The Cyclic Model for $PG(n, q)$ and a Construction of Arcs

GIORGIO FAINA, GYÖRGY KISS, STEFANO MARCUGINI AND
FERNANDA PAMBIANCO

The n-dimensional finite projective space, $PG(n, q)$, admits a cyclic model, in which the set of points of $PG(n, q)$ is identified with the elements of the group $\mathbb{Z}^{q^n+q^{n-1}+\cdots+q+1}$. It was proved by Hall (1974, Math. Centre Tracts, 57, 1–26) that in the cyclic model of $PG(2, q)$, the additive inverse of a line is a conic. The following generalization of this result is proved:

In the cyclic model of $PG(n, q)$, the additive inverse of a line is a $(q+1)$-arc if $n+1$ is a prime and $q+1 > n$.

It is also shown that the additive inverse of a line is always a normal rational curve in some subspace $PG(m, q)$, where $m+1 | n+1$.

© 2002 Academic Press

1. Introduction

Let $PG(n, q)$ be the n-dimensional projective space over the finite field $GF(q)$. A k-arc in $PG(n, q)$ is a set K of k points with $k \geq n+1$ such that no $n+1$ points lie in a hyperplane. The subject of arcs in $PG(n, q)$ is vast and we will introduce only the concepts and the results that we need in this paper. For more details, one can refer to [3] and [5]. The n-dimensional finite projective space, $PG(n, q)$ admits a cyclic model ([3] pp. 95–98), in which the set of points of $PG(n, q)$ is identified with the elements of the group $\mathbb{Z}^{q^n+q^{n-1}+\cdots+q+1}$. Let this identification be given by the bijection ϕ. We define the additive inverse of a set of points of $PG(n, q)$ using this identification. Let R be any point of $PG(n, q)$ and let $r = \phi(R)$ be the corresponding element of the group $\mathbb{Z}^{q^n+q^{n-1}+\cdots+q+1}$. Then let us denote by $-R$ that point of $PG(n, q)$ which corresponds to $-r$, where $-r$ is the additive inverse of r in the group $\mathbb{Z}^{q^n+q^{n-1}+\cdots+q+1}$. Finally if $S = \{P_1, P_2, \ldots, P_k\}$ is any set of points of $PG(n, q)$, then we call the set $-S := \{-P_1, -P_2, \ldots, -P_k\}$ the additive inverse of S. It was proved by Hall [2] that in the cyclic model of $PG(2, q)$, the additive inverse of a line is a conic. The intent of this paper is to produce a generalization of this result for any dimension.

The remainder of this article is organized as follows. Section 2 contains the detailed description of the cyclic model of $PG(n, q)$. In Section 3 the geometric properties of the additive inverse of a hyperplane and a line are discussed and the generalization of Hall’s result is proved.

2. The Cyclic Model for $PG(n, q)$

The following non-classical embedding of $PG(n, q)$ into $PG(n, q^{n+1})$ is a generalization of the known embedding of $PG(2, q)$ into $PG(2, q^3)$ (see e.g. [1, 4]). Let a be a generator in the multiplicative group formed by the $(q^n + q^{n-1} + \cdots + q + 1)$-th roots of unity in $GF(q^{n+1})$. Let $q[i]$ be a shorthand notation for $q^i + q^{i-1} + \cdots + q + 1$, and
let A be the $(n + 1) \times (n + 1)$ diagonal matrix

$$A = \begin{pmatrix} a^{q[n-1]} & 0 & 0 & \ldots & 0 \\ 0 & a^{q[n-2]} & 0 & \ldots & 0 \\ 0 & 0 & a^{q[n-3]} & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & a \\ 0 & 0 & 0 & \ldots & 0 & 1 \end{pmatrix}$$

Then A has order $q[n]$. The points of $PG(n, q)$ are those points P_k of $PG(n, q^{n+1})$ which have a coordinate vector of the form

$$A^k(1, 1, \ldots, 1)^T$$

where $k \in \{0, 1, \ldots, q^n + q^{n-1} + \cdots + q\}$.

