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Abstract
Medulloblastoma (MB) is the most common malignant brain tumor of childhood arising from deregulated cerebel-
lar development. Sonic Hedgehog (Shh) pathway plays a critical role in cerebellar development and its aberrant
expression has been identified in MB. Gene expression profiling of cerebella from 1- to 14-day-old mice unveiled
a cluster of genes whose expression correlates with the levels of Hedgehog (HH) activity. From this cluster, we
identified Insm1 and Nhlh1/NSCL1 as novel HH targets induced by Shh treatment in cultured cerebellar granule cell
progenitors. Nhlh1 promoter was found to be bound and activated by Gli1 transcription factor. Remarkably, the
expression of these genes is also upregulated in mouse and human HH–dependent MBs, suggesting that they
may be either a part of the HH-induced tumorigenic process or a specific trait of HH-dependent tumor cells.
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Introduction
Medulloblastoma (MB) is the most common malignant pediatric brain
tumor, whose prognosis has not improved significantly in the last two
decades, despite multimodal therapy (surgery, radiation, and chemother-
apy), thus justifying the continuous effort in better characterizing the mo-
lecular mechanisms involved in tumor initiation and progression [1,2].
MB is commonly recognized to originate from cerebellar granule

or other precursors that fail to differentiate and keep proliferating [3].
Indeed, the transcriptional pattern of MB is similar to that of the
developing mouse cerebellum (5–10 days postpartum), thus support-
ing the concept that MB is formed from immature cerebellar precur-
sor cells that retain most of the undifferentiated characteristics [4].
Cerebellar development in mammals largely occurs in the early

postnatal period. In mice, proliferation and expansion of the most
external layer of the cerebellum, i.e., the external granule layer
(EGL), start at birth and peak by 8 to 10 days postpartum (P) [5].
Subsequently, EGL cell proliferation starts exhausting, most of the
cells migrate through the molecular and Purkinje cell layers, reach
their final resting state, and extend dendrites in the internal granule
layer until EGL disappears and differentiation is completed [6].
A major regulator of this process is the Hedgehog (HH) pathway
[7]. Sonic Hedgehog (Shh) is a glycoprotein secreted by Purkinje
cells, which binds to the transmembrane receptor Patched (Ptc) on
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granule cell precursors (GCPs) and, through the activation of down-
stream transcription factors of the Gli family, promotes proliferation of
the EGL progenitors [8]. Interestingly, at the stage of maximal GCP pro-
liferation, HH is maximally activated, as documented by the increase of
its target genes such as N-myc, Cyclin D2 (Ccnd2), and PDGFRα [4,9].

Aberrant activation of the Shh pathway has been linked to MB
formation [10,11]. Germline mutation of Ptch1 (the Shh receptor
which acts as a repressor in the absence of the ligand) is responsible
for the Gorlin syndrome that exhibits high MB incidence [12]. Mu-
tations of the HH pathway negative regulators (e.g., Ptch1, SuFu,
and Ren/KCTD11) were also reported in sporadic MB (reviewed
in the works of Wetmore _Hlt183838176[[10], Ferretti et al. [11],
and Di Marcotullio et al. [13]), as well as in the upregulation of Shh
target genes, such as Gli1 [10]. Similarly, different mouse models that
exhibit increased rate of MB underscore the direct relationship be-
tween Shh/Ptc1 signaling and MB [10]. Shh transcriptional targets
involved in the mitogenic response of mice GCPs (e.g., Ccnd2 and
N-myc) were confirmed to be implicated in MB development
[14,15], further highlighting the role of altered Shh signaling in MB.

To further characterize the contribution of the HH pathway in
cerebellar development and MB and to search for novel Shh targets
potentially useful for patient stratification and/or molecular therapies
we: 1) used gene expression profiling of mouse cerebella at different
time points during postnatal development (P1 through P14) to iden-
tify subsets of genes specifically upregulated in the time window in
which HH pathway is strongly activated; 2) selected several of these
genes and verified if they are induced in cultured cerebellar GCPs
treated with Shh; and 3) analyzed mouse and human MB samples
for the expression levels of these genes.

