
R E S E A R CH A R T I C L E

Development of non-destructive models to predict oil content
and fatty acid composition of Gomenzer (Ethiopian mustard)
using near-infrared reflectance spectroscopy

Girmay Tsegay | Yibrah Ammare | Kassaye Tollassa | Legesse Shiferaw

Food Science and Nutrition Research,

Ethiopian Institution of Agricultural Research,

Addis Ababa, Ethiopia

Correspondence

Girmay Tsegay, Food Science and Nutrition

Research, Ethiopian Institution of Agricultural

Research, Research, P.O. Box 2003, Addis

Ababa, Ethiopia.

Email: girmaytg7@gmail.com

Abstract

Background: ‟Gomenzer” or Ethiopian mustard is the potential oilseed crop that is

economically important. Ethiopian mustard and rapeseed quality breeding has focused

on altering the fatty acid contents of seed oil to create novel genotypes with different

oil characteristics. The goal of this research was to establish calibration equations’ using

a method called near-infrared reflectance spectroscopy with modified partial least

squares (MPLS) regression.

Result: The spectra of 180 mustard samples were collected and their oil and fatty acid

compositions were determined by n-hexane extraction and GC–MS methods respec-

tively. With 130 samples, calibration equations were developed for oil and fatty acid

compositions. All developed equation had an acceptable value of R 2c, RPDc, and also

had suitable 1-VR values. Prediction of an external validation with 50 datasets revealed

a blameless correlation between reference values and NIRS values based on the R 2v in

prediction, SEP, and the ratio of SD to SEP (RPDv) for oil, oleic, linoleic, linolenic, and

erucic acids. These had suitable values of RPDv and R 2v, with the range of 2.0 to 8.8

and 0.79 to 0.99 respectively.

Conclusion: The developed models gave meaningful quantitative data, however, the

equations generated for palmitic, stearic, and eicosenoic acids were insufficient for data

analysis. Hence, the developed NIRS model, which was satisfactory, could be used to

assess and evaluate the oil and fatty acid content for the unknown mustard samples on a

regular basis in the oilseed breeding quality program.
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INTRODUCTION

‟Gomenzer” or Ethiopian mustard (Brassica carinata) is the potential

oilseed crop, which is mostly grown in the Ethiopia highlands.1

Mustard is a worldwide significant oilseed crop; therefore, studying

the genetic diversity of different germplasm collections is crucial for

its genetic improvement.2 It is an important edible oil crop, broadly

includes rapeseed and mustards which are used as a food, especially

in the arid and semi-arid areas.3,4 In addition, rapeseed is used to

substitute for fossil diesel fuel. Selection of mustard variety and

genotype quality is based on fatty acid compositions and protein con-

tent. It is carried out according to the end-use of the oil such as for

humans, meal for animal nutrition, and industrial application like bio-

diesel.5 Ethiopian mustard oil covered about 40% of its seed weight. It

is mainly composed of fatty acids such as palmitic (16:0), stearic

(18:0), oleic (18:1), linoleic (18:2), linolenic (18:3), Eicosenoic (20:1),

and erucic (22:1) acids. The major components in rapeseed oil are

unsaturated fatty acids (mainly oleic, erucic, and linoleic acid).2,5 The
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majority of the mustard and rapeseed cultivars grown in Ethiopia con-

tain high levels of erucic acid.6 Because of this, Ethiopian mustard and

rapeseed quality breeding has focused on altering the fatty acid con-

tents of seed oil to create novel genotypes with different oil

characteristics.

