged movement time indicates difficulties in dis-
engaging attention, possibly resulting from computation
of spatial coordinates for the movement (“where”) being
ineffective or from saccade initiation being disturbed
(“when”; see Findlay & Walker, 1999).
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It is no surprise that FEF lesions led to increased move-
ment times because the FEF is a central structure for the
guidance of eye movements as well as covert attention
shifts. The FEFs contain a visual salience map, in the
sense that neuronal responses reflect the behavioral sig-
nificance of the stimuli in a visual scene, independent of
whether an overt eye movement is carried out or not
( Juan et al., 2008; Thompson & Bichot, 2005). Neuro-
physiological evidence (Monosov, Trageser, & Thompson,
2008) suggests that in the noninjured brain, the FEF is
central for the selection of the target location in visual
search. Spatially specific microstimulation of FEF neu-
rons leads to spatially specific activations in V4 (Moore &
Armstrong, 2003) and lowers target detection thresholds
(Moore & Fallah, 2004). Consequently, interruption of
neuronal activity in human FEF by TMS, which can serve
as a reversible “lesion model,” leads to impaired visual
search performance (OʼShea, Muggleton, Cowey, & Walsh,
2004). The spatially specific functional connectivity be-
tween V4 and visual areas (Armstrong & Moore, 2007;
Moore & Armstrong, 2003) fits well with our finding that,
in addition to FEF lesions, parieto-occipital lesions also
affected movement times. The third area for which our
model implies prolonged movement times, when le-
sioned, posterior parietal cortex, is intricately connected
to the FEF on the one hand and visual cortex on the other
hand and is well known to be vital for spatial computa-
tion (Lewis & van Essen, 2000; Wise, Boussaoud, Johnson,
& Caminiti, 1997). Moreover, many experimentally sim-
ilar studies on humans report a right DLPFC activation:
Pollmann and von Cramon (2000), for example, found
DLPFC activation associated with visual search difficulty
and proposed a role in voluntary control of visuospatial or-
ienting. Our own fMRI study on a very similar task as used
here (Müller-Plath, 2008) corresponded well with the pre-
sent results in showing movement related activation in the
(right) DLPFC, FEFs, SPL, descending IPS, and IPS/TOS.

Modeling Subprocesses of Attention with STRAVIS

Interestingly, the focal brain lesions were only predictive
for the STRAVIS model parameters but not for the global
measures of visual search performance like error rate or
RT. The standard measure of search efficiency, the RT
slope, was not fully satisfactorily predicted either. The
four patients mentioned above (Patients 1021, 857, and
103) who apparently caused rejection of the RT slope
model might illustrate the advantage of decomposing vi-
sual search into hypothetical subprocesses: A flat (or even
negative) slope can either result from dwell and move-
ment times being extremely fast or from the focus being
abnormally large. If the latter is coupled with dwells and/or
movements being abnormally slow, the absolute RT will be
large, so the search should be regarded impaired, in spite
of the flat slope, which suggests high efficiency in standard
terms. According to STRAVIS, this applied to Patients 103
and 857 (see Figure 5). The LMs attributed the enlarged

focus to the temporal lesions and the slowed dwell (Pa-
tient 103) and movement (Patient 857) time to the insular
and parietal lesions of the respective patients. On the other
hand, the high RT slopes of Patients 1021 and 942 were,
according to STRAVIS, the result of an abnormally small
focus, which was, according to the LM, due to the DLPFC
being lesioned. The only result not covered by the models
was the movement time of Patient 1021 being prolonged
and not reduced, as predicted from his DLPFC lesion.
One might consider dropping DLPFC as predictor here.
However, the three-predictor model of the movement time
came out slightly worse in the original as well as the valida-
tion sample, as did a different choice of a fourth predictor
(see Table 3). Although Patient 1021 might be atypical for
some reason, the role of DLPFC lesions for the movement
time might be worth further investigation.

In sum, this supports the notion that in studying re-
lationships between structure and function in the brain,
it is necessary to have a sufficiently fine-grained descrip-
tion of the function. We would like to suggest that the
STRAVIS parameters focus size, dwell time, and move-
ment time reflect cognitive subprocesses at a level fine
enough to be associated with (a set of ) different ana-
tomical brain structures. The focus size hypothetically re-
flects the efficiency of attentional modulation of feature
perception, resulting in more or less informative saliency
maps. Control and execution of this modulation both
contribute to its efficiency. The STRAVIS dwell time de-
pends on the efficiency of attentional modulation of fea-
ture perception as well as on perceptual decision making.
The movement time should reflect the speed of disengag-
ing attention, possibly resulting from how fast spatial coor-
dinates for the movement (“where”; see Findlay & Walker,
1999) are computed and—in overt search—the speed of
saccade initiation (“when”; see Findlay & Walker, 1999).