Through this approach, we have identified Insm1 and Nhlh1/
NSCL1 as new HH target genes that are overexpressed in MB.
Through the identification of functional Gli binding sites on the pro-
moters of mouse and human Nhlh1, we also highlighted a direct reg-
ulation of this gene by Gli transcription factors.
Materials and Methods

Tissue Samples, Cell Cultures, and Treatments
Surgical specimens of human MBs were collected with the approval

of the Institutional Review Board. Control human cerebella RNA were
from Biocat (Heidelberg, Germany) and Ambion (Foster City, CA).

Mouse cerebella and MB specimens were obtained from wild-type
and Ptc1+/− CD1 mice [16]. Animal handling was according to the
guidelines of Sapienza University of Rome. Mouse GCP cultures were
prepared cultured and treated as previously described [17]. Recombinant
Shh N-terminal peptide was from R&D Systems (Minneapolis, MN).

HEK293T cells were maintained in DMEM containing 10%
FBS, glutamine, and antibiotics.

Microarrays and Real-Time Quantitative Polymerase Chain
Reaction Analysis

Total RNA from P1 to P14 mice cerebella (six mice at each time
point) was used. RNA extraction, cDNA synthesis, cRNA label-
ing, hybridization, and scanning were performed according to the
manufacturer’s instructions (Affymetrix, Santa Clara, CA). For each
of the duplicate microarray hybridization, RNA from three mice
of the same time point was pooled. GeneChip Murine Genome
U74Av2 Set microarrays (Affymetrix) were used in all microarray ex-
periments. Data analysis was performed using Time-Course Experi-
ment AMDA version 2.1.0 (Milan, Italy).

Real-time quantitative polymerase chain reaction (QPCR) was per-
formed as previously described [13] using the ABI Prism 7900HT
System (Applied Biosystems, Monza, Italy), with Assay-on-Demand
reagents (Applied Biosystems). mRNA quantification was expressed
in arbitrary units as sample/calibrator ratio or sample/mean of con-
trols ratio. All values were normalized to endogenous controls: glycer-
aldehyde-3-phosphate dehydrogenase, β-actin, and hypoxanthine–
guanine phosphoribosyltransferase.
Constructs and Luciferase Assays
pGL4 and pRLTK reporters were from Promega (Madison, IL).

pGL4-5xmutGliBS, pGL4-5xmGliBS, pGL4-3xhGliBS, and pGL4-
5xhGliBS were generated by ligation of synthetic oligos (sequences
are shown in Figure 4A) into pGL4. pCMVGliHA was previously de-
scribed [13]. Flag-tagged Gli1 was cloned into pCDNA (Invitrogen,
Carlsbad, CA) by PCR using the Not I site. pGEX–GliZF was cloned
by PCR and fused in-frame in pGEX4t3 (Amersham, Milan, Italy). All
constructs were verified by sequencing.

For luciferase experiments, HEK293T cells were transfected with
Lipofectamine 2000 (Invitrogen, Milan, Italy) according to the man-
ufacturer’s instructions. About 24 to 48 hours later, luciferase assay
was performed using a dual-luciferase kit (Promega, Milan, Italy).
Electrophoretic Mobility Shift Assay
The double-stranded DNA fragments corresponding to the mouse

and human promoter regions (Figure 3A) were PCR-amplified and
purified by electrophoresis and gel extraction kit (Qiagen, Milan,
Italy). The canonical Gli binding sequence (Figure 3A) was produced
by annealing complementary oligos. Fragments were 32P-labeled,
purified through G30 columns (Amersham Pharmacia, Milan, Italy),
and used for electrophoretic mobility shift assay (EMSA).

