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Abstract—In the present paper on-line action-dependent heuristic 
neuro-dynamic programming was applied for optimization of a 
complex nonlinear production process. The approach is based on 
recurrent neural network architecture – Echo state network 
(ESN) – as critic network within the frame of adaptive critic 
design (ACD) scheme. The subject for optimization is bio-ethanol 
fermentation. The aim was to increase process productivity 
defining optimal dilution rate profile. The obtained by 
simulations results are good basis for further experimental 
investigations. 

Keywords-adaptive critic design; action dependent heuristic 
dynamic programming; echo state network; bio-ethanol production 
process 

I.  INTRODUCTION 
The environmental problems caused by the use of fossil 

feed stocks as energy source and the rapid increase of the oil-
based fuels prices are the main reasons that have motivated the 
production of bio-fuels [1]. Bio-ethanol, as a clean, safe and 
renewable resource, has been considered as a potential 
alternative to the ever-reducing fossil fuels. Ethanol production 
has increased dramatically on the last years, because it is 
considered as a renewable and environmentally friendly 
alternative [2, 3]. However, the economical feasibility of the 
ethanol industry is still questioned and much effort should be 
done in order to improve the process, especially regarding to 
rapid fermentation and resistance to the main inhibition factors. 

To eliminate inhibition caused by high concentration of 
substrate and product as well as to enhance ethanol 
productivity, cell immobilization approaches have been applied 
in ethanol production [3]. Immobilized cells fermentation has 
been shown to be more effective than the free yeast process, 
mainly due to the enhanced fermentation productivity, 
feasibility of continuous processing, cell stability and lower 
costs of recovery and recycling and downstream processing. 
Cell immobilization may also protect cells against shear force. 
However the industrial use of immobilized cells is still limited 

and further applications will depend on the development of 
immobilization procedures that can be readily scaled-up [4]. 
The main feature of immobilized-cell systems is the high 
attainable concentration of biocatalyst in a solid support, 
which, combined with a high reactor load, can lead to smaller 
reactor volumes as compared to suspended-cell processes [5]. 

In previous work [6] the influence of cells immobilization 
on the batch fermentation dynamics was investigated and 
several models were created to approximate the bio-ethanol 
production process. In the present paper one of the best 
obtained models is used for simulation optimization of the 
continuous bio-ethanol production. The main purpose was to 
obtain by simulations dilution rates that will increase ethanol 
productivity. This will allow spending of long and expensive 
experimental investigations. Only the reasonable optimization 
results will be subject of further experiments for process 
intensification. 

Reinforcement learning (RL) is introduced as a method of 
artificial neural network training “by experience”, rather than 
“by examples”. Created initially to mimic animal behavior in 
an attempt to explain Pavlovian conditioning, RL is also 
recognized as an approximation of Bellman’s dynamic 
programming method [7] that is well known in the control 
community. During the last thirty years theoretical 
developments in this field (a very exhaustive retrospective can 
be found in [8]) have lead to methodologies known as neuro-
dynamic programming [9] and adaptive critic designs (ACD) 
[10] also commonly known as Adaptive Dynamic 
Programming. The core of the methods is the approximation of 
Bellman’s equation or value function (which is the discounted 
sum of future rewards) using neural networks (also called 
“heuristic adaptive critic”). Usually the critic is trained off-line 
since it needs a collection of a variety of data from the 
beginning to the end of several process runs. Combination 
between off-line and on-line learning is also considered [11]. 
True on-line applications of ACD approaches, however, need 
very fast training algorithms [12]. In highly non-linear 
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environments the necessity for additional feedback connections 
arises, which further complicates the on-line training.  

The recently proposed ESN structure [13, 14] incorporates 
a dynamic reservoir generated randomly and easily trainable 
output neurons. The less complex and much faster Recursive 
Least Square method (RLS) [14] can be applied for their on-
line training. Moreover, the derivative calculation with respect 
to the ESN inputs (that is needed for gradient descent), requires 
much less computational effort, because of the ESN structure 
that naturally separates the reservoir from its input and output 
connections. In our previous investigations we applied this 
approach to a robot control task for obstacle avoidance [15] 
and for optimization of another biotechnological process – fed-
batch production of a biopolymer [16]. 

Here the same approach is applied to continuous bio-
ethanol production process optimization. The obtained dilution 
rates profiles are analyzed with respect to their technological 
significance and applicability. The presented simulation 
optimization results will be further subject of experimental 
investigation for confirmation and refinement. 

