A Note on the MIR Closure

Pierre Bonami
Carnegie Mellon University

Gérard Cornuéjols
Carnegie Mellon University, gc0v@andrew.cmu.edu

Recommended Citation
http://repository.cmu.edu/tepper/72

This Response or Comment is brought to you for free and open access by Research Showcase. It has been accepted for inclusion in Tepper School of Business by an authorized administrator of Research Showcase. For more information, please contact research-showcase@andrew.cmu.edu.
A Note on the MIR closure

Pierre Bonami

Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213, USA.

Gérard Cornuéjols

Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213, USA;
and LIF, Faculté des Sciences de Luminy, 13288 Marseille, France.

Abstract

In 1988, Nemhauser and Wolsey introduced the concept of MIR inequality for mixed integer linear programs. In 1998, Wolsey defined MIR inequalities differently. In some sense these definitions are equivalent. However, this note points out that the natural concepts of MIR closures derived from these two definitions are distinct. Dash, Günlük and Lodi made the same observation independently.

Let $S := \{(x, y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p : Ax + Gy \leq b\}$ be a mixed integer set. Here $A \in \mathbb{R}^{m \times n}$ and $G \in \mathbb{R}^{m \times p}$ are matrices and $b \in \mathbb{R}^m$ is a vector. Let $P := \{(x, y) \in \mathbb{R}_+^n \times \mathbb{R}_+^p : Ax + Gy \leq b\}$ be the polyhedron that arises as the natural linear relaxation of S. We assume $P \neq \emptyset$.

Nemhauser and Wolsey [6,7] define MIR^{NW} inequalities by the following procedure.

If

$$c^1 x + hy \leq c_0^1$$

and

$$c^2 x + hy \leq c_0^2$$

Email addresses: pbonami@andrew.cmu.edu (Pierre Bonami),
gc0v@andrew.cmu.edu (Gérard Cornuéjols).

1 Supported in part by a grant from IBM.
2 Supported in part by NSF grant DMI-0352885 and ONR grant N00014-03-1-0188.

Preprint submitted to Elsevier 13 August 2006
are valid inequalities for P, and $\pi = c^2 - c^1 \in \mathbb{Z}^n$, $\pi_0 = [c^2 - c^1_0]$ and $\gamma = c^2 - c^1 - \pi_0$, then

$$\pi x + (c^1 x + hy - c^1_0) / (1 - \gamma) \leq \pi_0$$

is valid for S.

Define the MIRNW closure as the intersection of all MIRNW inequalities. Nemhauser and Wolsey [7] proved that the MIRNW closure is identical to the split closure [1] and the Gomory mixed integer closure [4] (see [2] for another proof of the last identity).

Later, Wolsey [8] (see also Marchand and Wolsey [5]) defined the MIRW inequality as being generated from a single constraint $ax + gy \leq b$ where $(x, y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p$. Specifically, let $f_0 := b - \lfloor b \rfloor$ and $f_j := a_j - \lfloor a_j \rfloor$. The MIRW inequality is

$$\sum_{j=1}^n \left(\lfloor a_j \rfloor + \frac{(f_j - f_0)^+}{1 - f_0} \right) x_j + \frac{1}{1 - f_0} \sum_{j : g_j < 0} g_j y_j \leq \lfloor b \rfloor. \tag{1}$$

For the mixed integer set S, let us define the MIRW closure as the set of all MIRW inequalities that can be generated from any valid inequality for the polyhedron P. (By Farkas’ Lemma, every valid inequality for P is of the form $uAx + uGy - vx - wy \leq ub + t$ where $u \in \mathbb{R}_+^m$, $v \in \mathbb{R}_+^n$, $w \in \mathbb{R}_+^p$ and $t \in \mathbb{R}_+$.)

In this note, we point out that MIR$^{NW} \subset$ MIRW and that the inclusion is strict in general. This was also observed independently by Dash, Günlük and Lodi [3].

First, we give an example showing that MIR$^{NW} \neq$ MIRW. Let P be the triangle in \mathbb{R}^2 defined as follows

$$-2x_1 + x_2 \leq 0$$
$$2x_1 + x_2 \leq 2$$
$$x_2 \geq 0.$$
Fig. 1. Example showing that $\text{MIR}^{NW} \neq \text{MIR}^{W}$.

Thus the following inequality is valid for S.

$$x_1 + \frac{-\frac{1}{2}x_1 + \frac{1}{4}x_2}{\frac{1}{2}} \leq 0,$$

i.e. $x_2 \leq 0$.