Nuclear extracts were prepared from 293T cells transfected with
pCDNAFlagGli1 or an empty vector. Glutathione S-transferase (GST)
fusion proteins were produced in BL21 cells following isopropyl-
β-D-1-thiogalactopyranoside (IPTG) induction, cell lysis, and bind-
ing to glutathione–agarose beads (Amersham Pharmacia) according to
manufacturer’s instructions.

EMSA was performed according to standard procedures. Binding
reactions contained 20,000 counts per minute 32P-labeled probe and
15 μg nuclear extract (or the indicated amount of GST fusion pro-
tein) in binding buffer. In some experiments, 2 μg of rabbit anti-
GLI1 (H-300; Santa Cruz Biotechnology, Santa Cruz, CA) or mouse
anti–FLAG-M2 (Sigma) antibodies were added to the sample. Com-
petition experiments were performed by adding 50× or 100× molar
excess of cold oligonucleotides. Complexes were resolved on a non-
5% PAGE, dried, and exposed for autoradiography.
Western Blot Analysis
Tissue samples were lysed in standard radioimmunoprecipitation

assay buffer plus protease inhibitors (Roche, Mannheim, Germany).
Lysates were separated on SDS-PAGE and immunoblotted using stan-
dard procedures. Anti-NSCL1 (AB5698; Chemicon, Milan, Italy),
anti–β-actin, and HRP-conjugated secondary antisera (Santa Cruz
Biotechnology, Heidelberg, Germany) were used, followed by en-
hanced chemiluminescence (ECL; Amersham).
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Results

Gene Expression Profiling of Developing Mouse Cerebellum
Quantitative analysis of Gli1 mRNA expression levels throughout

mouse postnatal development shows a peak between P7 and P10 (Fig-
ure 1A), indicating the highest HH pathway activation in this timeframe.
Because putative HH target genes are expected to be regulated in an

overlapping period, we have analyzed gene expression in mouse cere-
bella during the first 2 weeks of development, by means of the Gene-
Figure 1. Identification of genes whose expression mirrors Hedgeho
Gli1 expression in mouse cerebella during development. (B) Cluste
(C) Expression levels of Shh target genes during cerebellar developm
samples used for microarray hybridization (triplicate experiments).
Chip Murine microarray (Affymetrix). RNA samples obtained from six
mice cerebella collected at each time point (P1, P2, P7, and P14) were
used. Analysis of about 12,000 genes present in the microarrays allowed
us to identify several clusters of genes with diverse trends of expression
during cerebellar development (Figure 1B and not shown). We focus
here on the analysis of a subset of genes specifically upregulated be-
tween days 2 and 14, with a peak around day 7, and reduced expression
afterwards (Figure 1B). As expected, some of the genes that belong to
this cluster are known targets of HH pathway (e.g., Ccnd2, PDGFRα,
g activity during mouse cerebellar development. (A) Modulation of
r of genes with peak of expression at P7, from microarrays data.
ent (data from microarrays). (D) QPCR analysis on the same mRNA
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N-myc, and Gli1 itself [18,19]) (Figure 1C ). Table W1 shows a selec-
tion of the most strongly modulated genes belonging to this cluster.

The developmentally regulated expression of several genes (including
HH targets such asCcnd2) was further confirmed byQPCR analysis on
the same mRNA samples used in the microarrays (representative ex-
periments in Figure 1D and not shown). Between the most strongly
upregulated genes were the transcription factors neural basic helix–
loop–helix 1 (Nhlh1) [20] and insulinoma-associated 1/IA-1 (Insm1)
[21] (Figure 1D).