II. PROBLEM STATEMENT 

A. ACD approach 
The ACD approach also called neural dynamic 

programming or heuristic dynamic programming [9, 10] is an 
approximation of the classical dynamic programming in which 
the Bellman equation is approximated by a neural network that 
is then used to predict the future utility function to be 
minimized by adjusting control actions. Figure 1 shows the 
structure of ACD of the heuristic dynamic programming (HDP) 
type with action-dependent critic network, but without a model 
of the object under control [10, 17]. 

 

Figure 1.  ACD scheme. Dashed lines represent the training cycle. 

The vector O(t) represents the object state vector and u(t) is 
the control variable. The critic NN has to be trained to predict 
the utility function U(t) by approximating Bellman’s equation 
as follows: 

 ( ) ( )( ) ( ) ( )( )
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Dashed lines represent the information flow of parameter 
tuning algorithms for critic and action networks. The training 
of critic NN is aimed at minimization of the temporal 
difference error TD_error(t) while the action NN training aim 
is minimization or maximization of the sum of future rewards 
predicted by the critic. Thus the trained critic output must be 
J(t)=U(t)+γJ(t+1) that is the accumulated sum of future 
rewards or the utility function U(t) that has to be 
minimized/maximized. Here γ is a discount factor that takes 
values from the interval [0, 1]. The main challenge for the on-
line application of such a scheme is the training of the critic 
network because it has to be able to predict future 
reinforcements with good precision in order to allow adequate 
training of an actor network. In search of fast trainable NN 
structures and algorithms different approaches have been 
applied [11, 12]. The fast training algorithm of ESNs offers a 
good opportunity for ACD application [18]. 

B. Echo State Network Basics 
ESNs are a kind of recurrent neural networks that arise 

from so called “reservoir computing approaches” [1]. The basic 
ESN structure is shown in Figure 2 below. 

 

Figure 2.  Echo state network structure. 

The ESN output vector out(t) for the current time instance k 
is usually a linear function of its input and current state 

 ( ) ( ) ( )[ ]= tRtinoutWoutftout ,  (2) 

Here, in(t) is a vector of network inputs and R(t) a vector 
composed of the reservoir neuron states; fout is a linear 
function (usually the identity), Wout is a trainable 

)( Rninnoutn +×  matrix (here nout, nin and nR are the sizes of 
the corresponding vectors out, in and R). The neurons in the 
reservoir have a simple sigmoid output function fres (usually 
tanh) that depends on both the ESN input in(t) and the previous 
reservoir state R(k-1): 

 ( ) ( ) ( )−+= 1tRresWtininWresftR  (3) 

TD_error(t)=J(t)-U(t)-γJ(t+1) 
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Win and Wres are Rninn ×  and RnRn ×  matrices that are 
randomly generated and are not trainable. There are different 
approaches for reservoir parameter production [14]. A recent 
approach used in the present investigation is proposed in [19]. 
It is called intrinsic plasticity (IP) and suggests initial 
adjustment of these matrices, aiming at increasing the entropy 
of the reservoir neurons outputs. 

ESN training can be done in an off-line or an on-line mode. 
For on-line training, the RLS algorithm [13] was proposed. It is 
claimed that it converges fast and it is less computationally 
expensive in comparison to BPTT-EKF methods [18]. 

C. Experimental Set-up 
The used strain-producer is dry yeasts Saccharomyces 

cerevisiae 46 EVD provided by the company “Martin Vialatte 
OEnologie”, France. They are kept at 4-6°C. Before utilization 
the yeasts were re-hydrated in 4% sugar solution at 30°C. The 
amount of that solution was 1:10 with respect to the dry 
biomass. The amount of inoculating material was 1% from the 
bio-reactor working volume because the aim was to achieve 
107 CFU/ml. During the immobilization the amount of used 
biomass was determined such that we achieved 107 CFU/g 
preparations. Nutrition media composition is the following: 
glucose – 118,40; (NH4)2SO4 – 2; KH2PO4 – 2,72; 
MgSO4 7 2  – 0,5; yeasts extract – 1. The nutrient media was 
sterilized for 20 min at 121°C in autoclave. For yeasts cell 
immobilization 2% solution of Na-alginate was used. It was 
obtained by dissolution of alginate in distilled water via 
constant steering till obtaining of homogenous solution. After 
that the solution was sterilized for 20 min at 121°C. For 
jellification 2% solution of CaCl2 also sterilized for 20 min at 
121°C was applied. 