Therefore $x_2 \leq 0$ is valid for the MIRNW closure. However $x_2 \leq 0$ is not valid for the MIRW closure. We show this by contradiction. Let us assume that there exists a valid inequality $\alpha x_1 + \beta x_2 \leq \delta$ for P such that $x_2 \leq 0$ is a MIRW inequality. By Farkas’ Lemma, there exist multipliers $u_1, u_2, v, t \geq 0$ satisfying

$$\alpha = -2u_1 + 2u_2$$
$$\beta = u_1 + u_2 - v$$
$$\delta = 2u_2 + t.$$

Let \(f(\eta) = \eta - \lfloor \eta \rfloor \). Can we generate $x_2 \leq 0$ as the MIRW inequality

$$\left(\lfloor \alpha \rfloor + \frac{(f(\alpha) - f(\delta))^+}{1 - f(\delta)} \right) x_1 + \left(\lfloor \beta \rfloor + \frac{(f(\beta) - f(\delta))^+}{1 - f(\delta)} \right) x_2 \leq \lfloor \delta \rfloor?$$

For this to be the case, we must have

- $\delta < 1$ since $\lfloor \delta \rfloor = 0$,
- $\alpha \geq 0$ since $\left(\lfloor \alpha \rfloor + \frac{(f(\alpha) - f(\delta))^+}{1 - f(\delta)} \right) = 0$,
- $\delta < \beta$ since $\left(\lfloor \beta \rfloor + \frac{(f(\beta) - f(\delta))^+}{1 - f(\delta)} \right) > 0$.

$\alpha \geq 0$ is equivalent to $u_2 \geq u_1$. Furthermore $\delta < \beta$ and $v, t \geq 0$ imply $u_2 < u_1$. This is a contradiction, therefore there exists no valid inequality for P such that $x_2 \leq 0$ is a MIRW inequality.
To see that $\text{MIR}^{NW} \subset \text{MIR}^W$, we express Gomory Mixed Integer (GMI) inequalities in a form similar to (1). Recall that given an equality $ax + gy = b$ where $(x, y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p$, the GMI inequality is

$$\sum_{j: f_j \leq f_0} f_j x_j + \sum_{j: f_j > f_0} \frac{1 - f_j}{1 - f_0} x_j + \sum_{j: g_j > 0} \frac{g_j}{f_0} y_j - \sum_{j: g_j < 0} \frac{g_j}{1 - f_0} y_j \geq 1$$ \hspace{1cm} (2)

where f_j and f_0 are defined as above.

Lemma 1 Consider a mixed integer set with m constraints $S := \{(x, y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p : Ax + Gy \leq b\}$. We assume that the constraints $Ax + Gy \leq b$ contain the nonnegativity constraints on x and y. Let $s := b - Ax - Gy$ be a nonnegative vector of slack variables. For any $\lambda \in \mathbb{R}^m$, let $a := \lambda A$, $g := \lambda G$, $\delta := \lambda b$, $f_j := a_j - \lfloor a_j \rfloor$ and $f_0 := \delta - \lfloor \delta \rfloor$. The Gomory mixed integer inequality generated from $\lambda Ax + \lambda Gy + \lambda s = \lambda b$ is

$$\sum_{j=1}^n \left(\lfloor a_j \rfloor + \frac{(f_j - f_0)}{1 - f_0} \right) x_j + \frac{1}{1 - f_0} \sum_{j: g_j < 0} g_j y_j + \frac{1}{1 - f_0} \sum_{i: \lambda_i > 0} \lambda_i s_i \leq \lfloor \delta \rfloor.$$ \hspace{1cm} (3)

Proof: Applying the definition (2) to $\lambda Ax + \lambda Gy + \lambda s = \lambda b$ we get

$$\sum_{j: f_j \leq f_0} f_j x_j + \sum_{j: f_j > f_0} \frac{1 - f_j}{1 - f_0} x_j + \sum_{j: g_j > 0} \frac{g_j}{f_0} y_j - \sum_{j: g_j < 0} \frac{g_j}{1 - f_0} y_j + \sum_{i: \lambda_i < 0} \frac{\lambda_i}{1 - f_0} s_i - \sum_{i: \lambda_i > 0} \frac{\lambda_i}{1 - f_0} s_i \geq 1.$$

Substituting $s = b - Ax - Gy$ in this inequality, it is straightforward to check that the result is inequality (3).

\[\square \]

Recall that MIR^W inequalities are obtained from valid inequalities for P. This corresponds to $\lambda \geq 0$ in Lemma 1. In this case (3) is identical to (1). Therefore MIR^W inequalities are GMI inequalities.

Other authors have defined the MIR^W closure when S is in equality form [5,3], in which case it is trivially identical to the Gomory mixed integer closure.

References