Fatty acid compositions of the oils of breeding lines were deter-

mined by gas chromatography. This analytical technique is the most

commonly used approach for fatty acid compositions.7,8 Although the

obtained result by using this technique is accurate, it must be pointed

out that there were limitations to the method. However, it is incon-

gruous for a large number of samples as it is not cost-effective, is

time-consuming, requires expensive chemicals, needs professionals

with technical qualifications, is destructive, and generates wastes.9,10

Interestingly, near-infrared spectroscopy (NIRS) is a powerful tool for

the quantitative and qualitative analysis of chemicals and physical var-

iables. Since the early 1960s, this method has been used to determine

the moisture content of seeds.11 NIRS could be applied to samples of

various types, such as from the pharmaceutical, petrochemical, food,

and agricultural industries.12,13 Mainly, this technique is aimed to facil-

itate the screening for genotypes and varieties of cereal crops, oilseed

crops, and forages. Furthermore, the NIRS technique offers numerous

advantages over wet chemistry analytical techniques, such as a low-

cost, quick, non-destructive, high-precision, high-throughput, and

environmentally friendly approach. NIRS could predict contents of

organic constituents by combining laboratory data and spectral

information.14

NIRS is widely utilized for the evaluation of forage quality,

according to the content of nitrogen, moisture, fiber, structural car-

bohydrates, amino acids, and minerals.10,15 In addition, NIRS is used

to evaluate the oilseed crop quality according to the value of oils

and fatty acids. Oil content and main fatty acids of rapeseed oil had

been accurately quantified by the NIRS technique.5 Besides, NIRS

had been also successfully used to quantify the content of sterol

composition in sesame16 and it was used in the screening of early-

generation material in cereal breeding programs. Furthermore, NIRS

is an efficient analytical technique for the rapid determination of

chemical compositions for screening different oil crops, cereal crops,

and forage grasses.9 Besides, it is a green approach that does not

require the use of organic solvents or reagents, avoids environmental

pollution, and is regarded as an eco-friendly method, which is in

accordance with the principles of sustainable chemistry.17 The litera-

ture survey indicated that there is no study on the development of

NIRS calibration models for predicting the content of oil and fatty

acids compositions of mustard and rapeseed grown in different parts

of Ethiopia.

Hence, the goal of this work was to create a model to examine

the oil and fatty acid contents of mustard and rapeseed varieties and

genotypes in breeding programs using the NIRS technique. Because

the oil and fatty acid content of mustard and rapeseed are the impor-

tant oil crops. The developed NIRS models were to quantitatively

measured the oil and fatty acid content in low-cost and high-through-

put ways to speed up the breeding process and to improve the quality

of Ethiopian mustard.

MATERIALS AND METHODS

Sample collection and preparation

A total of 180 Ethiopian mustard samples were collected from four

different main growing locations. 100 from the Holeta Agricultural

Research Center; they were cultivated at Holeta, Debremarkos, Ambo,

Fiche, and Debrebirhan districts. In addition, 60 samples were

obtained from the Kulmsa Agricultural Research Center; they were

cultivated at Kulmsa, beqoji, Shashmene, and 20 samples were col-

lected from local markets. All samples were harvested from the 2020

and 2021 crop seasons. 130 were used for calibration development,

and 50 were used for external validation of Ethiopian mustard oil and

fatty acids

Oil content

Oil content of mustard was determined by n-hexane extraction with

soxtec method according to Tsegay et al.18 protocol with some modi-

fications. Two grams of the ground sample was weighed into the

extraction thimble and cotton was used as a plug to avoid loss of the

sample. This was placed in the adapter part of the instrument and a

150 ml aluminum cup with 75 ml of n-hexane was put on the 60�C

adjusted heat mantle sequentially. The crude oil was recovered after

solvent evaporation and the residual solvent was dried in an oven.

Later it was cooled in desiccators and weighed.