The laboratory bioreactor is glass cylinder with geometrical 
volume of 2 dm3 and working volume of 1.7 dm3. It is 
equipped with six blade turbine stirrer and four baffles. On the 
top of its head plate orifices for feeding in of nutrition media 
and air, leading out of gases, inserting of heat-exchangers and 
sensors for pH, temperature and dissolved oxygen were 
mounted. The installation includes also measuring devices and 
controllers for the main process variables. The cultural media 
temperature is controlled via two channels: cold water of 
cooling and heater for heating. The active acidity (pH) was 
measured by combined glass-silver chloride electrode „Ingold, 
Switzerland”. 

The temperature and pH controllers are integrated into the 
control device type „Applikon, Holland” equipped with precise 
controllers. For maintaining of constant pH of the cultural 
media sterilized reagent – 20% KOH solution – was supplied 
via peristaltic pump. The temperature was maintained at 
28°C±0.1. After reaching its desired value the pH controller 
was switched on in order to maintain the pH desired value. For 
both types of processes – with free and immobilized cells – pH 
was maintained at 4.5±0.05. 

The bioreactor was sterilized in “cold” conditions using 
0.3% solution of neomycin for 24 hours. After that it was 
washed out with sterile water. The suspension was inserted via 
peristaltic pump used also for pH control. The immobilized 

preparation was washed out with sterile physiological solution 
and than it was inserted into bioreactor at sterile conditions. 
After that the nutrition medium was inserted into apparatus. 
The amount of immobilized material was 10% from the 
nutrition medium volume. Samples for analysis of the main 
process variables – concentrations of glucose, biomass and 
product – were taken from the bioreactor every 2 hours. 

D. Mathematical Model and Optimization Task 
Since caring out of real experiments for process 

optimization is expensive and time consuming task, we need a 
simulation model of the process to replace the real object in the 
scheme form Figure 1. The mass-balance based ordinary 
equations mathematical model of the continuous ethanol 
fermentation with immobilized cells has the following form: 

 

( )SSDqX
Y

X
Ydt

dS

DPqX
dt
dP

X
dt
dX

in
spsx

−+−−=

−=

=

//

11 μ

μ

 (4) 

It is based on the assumption that the substrate denoted by S 
is consumed with rate proportional to the increase rates of the 
cells X and product P concentrations. The constants Yx/s and Yp/s 
are called yield coefficients and μ and q denote the specific 
biomass growth and ethanol production rates respectively. The 
dilution rate D has influence only on product and substrate 
concentrations because biomass is immobilized in alginate 
pearls and hence it can’t be taken out of the bioreactor by the 
out flow. Here Sin is concentration of substrate in feeding 
medium. Since in the literature there is big variety of 
mathematical dependences for the two main process kinetic 
rates μ and q, the choice of proper dependences is usually done 
by trail and error. In the [6] the Monod type dependences: 

 
SK

S

sx +
= maxμμ , 

SK
Sqq

sp
p +

= max  (5) 

appeared to be the proper choice. Here μmax, qmax, Ksx and Ksp 
are model parameters whose values were identified in [6]. 

The main control variable of the process is dilution rate so 
it is subject of our optimization procedure. The preliminary 
experimental investigations [20] and technologists experience 
showed that the fermentation must be carried out in batch mode 
(with D=0) initially and to start feeding with nutrition media in 
continuous mode (D=const.>0) after some time. The main 
assessment criteria for the process are the obtained product 
(ethanol) concentration at the stationary phase of continuous 
fermentation and the process productivity calculated as 
PDg/(lh), i.e. the amount of ethanol at the output of the 
bioreactor every hour. Hence the utility function subject of our 
optimization procedure is: 
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The moment of switching between batch and continuous 
regime is fixed to two reasonable times – 6th and 16th hour after 
fermentation start. The initial value of D was set small (0.1h-1) 
and its upper bound is restricted to 0.725h-1 for technological 
reasons. The other variable subject to adjustment is 
concentration of feeding medium Sin. Hence we tried 
optimization with several different values of that variable too. 