Gene Expression Analysis in Shh-Treated Cultured
Cerebellar GCPs

The main cerebellar HH target cell is the GCP, which also repre-
sents the most abundant cerebellar cell population. Therefore, fol-
lowing the hypothesis that several genes upregulated at P7 during
cerebellar development should also be HH targets, we measured ex-
pression levels in primary GCPs (from P4 mice) cultured in the pres-
ence or in the absence of recombinant Shh-N protein. A significant
increase in Gli1 and Ccnd2 mRNA levels confirmed the HH activa-
Figure 2. Shh induces transcription of Nhlh1 and Insm1. (A–D) Prima
for 4 days (1d–4d). Relative levels of (A) Gli1, (B) Nhlh, (C) Insm, (D)
(averages from triplicate experiments; a.u., arbitrary units).
tion in Shh-treated GCPs (Figure 2, A and D). Nhlh1 levels in con-
trol GCPs decrease significantly throughout the time of culture (from
24 to 96 hours) (Figure 2B), suggesting that Nhlh1 expression is sus-
tained by in vivo signals that are progressively lost during the in vitro
culture. One of these in vivo signals is represented by Shh: in fact, the
addition of Shh antagonizes silencing of the Nhlh1 gene in cultured
GCPs, suggesting that Shh activates Nhlh1 transcription (Figure 2B).
Moreover, Insm1 expression levels significantly increase upon Shh
treatment (Figure 2C ), whereas the levels of several additional genes
examined, including Pax6 (Figure 2E ), Nfib, and HK2 (data not
shown), were not significantly modulated.

These data suggest that Nhlh1 and Insm1 are targets of the HH
signaling pathway.

Nhlh1 Is a Direct Target of Gli1 Transcription Factor
We next analyzed Insm1 and Nhlh1 promoter regions for the pres-

ence of putative Gli-responsive sites. Whereas analysis of the Insm1
promoter did not reveal potential Gli binding sites (not shown), anal-
ysis of the promoter region of mouse Nhlh1 allowed the identification
ry GCPs from P4 mice cerebella were cultured with or without Shh
Ccnd2, and (E) Pax6 at the different time points are represented
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of a potential Gli binding site, located approximately 700-bp (−702/
−690) upstream of the transcriptional start site, which was partially
conserved also in the upstream region of the human sequence (−695/
−685; see Figures 3A and 4A).
To verify whether Nhlh1 promoter was actually bound by Gli1,

we performed EMSA using nuclear extracts from Flag-tagged Gli1-
Figure 3. Gli transcription factor binds in vitro to the putative Gli-bindin
Nhlh1 promoter sequence containing the Gli-responsive regions (unde
Double-stranded oligonucleotides containing these sequences were u
was performed using lysates from cells transfected with Gli1–Flag–e
excess of cold probe or by incubation with antibodies α-Gli1 or α-flag.
242–424). Lanes 1 to 8: GST–Gli binds with good affinity and in linear s
Gli), whereas GST does not bind (lane 6: used 2 μg). Binding can be c
binding of GST–Gli to a canonical GliBS (lane 9: free probe; lanes 10
petition; lane 13: binding to GST alone). (D) Same experiment as in (
transfected 293T cells and a DNA probe containing the mouse pro-
moter fragment spanning between −736 and −615 bp (shown in
Figure 3A). Figure 3B shows that Gli1 binds the promoter frag-
ment (mNhlh) and this binding is competed by either a 50× cold
probe excess or addition of anti-Gli1 or anti-Flag antibodies. The
presence of a Gli-promoter complex was confirmed by the efficient
g sequences on the Nhlh1 promoters. (A) Mouse (1) and human (2)
rlined). Sequence (3) is a canonical GliBS–containing fragment [22].
sed in the following EMSA. (B) EMSA of the mouse Nhlh probe (P)
xpressing vector. The shifted complex (S) is competed with a 50×
(C) EMSA using recombinant GST–Gli (Gli1 zinc-finger fragment: aa
cale to the labeled mNhlh probe (lanes 2–5: used 2–0.2 μg of GST–
ompeted by 100× unlabeled probe (lanes 7 and 8). Lanes 9 to 13:
and 11: binding to GST–Gli (2 and 1 μg); lane 12: 100× cold com-
C) lanes 1 to 8, but using the hNhlh probe.
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and quantitative binding of recombinant GST-fused Gli1 zinc-finger
to the mNhlh probe (which was competed by a 100× excess cold
probe), whereas the corresponding GSTalone did not bind at all (Fig-
ure 3C ). As a positive control, binding of a canonical GliBS-containing
fragment [22] to the same GST–Gli1 protein indicates a comparable
affinity of the two using the human Nhlh1 promoter probe (hNhlh:
position −730/−607), whose complex with GST–Gli1 was competed
by an excess of cold probe (Figure 3D), whereas GST alone failed to
bind DNA.

