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ABSTRACT
Single-amplifier filter biquads and especially Sallen-Key filters are
widely used to build higher-order filter cascades. This paper in-
vestigates high-frequency current amplifier non-idealities and their
effects on all-pole Sallen-Key filter biquads. It is shown that a
non-ideal current amplifier input causes parasitic zeros in the filter
transfer function, and thus imposes fundamental limitations on the
realisable pole frequency. Design equations are given, providing
compensation for the amplifier’s port impedances and its phase
lag, by predistortion of the component values. It is also shown
how design specifications for a current-amplifier can be derived
from the filter specification, minimising the amplifier’s power dis-
sipation. Finally, a video-frequency lowpass filter is discussed.

1. INTRODUCTION

Single-amplifier filter biquads are widely used for building dis-
crete-component filters (e.g. in [1] and [2, Sec. XV]). Among these
filters, the positive-feedback filters (normally called Sallen-Key fil-
ters) stand out, because they can realise all biquadratic filter func-
tions, and because changes in the amplifier gain have no influence
on the pole frequency [3]. It has recently been shown how these
filters can be implemented in CMOS using current amplifiers and
MOSFET resistors [4].

The amplifier used in Sallen-Key filters normally has a low
gain (in the order of unity). Principally, it can be implemented in
two ways: either by applying feedback to a high gain amplifier,
or by using a low gain open-loop amplifier. While the former is
easier to realise in voltage-mode (e.g. as an operational amplifier
with negative feedback), the latter is easier to implement in cur-
rent-mode (e.g. as a current-mirror based gain stage, or a current
conveyor). The former method is more precise, while the latter
provides greater bandwidth.

It is well known that feedback not only reduces (and stabilises)
the gain of an amplifier, but also makes the input and output imped-
ances of the amplifier more ideal [2, 5, 6]. Open-loop amplifiers
are less ideal from this point of view. Normally their high-imped-
ance terminals (voltage inputs or current outputs) are capacitive
in the frequency range of interest, while the low-impedance termi-
nals (current inputs or voltage outputs) are resistive, or even induc-
tive. Furthermore, an open-loop amplifier may have a considerable
phase lag in the frequency range of interest, which is not caused
by onedominant pole, but by apole-zero clusterat high frequen-
cies, which cannot be accurately modelled enough by a one- or
two-pole model.

It is common practice to overcome the effects of such non-ide-
alities either by trial-and-error methods, or by adding further com-
ponents to the circuit (as e.g. in [7]). In this paper we show how,

for current-mode Sallen-Key filters, an analytical approach makes
it possible to derive a simple, but very effective design procedure.
The main features of the analysis are that it includes phase lag
effects as well as non-ideal port impedances, and that it shows to
what extent the non-ideality of the amplifier’s port impedances lim-
its the maximum realisable pole frequency.

2. CURRENT-MODE SALLEN-KEY FILTERS

Fig. 1 shows a general current-mode Sallen-Key filter structure
which can be used to implement a lowpass (LP), two different
bandpass (BP1, BP2) and a highpass (HP) second-order transfer
function.
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Figure 1: Sallen-Key filter structure (LP, BP and HP)

The Sallen-Key filter in Fig. 1 is built around a low-gain cur-
rent amplifier with finite input admittance (Ri , resistive) and low,
but not zero output admittance (Co, capacitive). Although a cur-
rent amplifier has been chosen in this paper, the same analysis is
also valid for a voltage amplifer with input capacitanceCo and
output resistanceRi [8]. Note that the gainα I of the current ampli-
fier must be negative in order to produce positive feedback, since
a voltage-controlled voltage source (VCVS) is dual to a current-
controlled current source (CCCS) having the opposite sign. (The
reason for this is the conventional definition of the CCCS’s output
current direction.)

Y1a Y1b Y2 Y3 Y4 Ri Co

LP R/n 0 C/m Rn Cm R/ρ C/κ
BP1 C/m R/n C/m Rn Cm R/ρ C/κ
BP2 R/n C/m R/n Cm Rn R/ρ C/κ
HP C/m 0 R/n Cm Rn R/ρ C/κ

Table 1: Filter components

Table 1 shows how the admittances in Fig. 1 have to be chosen
in order to realise the three different filter functions. The resis-
tors and capacitors are expressed in terms of geometrical means
(R,C) and component spread factors (m,n), because this leads to
independent expressions for theideal pole frequencyωp i and the
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ideal pole quality factorqp i. The amplifier’s non-ideal port admit-
tances are expressed in terms ofR,C and of the impedance level
factorsρ = R/Ri andκ = C/Co, which would be infinite for an
ideal amplifier.