III. RESULTS AND DISCUSSION 
First we tried optimization procedure for different time of 

starting continuous fermentation – tfeed=6h and tfeed=16h. The 
concentration of the glucose in the feeding medium is 
Sin=11,8g/l in both cases. The results are shown on Figures 3 
and 4. The optimization procedure took 132 and 148 iteration 
respectively evenly divided between critic and action training 
cycles. 

In the case of tfeed=6h at the moment of feeding initiation 
yeast cells have to be in their exponential growth phase. After 
starting of continuous mode the product concentration 
decreases to about 3.97g/l. The biomass concentration 
increases with the starting of feeding with nutrition media. The 
obtained optimal dilution rate is again D=0.725h-1 that is in 
accordance with experimental results in [20]. The achieved 
process productivity is 4.21g/(lh) and ethanol outcome is 96% 
from the theoretically possible one. 

In the second case (tfeed=16h) immediately after switching 
to the continuous regime the biomass started to grow fast trying 
to approach a new stationary state in accordance with the 
available substrate in the medium. At the same time we expect 
to maintain constant substrate concentration at about 5 to 
6.5g/l. The product concentration at the system output starts to 
decrease form 39.38g/l to about 5.5g/l. This stationary 
concentration corresponds to outcome of 91% of theoretically 
possible one. The obtained optimal dilution rate is D=0,725h-1 
that corresponds to the maximal productivity of 4.09g/(lh). 

According to the simulation investigations switching to the 
continuous mode at 6-th hour leads to higher ethanol outcome 
with about 5% and a little bit higher productivity in comparison 
with the case of continuous mode starting at 16-th hour. This is 
due to faster adaptability of the cells to the changes in the 
medium during the exponential growth phase. Because both 
results are close to each other we can conclude that it is 
important to switch on the continuous regime of fermentation 
when the yeast cells are in the exponential growth phase.  

The next investigations are aimed at revealing the influence 
of higher glucose concentrations in the feeding nutrition media. 
In both cases the continuous mode started after 16 hours of 
batch fermentation. Two concentrations of glucose in nutrition 
media are investigated: Sin=33.6g/l and Sin=118.4g/l. The 
results are presented on Figures 5 and 6. The optimization 
procedure took 94 and 260 iteration respectively.  

In the first case (with Sin=33.6g/l) the achieved system 
productivity was 7.91g/(lh). However in contrast to the 
previous investigations here the product outcome is lower – 
about 60% from the theoretically possible one. The 

concentration of unfermented sugars at the system output is 
higher – about 12.72g/l. The biomass concentration increases. 
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Figure 3.  Optimization results for tfeed=6h and Sin=11.84g/l. 
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Figure 4.  Optimization results for tfeed=16h and Sin=11.84g/l. 

In the case of Sin=118.4g/l the productivity is 20.5g/(lh) and 
the ethanol outcome is 46% from the theoretically possible one. 
At the same time biomass increases considerably achieving at 
the end of simulation 9.59g/l that in real experiment will cause 
destruction of the alginate pearls of the cells carrier. After 
starting of the feeding the substrate concentration increases and 
the product starts decreases but at the end of simulation it still 
is not in stationary phase. 

Although the substrate concentration increase leads to 
increase of the productivity at the same time the ethanol 
outcome decreases significantly. This is due to incomplete 
utilization of the sugars in the nutrition medium. Increased 
productivity is due to higher dilution rate and product 
concentration increase. However in real experiments due to 
restricted productivity we expect that increasing of dilution rate 
will not lead to such big productivity increase. The simulation 
optimization showed also that we have to search ways to 
prevent unlimited biomass growth in the alginate pearls. This 
can be done by reduction of nitrogen and phosphorus in the 
nutrition medium. 
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Figure 5.  Optimization results for tfeed=16h and Sin=33.6g/l. 
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Figure 6.  Optimization results for tfeed=16h and Sin=118.4g/l. 

The simulation optimization showed also that we have to 
search ways to prevent unlimited biomass growth in the 
alginate pearls. This can be done by reduction of nitrogen and 
phosphorus in the nutrition medium. 

IV. CONCLUSIONS 
The investigated application of on-line ACD with ESN 

critic for optimization of bio-ethanol production showed 
technologically reasonable results achievement. In all 
investigated cases it took considerably small number of 
iterations. The obtained by simulations results are in agreement 
with preliminary experiments carried out and gave us a good 
basis for further experimental investigations towards process 
intensification. 
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