Linearly Modeling the Effects of Various
Brain Lesions

In the past, effects of focal lesions have mostly been stud-
ied in separation of each other. However, this is a prob-
lem if the patients, as is often the case, have other lesions
apart from the one under investigation. The problem is
nicely illustrated if one compares the effects of lesion
areas taken separately (Figure 4) to the predictor selec-
tion in the best LMs (Table 3, Figure 5): Not always were
the lesions with the largest effects selected as relevant
predictors. For example, DLPFC lesions had, taken sepa-
rately, almost no obvious effect on the STRAVIS dwell
time. Nevertheless, they explained more additional vari-
ance when combined with SPL and parieto-occipital le-
sions than any other predictor. This illustrates the effect
of predictor intercorrelations in linear modeling (also
known as “suppressor effects” in regression): By adding
a predictor that is uncorrelated with the criterion but
not with the other predictors, the predictor space may
be expanded in such a way that the distance from the
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criterion vector to the predictor space is reduced, cor-
responding to the portion of explained variance being
enhanced. Because the presence of a DLPFC lesion was
negatively correlated to the presence of an SPL lesion
(see Table 2), it has obviously acted in such a way (for de-
tails on this very clear and instructive geometrical descrip-
tion of LMs, see Wickens, 1995).

A simple type of LMs, which was applied here, is com-
bining predictors additively. However, with the same ra-
tionale, it is possible to model the effect of predictor
interaction by including multiplicative terms. Even more
complex relationships between predictors can be incorpo-
rated, using, for example, generalized LMs. One problem
here is that theories on structure–function relationships
are probably not elaborated well enough to distinguish be-
tween concurrent model types. Second, the sample size
necessary to obtain a stable fit increases exponentially with
the number of predictor terms. However, the present
study demonstrates that at least the simplest type of mod-
els runs successfully on a small sample. The models that
used only additive predictor combinations yielded un-
equivocal and stable solutions (Table 3).

Conclusions

The linear modeling approach seems a promising new
approach in studying the neural basis of complex cogni-
tive processes. In the present study, we described visual
search with the help of the RT model STRAVIS (Müller-
Plath & Pollmann, 2003) and applied LMs to predict the
effect of diverse focal brain lesions onto the model param-
eters. Even with a quite small sample like ours, interest-
ing results could be reached: Critical lesion areas for the
STRAVIS focus size were the DLPFC, the inferior parietal
lobe including the TPJ (IPL/TPJ), and the temporal pole,
with DLPFC lesions reducing the focus and temporal le-
sions enlarging it. The STRAVIS dwell time was reduced
in patients with anterior insular and SPL lesions. Lesions
to the FEFs, the SPL, and the parieto-occipital cortex
were most detrimental to the STRAVIS movement time.
All findings were validated with an independent sample.
This was not the case when we tried to predict the global
behavioral measures error rate, RT, or RT slope from the
location of the lesions.

We concluded that structure–function relationships can
be studied successfully only if a sufficiently fine-grained de-
scription of the function is obtained. Here, our results pro-
vide further support to the STRAVIS model, that is, further
evidence that the task indeed consists of the hypothesized
subprocesses, and that the individually estimated param-
eter values reflect their efficiency.

The visual search task and the STRAVIS model might
therefore be applied as a process-oriented diagnostics of
impairments of visuospatial and selective attention. On
the basis of such a process-oriented diagnostics, therapeutic
measures might be individually optimized to improve the
individually impaired subprocess.

APPENDIX A

Linear Model with m Binary Predictors

Suppose that x(k) are binary variables (“predictors”) and Y
is a metric random variable (DM). By building all possible
m-tuples prom the predictor values 0 and 1, 2m different
predictor values can be defined: For k = 1, …, 2m, let the
predictor vector at level k be x(k) = (x(k)1, …, x(k)m) so
that x(k) j 2 {0, 1}, x(k) ≠ x(l) for k ≠ l and that the x(k) vec-
tors are in lexicographic order. The population of subjects
is thereby partitioned into 2m subpopulations Ω(k).
For a given sample of n subjects, nk of which are from

subpopulation Ω(k) (with 0 ≤ nk ≤ n), let

Y ¼
Y1
:
:
Yn

0
BB@

1
CCA; X ¼

1 x11 … x1m
: : : :
: : : :
1 xn1 … xnm

0
BB@

1
CCA; and

β ¼
β0

β1

:
βm

0
BB@

1
CCA;

where X is the n × (m + 1) design matrix in which nk

rows correspond to the predictor vector x(k), Y is the n-
dimensional random variable the components of which
are drawn from the respective subpopulations, and β is
a (m + 1)-dimensional parameter vector. Suppose that X
has full rank. An LM for X and Y with parameter β holds if
E(Y) = X β and Y ∼ Nn(X β, σ2 I). The least squares esti-
mator for E(Y) is given by Ŷ ¼ Xβ̂ with β̂ ¼ ðX0XÞ−1X0Y ,
the sampling distribution of which is