Open-loop current amplifiers normally do not have one dom-
inant pole, but a cluster of poles and zeros at high frequencies.
Thus there is no general model for the amplifier’s phase lag valid
over the whole frequency range of interest. Nevertheless, if the
phase lag of the amplifier at the filter’s pole frequency is reason-
ably small (say around ten degrees), its effects on the pole location
can be approximated by using a linear phase lag (constant group
delay) model. Then

α I (s)= α I (s=0) ·e(−φRCs) . (1)

Heres is the complex frequency normally written ass= σ + jω,
andφ is the phase lag atω = 1/(RC), which is the pole frequency
of the LP and HP filters, and close to the pole frequencies of the
two BP filters (see equations (2LP)–(2HP)). The resulting non-lin-
ear filter transfer function can be linearised by settingφ = 0 in
the numerator (this must be done, because the phase lag model is
only accurate in the region of the pole frequency, but not around
the frequencies of the zeros) and by expanding the denominator
as a Taylor series ins, cancelling all terms of order 3 and higher.
This approximated filter transfer function allows a prediction of
the shift ofωp andqp for all amplifier non-idealities, as given in
the next section.

3. POLE SHIFTS

Ideally, the pole of the LP filter lies at

(ωp i,
1

qp i
)=

(
1

RC
,

m2n2+m2+ (α I +1)

mn

)
. (2LP)

(The equations for the bandpass and highpass filters can be found
in the Appendix.) The pole quality factor of (2LP) can be written
as

1

qp i
= 1

mn
+mn+ 1

n

(α I

m
+m

)
.

It can easily be seen that 1/mn+mn≥ 2, with equality for
mn=1. qp i can be made larger than 1/2 only if 1/n ·(α I /m+m) is
negative, which is the case form≤√−α I ,1 and since|α I | should
not become too high,n should also be limited. In practice,m and
n should be chosen such thatmn≈ 1, m. 1, andn is reasonably
small (on the order of unity).

Similar rules for choosingm andn can be derived for the other
filters. From (2BP1): mn≈ √2 andm. 1 for a reasonably small
n. From (2BP2): mn≈ 1/

√
2 andn& 1 at a reasonably largem (on

the order of unity). From (2HP): mn≈ 1 andn& 1 at a reasonably
largem.

The three non-idealities (finiteRi , non-zeroCo and non-zero
φ) shift the poles towards lower frequencies, where

ω2
p

ω2
p i

= ρκmn

ρκ(mn−φαI )+ρn+ (κm+1)(n2+1)
. (3LP)

1Remember thatαI < 0.

The pole quality factors can also be expressed in terms ofρ, κ and
φ, but here it is less obvious what happens toqp:

1

qp
= ρκ(m2n2+m2+ (α I +1))+ρm(n2+1)+κn
√
ρκmn

√
ρκ(mn−φαI )+ρn+ (κm+1)(n2+1)

. (4LP)

However, ifφ = 0 and eitherρ or κ is assumed infinite, all
expressions (4LP)–(4HP) can be brought into the form

1

qp
= 1

qp i
·k1+k2

wherek1 < 1 andk2 > 0. It can be seen thatk1 ≈ 1 for small
component spreads, therefore non-ideal amplifier port impedances
normally decreasethe pole quality factorqp. On the other hand,
an amplifier phase lagincreasesthe pole quality factor. This be-
haviour has also been observed in gm-C filters [7].

4. PARASITIC ZEROS

There is a non-ideal effect which affects filter performance more
than the (predictable) pole shifts, namely the parasitic zero or zeros
caused by a finiteρ.

(ω2
z,qz)=

(
1

R2C2

−ρα I m

n
(
m+ 1

κ

) ,

√
−ρ

(
m+ 1

κ

)
α I mn

)
,

(5LP, BP1)

ωz = 1

RC

1

mn+ n
κ
−ρα I m

. (5HP, BP2)

The effects on the filter transfer function differ:

4.1. Lowpass filter (LP)

The complex pair of zeros causes the transfer function (TF) to be-
come constant for frequencies aboveωz, and the minimum stop-
band attenuationAstop, with respect to the passband attenuation
Apass, becomesAstop/Apass≈ −ρα I /n (for κ � 1/m). Sinceα I

is normally on the order of unity, the ratioρ/n= R1a/Ri must be
larger than the (given) ratioAstop/Apass.

For a certain frequency, the productRC is constant. Mak-
ing R1a = R/n larger (for the samen) therefore means making
C smaller. However,C cannot be made arbitrarily small, both be-
cause this increases the filter’s sensitivity to variations ofCo, and
because of matching considerations. A good rule of thumb is to
chooseκ ≈ 10·max(m,1/m).