Fat%¼ oil gð Þ
weight of sample

�100

Determination of fatty acid composition

According to the Yisak et al.19 protocol, oil was extracted using Foss

SoxtecTM 8000 extraction equipment from 5 g of Gomenzer

(Ethiopian Mustard) pulverized with n-hexane. The fatty acids were

investigated using gas chromatography (GC) with an MS detector, as

described by Tsegay et al.18 after methylation of the sample with

methanolic potassium hydroxide solution for saponification. Its solu-

tion was prepared with a concentration of 0.5 μg/ml of the deriva-

tized sample (dissolve 1 μg FAME in 2 ml of hexane). These were

analyzed using GC–MS Agilent Technology 7820A GC and 5977 E

MSD systems equipped using an auto sampler. Chromatographic sep-

arations were carried out using a stabilwax column (RESTEK 10623,

USA) with 30 m length, 0.25 mm internal diameter, and 0.2 μm col-

umn phase thickness. Injection mode was performed with a 1:40 split

ratio, helium gas was used as a carrier gas, and 1 μl volume of the

sample was injected into the inlet heated to 250�C. The oven

temperature was set to 180�C for the initial hold and increased to

230�C after 2 min. The program was divided into two parts: a rate of

5�C/min until 200�C with a 5-min hold time and a rate of 10�C/min

until 230�C with a 2-min hold time. The conditions used for the mass

2 TSEGAY ET AL.



spectrometer were a source temperature of 230�C, a scan range of

40–650 m/z, and operated in positive electron impact mode with

ionization energy of 70 eV. The data were processed by using the

instrument’s built in software (MS ChemStation; Agilent Technologies)

and the percentage of each component in the total fatty acid was

calculated by area normalization.

Sample scanning through near-infrared reflectance
spectrophotometry (NIRS)

A near-infrared reflectance spectrometer was used to collect the

spectral data of all mustard samples. For each sample, 2–4 g of mus-

tard grain samples was placed in the ring cup. Each sample was

scanned in duplicate by NIRS monochromator model FOSS 6500

(FOSS NIRS Systems, Inc., Silver Spring, Denmark) equipped with

small ring cups (internal diameter of 35 mm and depth of 8 mm). The

spectra were taken between 400 and 2500 nm, with a 2 nm interval

and 32 scans per sample. For the production of NIRS spectra, the

average reflectance value (R) was calculated and transformed to

log (1/R).

Model calibration and validation for near-infrared
spectroscopy

To construct the near-infrared spectra models, all the average spectral

data of each sample were uploaded onto WinISI II software (Windows

version 1.60, Foss and Infrasoft International LLC) for chemometric

modeling and correlate with the GC–MS result. After correlating the

reference analytical data, several potential calibration models were

created using a number of spectral pre-treatment combinations, which

were evaluated to investigate the optimum prediction model configu-

rations for oil and fatty acid analysis. From those, the best calibration

model was selected. In this study, calibration models were built using

modified partial least squares regression (MPLS) techniques.