To verify whether the interaction between Gli1 and these Gli-
binding sites was able to trigger transcription, luciferase reporter con-
structs containing the Gli-binding sites from either mouse (mNhlh-
GliBS) or human (hNhlh-GliBS) Nhlh1 promoters (Figure 4A) were
used in luciferase assays. mNhlh-GliBS reporter increased luciferase
levels following cotransfection with increasing amounts of Gli1 vec-
Figure 4. Gli-Binding sites on Nhlh are transcriptionally activated
by Gli1. (A) Comparison of a canonical Gli–binding site [22] and
Gli-binding sites on mouse and human Nhlh promoters (mNhlh-
GliBS and hNhlh-GliBS, respectively). At the bottom, a mutated
binding site (mutGliBS) was used as a negative control. (B) Activa-
tion of a mNhlh-GliBS luciferase reporter (five copies of the se-
quence), following cotransfection with increasing amounts (5,
20, and 50 ng) of Gli1-expressing vector. Empty reporter and mut-
GliBS (five copies) are cotransfected as a control with 50 ng of Gli1
plasmid. (C) Same assay as in (B), but using hNhlh-GliBS (three or
five copies) and mutGliBS as reporters (average ± SD from at least
three experiments).
tor, whereas activity of mutant GliBS (mutGliBS, unable to bind
Gli1) or the empty reporter was not modulated (Figure 4B). Simi-
larly, human GliBS reporters significantly enhanced luciferase tran-
scription in response to increasing amounts of transfected Gli1
(Figure 4C ).

These results indicate that Nhlh is a direct target of HH signaling
pathway and is transcriptionally activated by Gli1.

Expression Analysis of Insm1 and Nhlh1 in MB Samples
To test whether Insm1 and Nhlh1, modulated during cerebellar

development, could also be relevant in MB, we evaluated their ex-
pression in tumors obtained from Patched1+/− mice (Ptc+/−) in which
GCPs develop HH-dependent MB due to the loss of the receptor
Ptc, which leads to the constitutive activity of the pathway [16,23].

Confirming HH pathway activation in these tumors, all MB from
Ptc+/− animals exhibited high levels of HH activity compared to adult
and P7 cerebella as documented by Gli1 (Figure 5D) and Ccnd2
mRNA levels (Figure 5C ). Remarkably, we observed a dramatic in-
crease of both Insm1 and Nhlh1 mRNA levels in all MBs (Figure 5, A–
C ), suggesting that HH-triggered expression of these genes is conserved
during cerebellar tumorigenesis in vivo. The high Nhlh1 levels expressed
in mouse MB samples were also mirrored by increased protein levels
when compared either to normal adult control (Figure 5E ) or to primary
granule cells obtained from P4 mice cerebella (Figure 5F ). Interestingly,
relative levels of Nhlh1 protein samples from P2 and P7 cerebella con-
trols were higher than in adult, in keeping with mRNA expression levels
shown in Figure 1D.

Next, we investigated whether the deregulated expression of Insm1
and Nhlh1 observed in mouse HH–dependent MB was also relevant
in the multifactorial carcinogenesis of sporadic human MBs. To this
purpose, we analyzed a set of 16 human sporadic MBs (Figure 6).
Insm1 was expressed at higher levels in tumors compared to either
adult (P < .05) or fetal cerebella (Figure 6A). Likewise, Nhlh1 was
overexpressed in all tumor samples compared to adult (P < .005)
and fetal cerebella (Figure 6B).