The resistance of the low-impedance terminal therefore im-
poses fundamental limitations on the filter’s pole frequency,and
the highest achievable frequency for a certain stopband attenuation
is

ωp max≈ Apass

10·max(m,1/m)Co ·max(n,1/n)Ri · Astop
, (6)

which reaches a maximum atm= n = 1. Note that it is not nec-
essary to add a further safety margin, since the current amplifier
normally has an attenuation of its own at frequencies above the
zero frequency.
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4.2. Bandpass filter (BP1)

Here the complex pair of zeros causes the TF torise 20 dB per
decadeat frequencies aboveωz, until it flattens out again, at a gain
of 1, because of a third high-frequency pole, which was previously
cancelled from the Taylor series. Sinceωz/ωp is in the order of√
ρ, the filter’s gain reaches unity at a frequency of aboutρωp.

This may well make the filter useless for practical applications.

4.3. Bandpass filter (BP2)

The single zero makes the TF constant for frequencies belowωz,
at a magnitude of approximately

√
2ρm. Here it is a matter of con-

venience and interpretation to which level this should be referred,
but the same fundamental frequency limitations occur as in the LP
case.

4.4. Highpass filter (HP1)

In this case, the single zero changes the slope of the TF from 40 dB
per decade to 20 dB per decade for frequencies belowωz. Again,
the minimum capacitance to be used in the feedback network and
the filter specifications impose frequency limitations, although in
this case the dependance of the maximum frequency on the speci-
fications is more complicated.
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Figure 2: Transfer functions (TF) of the LP, BP1, BP2 and HP
filters. The dashed lines indicate the differentωp i.

To clarify, Fig. 2 shows the transfer functions of all four filters,
wherem= 0.6, n = 1, α I = −1.6, κ = 30 andρ = 10, 30, 100.
The magnitudes of HP and BP2 have been multiplied by 4, and
different pole frequencies have been chosen, both for graphical
reasons only. The effects of the parasitic zeros can be seen clearly
in all four cases. It is also visible that the LP filter has by far the
highestqp i, which already follows from (2LP)–(2HP).

5. PRACTICAL EXAMPLE

As an example, consider a Sallen-Key lowpass filter biquad with
fp = 16.58 MHz,qp = 4, and a stopband attenuation of at least
30 dB.2

2Although it is rather small, this attenuation already results in 60 dB
stopband attenuation for a cascade of two biquads in a 4th-order filter.

A single-ended CMOS class AB second-generation current
conveyor (CCII) is used as current amplifier. It is similar to the bal-
anced CCII presented in [4], and is based on a concept presented
by Erik Bruun in [9, Chap. 11.5, Fig. 3(d)]). Simulations using
reliable high-frequency transistor models3 show that the current
input of the CCII has a resistance on the order of 100�, depend-
ing on the bias current, while the current output has a capacitance
of Co ≈ 0.05 pF.

The choice of “optimum” values ofm, n and α I really de-
pends on which sensitivity criterium should be optimised. A de-
tailed explanation of such an optimisation is out of the scope of
this paper, thus we choose sensible values according to the criteria
given in Section 3 without further explanation: neglecting the pass-
band attenuation (Apass≈ 0 dB), and assuming max(m,1/m) ≈ 2
and max(n,1/n) ≈ 1.25, it follows that the input resistance of the
CCII must beRi = 240�. ThenC =max(m,1/m)Co = 1 pF, and
R= 9.6 k� from (2LP). The CCII used for the simulations has a
gain ofα I = −1.57. If n = 1 is chosen, as suggested in the pre-
vious section, it follows thatm = 0.6. However, if the filter is
built using these values, the actual pole frequency and pole qual-
ity factor will deviate from the ideal. Since the CCII has a phase
lag of 7 degrees at 16.58 MHz, the equations (3LP) and (4LP) pre-
dict fp = 13.6 MHz andqp = 3.1. This corresponds well to the
simulatedfp= 13.6 MHz andqp = 3.0.

The pole frequency can be corrected by makingR smaller,
either in two or three iterative steps, or by replacingρ by R/Ri

in (3LP) and solving forR. This results inR = 7.85 k� (and
thereforeρ = 32.7). Due to other non-ideal effects, the pole fre-
quency fp = 16.2 MHz is still slightly low, but close enough such
that a new value for 1/R can be linearly extrapolated,4 resulting in
R= 7.58 k� and a filter having the correctfp.