The statistical methods applied in this study included the correla-

tion coefficient of calibration (R2c), cross-validation coefficient (1-VR),

standard error of calibration (SEC), correlation coefficient of validation

(R2v), standard error of prediction (SEP), which were used to test the

accuracy of the calibration models. R2c obtained from the calibration

process can be modeled linearly. SEC and SEP were used to evaluate

the predictive ability of the calibration and validation model.20 The

correlations between the SD of the wet chemical analyzed data and

the prediction data by NIRS model (SECV or SEP) 10 were used to

estimate the prediction ability of the model and calibrations, as well as

the accuracy of the equations.5 Equations with the highest R2, RPD,

and 1-VR and the lowest SECV and SEP were considered the best

models.21–23 Samples with NIRS spectra that were significantly differ-

ent from other samples were considered abnormal and removed

from the dataset when the Mahalanobis distance global-H (GH) value

or the neighboring-H (NH) value was greater than 3.0 or less

than 0.6.24,25

RESULT AND DISCUSSIONS

Spectral analysis

As a consequence of the investigation, absorbance spectra of

Ethiopian mustard were obtained in the wavelength range of 400 to

2500 nm with a 2 nm interval. The mean raw spectral data (without

pretreatment), treatment with invers MSC, and second-derivative of

Ethiopian mustard samples were shown in Figure 1. The second

derivative was calculated from the log (1/R) spectra at gaps of four

data points and smoothing over segments of four data points 2,4,4,1

with scatter correction of invers MSC. Absorption peaks and valleys

were observed in those spectra based on the chemical component

characteristics of mustard samples, with main strong bands observed

at 1206, 1474, 1722, and 1946 nm. At the transition between visible

and near-infrared (around 930 nm) was observed a band related to

third overtones of the C H stretching in various groups. The strong

band observed at 1206 nm was related to the C H stretching of the

second overtone in various groups ( CH2). A band related to CO

stretching of the third overtone ( CO) and O H stretching of the

first overtone (water) occured around 1474 nm, and the second over-

tone of N H stretching in amides and aromatic amines occurred

occured around 1506 nm. In addition, another strong band was

observed at 1722 nm related to C O of oil and C H stretching of

the first overtone CH2 as reported by Xu et al.26 At 1760 nm, we

found a stretching related to the C H of oil and C H of the first

overtone of CH2 was found. Another strong peak was observed

nearly at 1950 nm, it was possibly related to the O H bending of

the second overtone (water), and the peak around 2304 nm is the

combination absorbance of C H stretching and the deformation of

CH2, which is related to oil. The overlapping of combination absor-

bance of C O-stretching and the deformation of CO NH and

the combination absorbance of N H stretching and the deformation

of CO NH can be attributed to the range of 2000–2250 nm; these

are possibly related to oil and hydrocarbons. In general, the spectrum

shows a strong absorption band related to oil and water. The spectrums

of mustard were almost parallel to the spectrum of sesame, Camellia,

and Perilla,5,20 but, the spectrum of this study was different from the

safflower spectrum reported by Elfadl et al.27 According the review,

most of oilseed crops has comparable NIR spectra.

Data analysis and statistical descriptions

In Ethiopian mustard oil samples, more than 15 fatty acids were

detected and identified by GC–MS. From the detected 15 fatty

acids, only seven fatty acids were proposed for NIRS model devel-

opment. As the NIRS method cannot be used to predict compo-

nents at lower percentage values,28 the study focused on the major

fatty acid components present in Ethiopian mustard. The statistical

values, including mean, standard deviation (SD), minimum, and max-

imum, of the individual selected fatty acids and oils of Ethiopian

mustard used in the calibration and validation sets are shown in
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F I GU R E 1 (a) Near infrared mean spectra, without pretreatment and (b) mean spectra with second derivative (2, 4, 4, 1 + invers MSC of
Ethiopian mustard samples

T AB L E 1 Statistical value of oil (%) and percent fatty acid content of mustard analyzed by GC–MS used for the calibration and validation

Constituent

Calibration (n = 130) Validation (n = 50)

SD Mean Range SD Mean Range

Oil 3.4 43.9 34.9–49.9 4.7 42.6 30.3–56.0

Palmitic acid 0.4 2.9 2.2–4.1 0.2 3.0 2.7–3.3

Stearic acid 0.3 1.3 1.0–2.3 0.3 1.3 1.1–2.2

Oleic acid 11.5 10.5 4.9–52.6 27.2 25.4 2.7–65

Linoleic acid 2.1 17.4 12.8–21.9 3.1 17.0 8.7–29.7

Linolenic acid 2.2 10.1 5.9–15.4 1.7 9.7 7.7–17.9

Eicosenoic acid 1.7 9.7 6.4–16 1.9 10.6 9.0–18

Erucic acid 10.5 42.1 6.9–50.9 19.6 27.5 6.5–45.0
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Table 1. The mean values of oil and selected fatty acid content

were 43.9% oil, 2.9% palmitic acid, 1.3% stearic acid, 10.5% oleic

acid, 17.4% linoleic acid, 10.1% linolenic acid, 9.7% eicosenoic acid,

and 42.1% erucic acid in the calibration set. The values present in

the validation set were almost identical to the calibration sample

datasets.

Calibration and cross-validation of NIRS model

The best calibration equations for oil, fatty acid compositions using

mathematical treatment 2,4,4,1 with invers MSC scatter were

selected with the value of R2c, RPDC (SD/SECV), SEC, and SECV as

shown in Table 2. The NIRS models created for stearic, oleic, and

erucic acids were excellent with R2c value of 0.90, 0.99, and 0.99

respectively. These results were almost similar to the study by Sato

et al.29 with his finding (0.860, 0.998, and 0.995 respectively). In addi-

tion, the equation developed for oil and linoleic acid content of mus-

tard grains exhibited reliable R2c values, 0.84, 0.80, respectively,

which is almost similar to the study by Kim et al.5 (R2 = 0.795–0.983)