β̂∼ Nm þ 1 β;σ2ðX0XÞ−1� �
: ðA1Þ

Because the DM is distributed identically within sub-
populations, let Y(k) denote the nk identical random vari-
ables Yi corresponding to a predictor level k that is
present in the design matrix X. For the predictor vector
x(k), the LM may be written as

YðkÞ ∼ N μðkÞ;σ2
� �

with μðkÞ ¼ ð1; xðkÞÞβ

¼ β0 þ
Xm
j¼1

βj xðkÞ j; ðA2Þ
and the prediction is

ŶðkÞ ¼ ð1; xðkÞÞβ̂ ¼ β̂0 þ
Xm
j¼1

β̂ j xðkÞ j: ðA3Þ

Within-sample Validation

Confidence Interval for Assessing Whether “Unimpaired”
Patients Have the Same Mean as Controls

Suppose that in the design matrix X, the subsample with
predictor vector x(1) = (0, …, 0) consists of nc controls
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plus n0 patients (nc + n0 = n1). The patients at this level
are classified as unimpaired because none of the m brain
lesions determined as relevant were present in them. Let
Mc denote the sample mean in the nc controls, M0 the
sample mean in the n0 patients, and Ŝc

2, Ŝ0
2 the respective

(unbiased) sample variances. If the LM (equation A2) holds,
thenMc andM0 are independent estimators of μ(1). Further,
Ŝ2pooled ¼ ðn0−1Þ : Ŝ20þðnc−1Þ : Ŝ2c

n0þnc−2 is an unbiased estimator of the error var-
iance σ2 and the limits of the (1 − α) × 100% confidence
interval for the difference of the expected subsample
means E(Mc)− E(M0)= μ(1)− μ(1) = 0 are (see, e.g., Hays,
1994, p. 327)

M0 − Mc � tn0þnc−2;α=2 : Ŝpooled :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ nc

n0 : nc

r
: ðI:iÞ

(The numbering of intervals refers to the numbering in
the main text.)

Confidence Interval for Assessing Whether the Residual
Variance in Patients Is Identical to the Variance
in Controls

Let Ŝc
2 denote the (unbiased) sample variance of the nc con-

trols and Ŝ2Res; p ¼ 1
np−m−1

:
Pnp

i¼1ðYi − ŶiÞ2 the residual vari-
ance of the np patients when fitting the LM. If the above
assumption (equation A2) holds, then Ŝc

2 and ŜRes,p
2 (as

random variables) are independent estimators of σ2, the ra-
tio of which is distributed as Fnc − 1, np − m − 1 (see, e.g.,
Hays, 1994, p. 360). The (asymmetrical) (1 − α) × 100%
confidence interval for the ratio of expected subsample
variances E Ŝ2cð Þ

E Ŝ2Res; pð Þ ¼ σ2

σ2 ¼ 1 is then given by

Ŝ2Res; p
Ŝ2c

: Fnc−1;np−m−1;1−α=2;
Ŝ2Res; p
Ŝ2c

: Fnc−1;np−m−1;α=2

" #
:

ðI:iiÞ

Cross Validation

Prediction Interval for Assessing Whether the LM Holds
for a New Subject at Level k0

Suppose that an LM fit was obtained for a samplewith design
matrix X. Suppose further that x(k0) = (x(k0)1, …, x(k0)m)
is the (binary) predictor vector of any new subject with
DM Y(k0). Note that x(k0) need not necessarily correspond
to any predictor vector in the design matrix X. In this
case, however, we assume that the LM (equation A2) holds
for x(k0), too:

Yðk0Þ ∼ Nðμðk0Þ;σ2Þ with μðk0Þ ¼ ð1; xðk0ÞÞβ

¼ β0 þ
Xm
j¼1

βj xðk0Þ j:

ðA20Þ

Further, we use the parameter estimator β̂ from the orig-
inal sample for predicting Y(k0):

Ŷðk0Þ :¼ ð1; xðk0ÞÞβ̂ ¼ β̂0 þ
Xm
j¼1

β̂ j xðk0Þ j: ðA30Þ

To construct an interval around Ŷ(k0) in which Y(k0) lies
with probability 1− α if the equations A2 and A20, respec-
tively, are true, the distribution of the difference variable
U := Y(k0) − Ŷ(k0) under this assumption is required.