The problem of the lowqp remains. A similar procedure can
now be applied to (3LP), solving for a new value ofn= 0.9. Now
the simulated filter has aqp = 3.9, but fp has not been changed,
since the two are orthogonal to each other. Linear extrapolation
suggests usingn= 0.89, which gives the correctqp.

simulated corrected ideal
fp [MHz] 13.6 (−18%) 16.2 (−2%) 16.58
qp 3.0 (−25 %) 3.9 (−2.5 %) 4.0

Table 2: Simulatedωp andqp of the LP transfer function

Discussion and Design Procedure:Table 2 shows the ideal
values of fp and qp and the simulated values with ideal compo-
nents (“simulated”) and with components calculated using equa-
tions (3LP) and (4LP) (“corrected”). The values after linear interpo-
lation are not shown, since they differ from the ideal values by less
than 0.2%. The stopband attenuation of the filter reaches its max-
imum of 35 dB at about 400 MHz, which is better than expected.
The reason for this is that the gain of the CCII has already de-
creased by 7 dB at this frequency.

This example shows that the equations (3LP) and (4LP) them-
selves provide a very good means of designing a filter, even if only
Ri , Co and the phase lag atfp of the amplifier are known, and no
accurate simulations of the whole filter can be made. Non-ideal-
ities of the CCII other than input resistance, output capacitance
and phase lag, e.g. attenuation at high frequencies or parasitic
poles and zeros in the impedances, can also be accounted for if

3BSIM 3v2 model of a 0.6µm process
4Note that fp is a linear function of 1/R, not R.
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the whole filter can be simulated and one additional interpolation
step is made.
The design procedure can now be summarised as follows:

1. Calculatem, n andα I from (2LP), taking into account the
discussion in the beginning of Section 3 and possibly sen-
sitivity considerations. Note that 1/m and n need to be
large for low sensitivity [3], thus there is a sensitivity–speed
tradeoff.

2. CalculateR, C and the productRiCo from (6) and design
the CCII accordingly, such that its phase lag atfp is not
greater than about ten degrees. Note that since low input
resistance and low phase lag at high frequencies must be
paid for by higher power consumption, designing the CCII’s
Ri andφ close to the limits actually means minimizing its
power dissipation.

3. Correct fp by changingR according to (3LP).

4. If possible, simulate the filter both with ideal components
values and with predistorted values, and extrapolate 1/R as
a function of fp.

5. Correctqp by changingn (or m) according to (4LP).

6. Simulate, and extrapolaten (or m) as a function ofqp.

Similar design procedures can easily be derived for the BP2 and
HP filter.

6. CONCLUSION

We have analytically shown how current (and voltage) amplifier
non-idealites affect the transfer functions of the four basic allpole
Sallen-Key filter biquads: Non-ideal port impedances decrease the
pole frequencyωp and the pole quality factorqp, while an amplifier
phase lag decreasesωp but increasesqp.

Still more importantly, a non-ideal amplifier input causes par-
asitic zeros in the transfer functions, which imposesfundamental
limitations on the maximum realizable pole frequency, and even
makes one of the two bandpass filter structures almost useless for
the building of integrated high-frequency filters.

Design equations for all four filters are presented, and a low-
pass filter example using a CMOS current conveyor (CCII) is de-
signed. A simple design procedure for the predistortion of the fil-
ter components is given, and it is shown how upper bounds on the
current amplifier non-idealities can be derived from the filter spec-
ifications, and how these bounds can be used to optimise the CCII
with respect to power consumption.
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8. APPENDIX

(ωp i,
1

qp i
)=

(
1√

2RC
,

m2n2+m2+ (α I +2)√
2mn

)
, (2BP1)(√

2

RC
,

m2n2(α I +2)+m2+1√
2mn

)
, (2BP2)

(ωp i,
1

qp i
)=

(
1

RC
,

m2n2(α I +1)+m2+1

mn

)
. (2HP)

ω2
p

ω2
p i

= ρκmn

ρκ(mn− 1
2φαI )+ρn+ 1

2(κm+1)(n2+1)+ κ

2m

, (3BP1)

ρκmn+ κmn2

2

ρκ(mn−φm2n2α I )+ (ρn+n2)(m2+1)+κmn2
, (3BP2)

ρκmn

ρκ(mn−φm2n2α I )+ (ρn+n2)(m2+1)+κmn2
, (3HP)

1

qp
= ρκ(m2n2+m2+ (αI +2))+ρm(n2+1)+κn
√
ρκmn

√
ρκ(2mn−φαI )+2ρn+κm(n2+1)+ κ

m + (n2+1)
,

(4BP1)

ρκ(m2n2(αI +2)+m2+1)+2ρmn2+κn(m2n2+m2+1)+mn3

√
(2ρ+n)κmn

√
ρκ(mn−φαI m2n2)+ρn(m2+1)+n2(m2+κm+1)

,

(4BP2)

ρκ(m2n2(αI +1)+m2+1)+ρmn2+κn(m2+1)
√
ρκmn

√
ρκ(mn−φαI m2n2)+ρn(m2+1)+κmn2+n2(m2+1)

.

(4HP)
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