and Liu et al.8 (R2 > 0.8). On the other hand, the model developed for

palmitic, linolenic, and eicosenoic acids were moderately suitable with

R2 value of 0.68, 0.77, and 0.74 respectively. These were in

agreement to NIRS models developed for tryptophan in maize30 and

fibers in feeds23 that reported by Escuredo et al.31 The RPDC values

of calibration equations developed for oil, palmitic, stearic, oleic, lino-

leic, and erucic acids are more than two as shown in Table 2, which

were acceptable result in the good range as studied by Aldo et al.32

Furthermore, the RPDC values for palmitic, linolenic, and eicosenoic

acid were 1.6, 1.8, and 1.7, respectively, which were lower than the

other equations but still adequate for screening, according to Kham-

chum et al.33 RER values of all equation of this study varied from 10.0

to 23.0 which agreed with the recommended values for screening

purposes as reported by Yang et al.10 except models developed for

palmitic, linolenic, and eicosenoic acid.

1-VR as a statistic parameter for cross-validation on the calibra-

tion development was an important factor in addition to R2c and

RPDc. Even models with greater R2c values could not show a decent

correlation between reference values and NIRS estimated values

unless they had a high 1-VR value close to R2c. As shown in Table 2

the equation developed for palmitic, linolenic and eicosenoic acid had

an acceptable R2c value, but it has low 1-VR value observed in the

cross-validation, which indicated that it was not a strong model. In

general, all the models developed for oil and fatty acid compositions

were evaluated by external validation.

External validation of the developed NIRS model

The robustness of the calibration models developed was tested

through external validation with 50 samples, which were not included

T AB L E 2 Model development statistics for the NIRS model of Ethiopian mustard oil and fatty acid contents using MPLS regression and
scatter correction.

Calibration Cross-validation

Constituent Mean SD SEC R2c SECV 1-VR RPDc RER

Oil 44.1 3.4 0.96 0.84 1.10 0.70 3.1 13.6

Palmitic acid (C16:0) 2.9 0.4 0.21 0.67 0.25 0.54 1.6 7.6

Stearic acid (C18:0) 1.3 0.3 0.09 0.90 0.11 0.80 2.7 11.8

Oleic acid (C18:1) 21.5 11.5 1.6 0.99 2.20 0.98 5.2 21.7

Linoleic acid (C18:2) 17.5 2.1 0.74 0.84 0.89 0.77 2.4 11.0

Linolenic acid (C18:3) 9.9 2.2 1.0 0.74 1.20 0.67 1.8 7.9

Eicosenoic acid (C20:1) 9.7 1.7 0.89 0.74 1.06 0.63 1.7 9.1

Erucic acid (C22:1) 33.9 10.3 1.80 0.99 2.61 0.98 4.0 16.9

Abbreviations: MPLS, modified partial least-squares; R2c, coefficient of determination of calibration; 1-VR, one minus the ratio of unexplained variance

divided by variance; RER, relative range of error ((max–min)/SECV); RPDc, the ratio of SD (standard deviation of reference data) to SECV in the calibration

set; SEC, standard error of calibration; SECV, standard error of cross-validation.

T AB L E 3 External validation statistics values were obtained from
regression equations of chemical determination values of oils and
fatty acids contents of Ethiopian mustard seeds and NIRS predicted
values for the validation set.

Constituent

Validation

Mean SD SEP R2v RPD

Oil 42.6 4.20 1.90 0.79 2.2

Palmitic acid 3.0 0.20 0.25 0.07 0.8

Stearic acid 1.3 0.30 0.26 0.04 1.2

Oleic acid 25.4 27.2 3.10 0.98 8.8

Linoleic acid 17.0 3.10 0.50 0.84 6.2

Linolenic acid 9.7 1.70 0.50 0.70 3.4

Eicosenoic acid 10.6 1.90 1.80 0.3 1.1

Erucic acid 27.5 17.6 2.10 0.92 8.4

Note: SD, standard deviation; R2v, coefficient of determination of

prediction models; SEP, standard error of prediction; RPDv, the ratio of

SD of reference data to SEP (SD/SEP).
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in the calibration process and which were nearly similar in distribution