Because of equation A2/A20, the new observation Y(k0) is
normally distributed with expectation E(Y(k0)) = (1, x(k0)) β
and variance V(Y(k0)) = σ2.

Because of equation A3/A30 and equation A1, the pre-
diction Ŷ(k0) is normally distributed with expectation
EðŶðk0ÞÞ ¼ E

�ð1; xðk0ÞÞβ̂
� ¼ ð1; xðk0ÞÞE β̂

� � ¼ ð1; xðk0ÞÞβand
variance V(Ŷ(k0)) = V((1, x(k0))β̂) = (1, x(k0))V(β̂)(1, x(k0))

0=
σ2(1, x(k0))(X

0X)−1(1, x(k0))
0.

With Y(k0) and Ŷ(k0) being random variables on different
populations and thereby independent, it follows that U is
normally distributed with

EðUÞ ¼ EðYðk0ÞÞ−EðŶðk0ÞÞ ¼ 0 and

VðUÞ ¼ VðYðk0ÞÞþVðŶðk0ÞÞ
¼ σ2ð1þ ð1; xðk0ÞÞðX0XÞ−1ð1; xðk0ÞÞ0Þ

(see also Fox, 1997, p. 234). Because the residual variance
Ŝ2Res ¼ 1

n−m−1

Pn
i¼1ðYi − ŶiÞ2 from the original model fit is

an unbiased estimator of σ2, the (1 − α) prediction limits
for Ŷ(k0) are given by

Ŷðk0Þ � tn−m−1;α=2 : ŜRes :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1; xðk0ÞÞðX0XÞ−1ð1; xðk0ÞÞ0:

q
ðII:iiÞ

Accordingly, the Bonferroni-adjusted limits for simulta-
neously predicting n0 new observations (at possibly dif-
ferent levels) are

Ŷðk0Þ � tn−m−1;α=ð2n0Þ : ŜRes :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1; xðk0ÞÞðX0XÞ−1ð1;xðk0ÞÞ0:

q
ðII:ii; cont:Þ

Prediction Interval for the Sample Mean of a New
Sample of Controls

Now we use the parameter estimator from the original
sample for predicting the Y(1) values of nc2 new control
subjects by Ŷð1Þ :¼ ð1; xð1ÞÞ:β̂ ¼ β̂0. We want to construct
an interval around β̂0 in which the sample mean Mc2 lies
with probability 1 − α if the LM (equation A2) is true:
In analogy to the above difference variable U, we now
determine the distribution of the difference variable
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V :¼ Mc2−β̂0 under equation A2. Because Mc2 is normal-
ly distributed with expectation β0 and variance σ2

nc2
, it fol-

lows in analogy to above that the (1 − α) prediction
limits for the sample mean in any new sample of nc2 con-
trols are given by

β̂0 � tn−m−1;α=2 : ŜRes :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nc2

þ ð1; xð1ÞÞðX0XÞ−1ð1; xð1ÞÞ0
r

ðII:iÞ
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Notes

1. Note that for binary variables, Pearsonʼs r2 = ϕ2 = χ2 / n.
2. Although in the original version of STRAVIS we explicitly
assumed two distinct processing stages—computing a saliency
map and deploying attention—this is not a critical assumption.
We presently favor the notion that attention is deployed from
the beginning and, while dwelling on a group of items, con-
tinuously modulates perception and thereby not only the target
detection but also the saliency map. In STRAVIS, the attentional
focus size is a stochastic variable with a variation the origin of
which is not specified in detail.
3. Most likely, it also depends on the geometrical arrange-
ment of the items, but this is neither being varied nor modeled
in the present STRAVIS version.
4. The number of movements and the number of dwells are
random variables the value of which depends mainly on the size
of the attentional focus, the starting position of the search, and
the target position. The expectations of the RTs are fitted to the
empirical mean RTs in the different experimental conditions.
5. Note that the first is equivalent to a t test with (n0 + nC − 1)
degrees of freedom and the second to an F test with (nP − m −
1) and (nC − 1) degrees of freedom at significance level α = .10,
where nP = 28 and nC = 28 denote the number of patients and
controls, n0 the number of patients without any relevant lesion,
and m the number of predictors in the model.
6. Note that this cannot be seen from the center of the
confidence intervals as shown in Table 3 because the F distribu-
tion is asymmetrical about 1.
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