The hyperplanes of $PG(n, q)$ are formed by those points of type P_k which are contained in the hyperplanes of $PG(n, q^{n+1})$ having equation

$$b^{q[n-1]-q[n-2]}X_0 + b^{q[n-1]-q[n-3]}X_1 + \cdots + b^{q[n-1]}X_{n-1} + X_n = 0$$

where b is a $q[n]$-th root of unity in $GF(q^{n+1})$. Let us denote by π_b the hyperplane corresponding to b. The elements a^k for any k are $q[n]$th roots of unity in $GF(q^{n+1})$, hence they are non-zero (q^n-1)-st powers in $GF(q^{n+1})$. Thus for any a^k and b there are elements c, d such that $a^k = c^{q^n-1}$ and $b = d^{q^n-1}$. It means that the expression

$$b^{q[n-1]-q[n-2]}a^{kq[n-1]} + b^{q[n-1]-q[n-3]}a^{kq[n-2]} + \cdots + b^{q[n-1]}a^k + 1$$

can be written as

$$\frac{d^{q^n}}{c}\left(\frac{c^{q^n}}{d^{q^n-1}} + \frac{c^{q^n-1}}{d^{q^n-2}} + \cdots + \frac{c^q}{d^{q-1}} + \frac{c}{d}\right) = \frac{d^{q^n}}{c} \cdot Tr\left(\frac{c}{d}\right)$$

where $Tr : GF(q^{n+1}) \to GF(q)$ is the trace function $Tr(x) = x^{q^n} + x^{q^{n-1}} + \cdots + x^q + x$. Thus the points of type P_k on any hyperplane π_b correspond to points on an n-dimensional subspace through the origin when $GF(q^{n+1})$ is interpreted as an $(n + 1)$-dimensional vector space over $GF(q)$. Hence the points P_k form a cyclic model of $PG(n, q)$.

Let $m+1$ be a divisor of $n+1$. Then $GF(q^{m+1})$ is a subfield of $GF(q^{n+1})$, and $GF(q^{n+1}/q[m])$ is a generator element in the multiplicative group formed by the $q[m]$-th roots of unity in $GF(q^{m+1}) \subset GF(q^{n+1})$. The projective space $PG(m, q)$ can be embedded into $PG(n, q^{m+1})$ as it was described previously, and $PG(m, q^{m+1})$ can be considered as a subspace of $PG(n, q^{n+1})$. Now the projective space $PG(n, q)$ contains a special m-dimensional subspace, P_m. The points of P_m are those points of $PG(n, q^{n+1})$ whose coordinate vector have the form