Most MBs respond to the HH inhibitor cyclopamine with a block
of proliferation, implying a certain degree of basal HH activity [19].
However, we recently reported that human sporadic MBs might be
subclassified as low- or high-Gli1–expressing, indicating a different
level of HH activation [17].

We have therefore subdivided our series of MBs in two subsets:
MBs with Gli1 levels at least two standard deviations above the mean
value of the adult cerebella (Glihigh subset) and MBs with Gli1 levels
within or below the range of normal cerebella (Glilow) (Figure 6C ).
We then analyzed Insm1 and Nhlh1 levels in these two subsets. Al-
though Insm1 levels in the Glihigh subset were more significantly in-
creased (P < .02) compared to adult cerebella, we could not correlate
Gli1 and Insm1 expression levels on the whole MB population (Fig-
ure 6D), because of the high Insm1 levels found frequently in Glilow

tumors (Figure 6, A and C ), suggesting a more complex regulation of
Insm1 in MB, in addition to HH control. Instead we found a signif-
icant correlation between Gli1 and Nhlh1 levels (P < .02) in the two
MB subset (Figure 6E ), consistent with a direct role of HH in the
regulation of Nhlh1 expression.
Discussion
Our work identifies the developmentally regulated genes Insm1 and

Nhlh1 as novel targets of HH activity. Most relevantly, the expression



Figure 5. Increased Insm1 and Nhlh1 expression in Hedgehog-dependent mouse MB. (A–D) Insm1, Nhlh1, Ccnd2, and Gli1 mRNA ex-
pression in different MB samples compared to P7 and adult cerebellum controls (average value from six cerebella). Quantitations have
been performed in triplicate experiments (a.u., arbitrary units). (E–F) Nhlh1 protein levels in MBs and mouse cerebella correlate with
mRNA expression. Western blot showing Nhlh1 protein levels in: (E) four mouse MB and normal adult, P2 and P7 cerebella; (F) mouse
MB, GCPs and adult. β-Actin is shown as a loading control.
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of these genes is upregulated in both mouse and human MBs, in
which HH pathway is activated, suggesting that they may be either
a part of the HH-induced tumorigenic process or a specific trait of
HH-dependent tumor cells.
Insm1 encodes a zinc-finger DNA-binding protein and exhibits a

restricted expression pattern, including fetal brain [21,24], pancreas
[25], and neuroendocrine tumors [21,26].
We report here on the activation of Insm1 expression by HH sig-

naling. The Insm1 promoter does not present Gli-binding sites, sug-
gesting that the mechanisms of activation by Shh may be due either
1) to the presence of Gli-binding sites in other cis-regulatory regions
of the gene or 2) to indirect regulation, through some yet unidenti-
fied intermediate transcription factors. To date, the transcriptional
activation of Insm1 in neuroendocrine tissues and tumors has been
attributed to the formation of basic helix–loop–helix (bHLH) pro-
tein heterodimers, NeuroD/E47 and neurogenin3/E47 [27], on
the E-box of Insm1 promoter [24,28]. Whether these factors are in-
volved in the regulation of Insm1 by HH remains to be elucidated.

Interestingly, the link betweenHHpathway and Insm1we have shown
in brain tumors is consistent with the Insm1 expression in the majority of
small cell lung cancers [26], which also exhibit a high frequency of HH
pathway activation [29]. Furthermore, increased Insm1 had been previ-
ously detected in desmoplastic MB, together with N-myc, Ptc, and Gli1,
which well fits with increased HH activation in this subclass of MB [30].



96 Identification of HH-Dependent Genes Involved in MB De Smaele et al. Neoplasia Vol. 10, No. 1, 2008
The biologic functions of Insm1 are not well defined: it has been
shown that Insm1 acts as a transcriptional repressor on NeuroD and
on Insm1 itself, generating an autoregolatory loop [31]. It was also
shown that Insm1 is required for the differentiation of endocrine
pancreas [25,28], whereas its role in cerebellar or neuronal develop-
ment has not been identified yet [25]. Likewise, the role of Insm1 in
MB needs to be clarified. The regulatory loop between Insm1 and
NeuroD, a factor important in the differentiation and survival of
postmitotic cerebellar granule cells, may explain, in part, its role in
neuronal development and tumorigenesis [32].