with the dataset used in calibration. The statistical parameters (R2v,

SEP, RPDv,) used to evaluate the reliability of the calibration model of

external validation for oil and fatty acids compositions of Ethiopian

mustard samples are shown in Table 3. An accurate prediction can be

monitored with the reliability of the established calibration models

with the lower value of SEP and higher R2 and RPDV. The predictions

for oil content, oleic, linoleic, and erucic acid were confirmed with the

R2v value of 0.79, 0.98, 0.84, 0.70, and 0.92 respectively. In addition,

the RPDV values of these adequate external validation models were

in the range of 2.2–8.8 as shown in Table 3, which were in agreement

with the study of Kim et al.34 These models were indicating a good
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F I GU R E 2 Relationship between the values predicted by the NIR method applying the developed calibration equations and the result
obtained by the chemical reference method for oil, oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), and erucic acid (C22:1) contents
of Ethiopian mustard.
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correlation between reference values and NIRS predicted values in

the application of the calibration equations. However, palmitic, stearic,

and eicosenoic acid had a coefficient of determination of prediction

models (R2v) of 0.02, 0.0.04, and 0.3, respectively, which indicated

that the reference and NIRS value were not correlated and they were

the bad equations. Furthermore, according to Murphy et al.35 and

Zahera,23 the RPDv values of these models were less than the

required value of 1.5. In addition, models developed for palmitic, stea-

ric acid, and eicosenoic acid had narrow distribution datasets and

showed a poor correlation between reference values and NIRS pre-

dicted values. As a result, the palmitic, stearic, and eicosenoic acid

models were unsuitable for screening data since the prediction

model’s R2v was very poor. In general, except for palmitic, stearic, and

ecosonoic acids, all validations were found to be robust and accurately

reflect the equations developed. Hence, the satisfactorily developed

NIRS model could be used to assess and evaluate the oil and fatty acid

content of Ethiopian mustard seeds on a regular basis in the oilseed

breeding quality program.

The linear relationships between laboratory reference values (vali-

dation dataset) and NIRS predicted values of mustard oil and individ-

ual fatty acid contents using calibration equations for respective

parameters were outlined in Figure 2. These results validated the pre-

diction abilities of the calibration models for the oil, oleic acid, linoleic

acid, linolenic acid, and erucic acid contents using the non-destructive

NIRS technique in mustard cultivated in Ethiopia. one of the factores

that allowed these models to produce reliable forecasts was the vari-

ety of their constituents.

The NIRS model developed for oil and fatty acid content was

shown to be accurate, practical, and applicable. These well-developed

calibration equations are utilized for routine analysis in the mustard

breeding program, Ethiopian standard agency, and Ethiopia Commod-

ity Exchange analyses. However, the reliability of the calibration

model for determining palmitic, stearic, and eicosanoic acids was con-

siderably lower and could not be considered adequate for use in rou-

tine analysis. The lack of precision and accuracy in palmitic, stearic,

and eicosanoic acids could be addressed in the future by expanding

the number and diversity of reference samples.

CONCLUSION

Using a non-destructive NIRS technique, the oil and fatty acid con-

tents of Ethiopian mustard could be successfully predicted with high

accuracy. NIRS is a feasible and useful tool for screening purposes

and has the potential to predict oil and major fatty acids. Six suitable

calibration NIRS models were built in the present study to predict

the oil and fatty acid contents of Ethiopian mustard. These models

have good coefficients of determination and were validated using a

completely different set of samples. The coefficients of determination

(R2v) for all constituents were laid out in the range of 0.79–0.98, and

the ratio of prediction to deviation (RPD) was laid out in the range of

2.2–8.8. It is possible to conclude that the results found via the NIRS

model developed could be used for routine analysis of the oil and

fatty acid content of Ethiopian mustard for screening germplasm in

the agricultural breeding program. Besides, this is the first reported

study of a NIRS calibration model developed for the prediction of oil

and fatty acid content in Ethiopian mustard. Although NIRS is a practi-

cal method, the developed equations should be updated, expanded,

and improved with future samples from different environments and

germplasms, which can cover a wider range of oil and fatty acid values

in the samples used for the calibration models.
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