$$A^k(1, 1, \ldots, 1)^T$$

where $k \in \{0, q[n]/q[m], 2q[n]/q[m], \ldots, (q[1]-1)q[n]/q[m]\}$. The points of P_m are completely determined by their first $m + 1$ coordinates, because $(a^{q[i]})^{q[n]/q[m]} = (a^{q[i]+(i-1)n})^{q[n]/q[m]}$ for all $i \in \{1, 2, \ldots, q[n]/q[m]-1\}$ and $i \in \{0, 1, \ldots, m\}$. A hyperplane π_b is a hyperplane of P_m if and only if b is a $q[m]$-th root of unity. In this case $b^{q[i]-1} - b^{q[i]} = \pi_{b^{q[i]-1}} - \pi_{b^{q[i]-1}}$ for all $i = 1, 2, \ldots, n$, thus the hyperplanes of P_m are also completely determined by their first $m + 1$ coordinates.
Let S and T be two distinct points of \mathcal{P}_m with coordinate vectors $(1, 1, \ldots, 1)^T$ and $(r^{q[n-1]}, r^{q[n-2]}, \ldots, t, 1)^T$, where t is a $q[m]$-th root of unity. The line joining them in $PG(n, q^{m+1})$ contains those points P_α which have coordinate vector of the form
\[(\alpha + (1 - \alpha)r^{q[n-1]}, \alpha + (1 - \alpha)r^{q[n-2]}, \ldots, \alpha + (1 - \alpha)t, 1)^T\]
where $\alpha \in GF(q^{m+1})$. The point P_α is in \mathcal{P}_m if and only if there exists a $q[m]$-th root of unity c such that
\[\alpha = \frac{t - c}{1 - r} = \frac{r^{q+1} - c^{q+1}}{r^{q+1} - 1} = \ldots = \frac{r^{q[m-1]} - c^{q[m-1]}}{r^{q[m-1]} - 1}.
\]
From these equations we get that c is a root of the equations
\[c^q[i] - c(t[i] - 1) - t + r^q[i] = 0 \quad (1, i)\]
for $i = 1, 2, \ldots, m - 1$. The line joining S and T has $q + 1$ points in \mathcal{P}_m, and for $i = 1$, Eqn $(1, i)$ has at most $q + 1$ roots. Any point on the line corresponds to a root of the equation. Hence Eqn $(1, i)$ has exactly $q + 1$ distinct roots in $GF(q^{m+1})$, each of the $q + 1$ roots of Eqn $(1, i)$ satisfies the Eqns $(1, i)$ for $i = 2, 3, \ldots, m - 1$, and each root is a $q[m]$-th root of unity. From these equations we can express the coordinate vector of P_α in such a way that the entries contain only linear terms (and not powers) of c. The coordinate vector can be written such that the ith $(i = 0, 1, \ldots, m - 2)$ entry is
\[(t - 1)(\alpha + (1 - \alpha)r^{q[m-1-i]}) = c(t^{q[m-1-i]} - 1) + t - r^{q[m-1-i]},\]
while the mth and $(m + 1)$-st entries are $c(t - 1)$ and $t - 1$, respectively.

3. The Additive Inverse of a Line

First we investigate the additive inverse of a hyperplane of \mathcal{P}_m.

Lemma 3.1. Let $m + 1$ be any divisor of $n + 1$. In the cyclic model of $PG(n, q)$ the additive inverse of a hyperplane of \mathcal{P}_m is contained in a surface of degree m.

Proof. Consider the cyclic representation of $PG(n, q)$ in $\mathbb{Z}_q[n]$. Now the point P_k corresponds to the element k, hence the additive inverse of P_k is $P_{-(q-1)k}$. Thus the additive inverse of \mathcal{P}_m is \mathcal{S}_m. If P_k has coordinate vector $(X_0, X_1, \ldots, X_n)^T$, then $-P_k$ has coordinate vector $(\frac{1}{X_0}, \frac{1}{X_1}, \ldots, \frac{1}{X_n})^T$.

Let π_b be a hyperplane of \mathcal{P}_m. Then the first $m + 1$ coordinates of the points of $-\pi_b$ satisfy the equation
\[b^{q[m-1]-q[m-2]} \frac{1}{X_0} + b^{q[m-1]-q[m-3]} \frac{1}{X_1} + \ldots + b^{q[m-1]} \frac{1}{X_m} = 0.
\]
It means that $-\pi_b$ is contained in the surface S_b of degree m which has equation
\[\sum_{j=0}^{m-2} b^{q[m-1]-q(m-2-i)} \frac{\Pi_{i=0}^m X_j}{X_i} + b^{q[m-1]} \frac{\Pi_{j=0}^m X_j}{X_m} = 0.
\]

Theorem 3.2. Let ℓ be any line through the point $(1, 1, \ldots, 1)^T$ in the cyclic model of $PG(n, q)$. Let m be the smallest integer for which ℓ is contained in \mathcal{P}_m. Then $-\ell$ is a $(q + 1)$-arc in \mathcal{P}_m if $q > m$.