As for the second HH target Nhlh1, this gene was originally cloned
because of its homology within the bHLH motif to the oncogenic he-
matopoietic transcription factor SCL/Tal1 [20]. Nhlh1 belongs to
class II of the bHLH protein family of transcriptional regulators [27].
Class II bHLHs exhibit tissue-restricted expression and some of them
Figure 6. (A–C) Insm1, Nhlh, and Gli1 expression levels in highGli and
tissue. (D–E) Regression curves for Insm1 (no correlation) and Nhlh
(e.g., neurogenin, NeuroD, and Math1) are expressed in neuronal cells
and are involved in the specification of neuronal lineages. Nhlh1 acts
as a transcriptional repressor through dimerization with E47 (a class I
bHLH) and interacts with the Lim-only family members LMO4 and
LMO2 that modulate its activity [33].

So far, analysis of Nhlh1 transcripts [20,34] or use of lacZ reporter
[35] indicate that Nhlh1 expression is confined to the nervous sys-
tem. Nhlh1 expression has been observed in both the embryonic and
postnatal developing cerebellum. Between E14.5 and E18.5, Nhlh1
expression is restricted to migrating GCP of the cerebellar epitheli-
um, which originates from the rhombic lip to form the EGL [35,36].
Postnatally, Nhlh1 is expressed in the premigratory zone of the
EGL with maximal expression between P7 and P10 [37], in agree-
ment with our findings (Figure 1D). At P10, Nhlh1 transient expres-
sion is also detected in the newly formed internal granule layer [35],
lowGli human MBs compared to fetal and adult control cerebellar
1 (P < .05) relative to Gli1.
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suggesting that it may be involved in GCP proliferation and in the
onset of differentiation, but not in the maintenance of the differen-
tiated state [36].
Such a role at the beginning of the differentiation process is also

supported by the expression pattern of Nhlh1 in early differentiating
embryonic neuroblasts, where Nhlh1 is expressed in cells that have just
become postmitotic [34]. Interestingly, expression of Nhlh1 in postmi-
totic neurons has to be downregulated when the cells have migrated to
their final position to allow them to become differentiated [34].
The identification of Nhlh1 as a novel target of HH pathway, un-

derscores its potential role in the activity of Shh. HH signaling plays
a complex role in driving the development of lineage-committed cer-
ebellar GCPs, being mostly responsible for the expansion of an early
pool of progenitor cells, which, subsequently, terminally differentiate
into postmitotic mature granule cells. HH window of activity is over-
lapping with the expression of Nhlh1, suggesting that this regulatory
loop might be involved in the transition from proliferation to early
differentiation of progenitor cells.
Whether this process may be relevant for cerebellar tumorigenesis,

which stems from disequilibrium between proliferation and differen-
tiation of GCP, is an outstanding question that needs to be appropri-
ately addressed. We have described a deregulated expression of Nhlh1
in both human and murine MB, with increased levels of both
mRNA and protein. Furthermore, we show that Nhlh1 expression
correlates with the strength of HH pathway activity. Nhlh1 expres-
sion may be a feature of HH-dependent tumors in which a deregu-
lation of the signals sustaining the transition from proliferation
toward differentiation of GCP would have occurred during the tu-
morigenic process. These may speculatively include uncoordinated
activation versus silencing of Nhlh1 at the proliferation/differentiation
transition of early developing GCP or aberrant interactions with oth-
er bHLH partners.
In conclusion, by combining gene expression analysis during post-

natal development with patterns of gene expression in response to
HH signaling pathway and in HH-dependent cerebellar tumors,
we have identified novel HH target genes that might provide insights
in the molecular events that underlie the neoplastic transformation of
neuronal progenitor cells at the critical stage of early development.
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