\[\square\]
Let ℓ be the line ST. If P_m contains ℓ, then it also contains $-\ell$. Suppose that $-\ell$ is not an arc. Then there is a hyperplane π_b of P_m which contains more than m points of $-\ell$. Thus the additive inverse of π_b, which is a surface of degree m by Lemma 3.1, contains more than m points of ℓ. So this surface contains the whole line ST. Hence the coordinates of P_α satisfy the equation of the surface S_b. Let us write the coordinates of P_α into this equation. We can consider the left-hand side as a polynomial of c. This polynomial has degree m because each coordinate is a linear expression in c. Let us write it in the form

$$f(c) = \sum_{i=0}^{m} A_i c^i.$$

It is easy to calculate the main coefficient A_m of $f(c)$:

$$A_m = (t^{q[m-1]} - 1)(t^{q[m-2]} - 1) \cdots (t - 1).$$

This is not equal to zero, because m is the smallest positive integer for which $t^{q[m]} = 1$ holds by the definition of m. Hence the polynomial $f(c)$ of degree m has $q + 1 > m$ distinct roots, because each root of Eqn (1.1) corresponds to a point of the line ST. This contradiction means that $-ST$ is an arc in P_m. \hfill \square

Now it is easy to prove the following.

Theorem 3.3. If $q + 1 > n$ then in the cyclic model of $PG(n, q)$ the additive inverse of a line is always an arc in some subspace $PG(m, q)$, where $m + 1$ is a divisor of $n + 1$.

Proof. The collineation group generated by $\sigma : P_k \to P_{k+1}$ maps P_m to P_m and is transitive on the points of $PG(n, q)$. Thus any line can be mapped to a line through the point $(1, 1, \ldots, 1)^T$ and then we can apply Theorem 3.2. \hfill \square

If $n + 1$ is a prime, then $m + 1|n + 1$ implies $m = n$, thus we proved the following generalization of Hall’s result:

Theorem 3.4. In the cyclic model of $PG(n, q)$ the additive inverse of a line is an arc if $n + 1$ is a prime and $q + 1 > n$.

Elementary calculation shows that the additive inverse of any line is always a normal rational curve in the corresponding subspace, because the coordinates of the points of the inverse can be expressed by independent polynomials of degree m.

Acknowledgements

We are grateful to the referee whose suggestions helped us to improve the proofs of the first version of this paper. The research was supported by the Italian MURST (progetto 40% ‘Strutture Geometriche, Combinatoria e loro Applicazioni’ and progetto 40% ‘Efficienza di Algoritmi e progetto di Strutture Informative’), by CNR (progetto strategico ‘Applicazioni della matematica per la tecnologia e la società’, sottoprogetto ‘Calcolo Simbolico’) and by GNSAGA. The research was also supported by the Hungarian National Foundation for Scientific Research, Grant No. T 0123324, and by the Research Development Foundation of the Hungarian Ministry of Education, Grant No. 0151/1999.
The cyclic model for $PG(n, q)$ and a construction of arcs

REFERENCES

Received 10 July 1999 and accepted 15 May 2001

GIORGIO FAINA
Dipartimento di Matematica,
Università degli Studi di Perugia,
Via Vanvitelli 1,
06123 Perugia,
Italy
E-mail: faina@dipmat.unipg.it

GYÖRGY KISS
Department of Geometry,
Eötvös Loránd University,
H-1088 Budapest,
Rákóczi u. 5,
Hungary
and
Bolyai Institute,
University of Szeged,
H-6720 Szeged,
Aradi vénásút teré 1,
Hungary
E-mail: kissgy@cs.elte.hu

AND

STEFANO MARCUGINI AND FERNANDA PAMBIANCO
Dipartimento di Matematica,
Università degli Studi di Perugia,
Via Vanvitelli 1,
06123 Perugia,
Italy
E-mails: gino@dipmat.unipg.it; fernanda@dipmat.unipg.it