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Abstract. The principal aim of model checking is to provide efficient decision procedures for
the evaluation of certain logical formulae over finite relational structures. Graphs and hypergraphs
are important examples of such structures. If no restrictions are imposed on the logical formulae
and on the structures under consideration, then this problem of model checking has a very high
computational complexity. Hence, several restrictions have been proposed in the literature on the
logical formulae and/or on the structures under consideration, in order to guarantee the tractability
of this decision problem, e.g.: acyclicity, bounded tree-width, query-width and hypertree-width in
case of queries as well as bounded tree-width and clique-width in case of structures. The aim of this
paper is a detailed comparison of the expressive power of these restrictions.
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1. Introduction. Model checking is the problem of deciding whether a logical
formula or query Q is satisfied by a finite structure S, which is formally written as
S |= Q. Q may be a formula in first-order logic, monadic second-order logic, existential
second-order logic, and so on. Model checking is a central issue in database systems [1],
where S represents a database and the formula Q represents a database query. If Q

is a closed formula, then Q is a Boolean query, otherwise Q(x) with free variables x

represents the query whose output consists of all tuples of domain values a such that
S |= Q(a). Model checking is also a basic issue in the area of constraint satisfaction,
which is essentially the same problem as conjunctive query evaluation [5, 33]. Finally,
model checking is used in computer aided verification [13], where S represents a state
transition graph and Q is typically a formula of modal logic describing some temporal
system behaviour. The results of the present paper are, however, more relevant to the
former applications, namely, conjunctive database queries and constraint satisfaction.

Without any further restriction on the form of the structures and/or the queries,
these problems have a very high computational complexity. Hence, several restrictions
have been proposed in the literature both for the structures and the queries, in order
to make these problems tractable. In particular, the evaluation problem for acyclic
queries or for queries whose tree-width, query-width or hypertree-width is bounded by
some fixed constant k is tractable on arbitrary finite structures (combined complex-
ity). On the other hand, arbitrary but fixed formulae of monadic second order logic
(precisely, so-called MS1 formulae) can be evaluated in polynomial time on graphs
whose tree-width or clique-width is bounded by some fixed constant k [16, 18, 19].
In other terms, MS1 queries have polynomial data complexity in case of bounded
tree-width or bounded query-width. MS1 extends first order logic by the possibility
of quantifying over monadic relational variables representing sets of vertices. Note
that only the concept of bounded tree-width has so far been applied both to the
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queries and the structures. On the other hand, acyclicity, bounded query-width and
hypertree-width have primarily been investigated as restrictions on the queries, while
bounded clique-width has only been considered as a restriction on the structures. In
this paper, we apply all of these restrictions both to the queries and to the structures.
For reasons to be explained in §2, we consider the clique-width of a hypergraph as the
clique-width of its incidence graph (for definitions, see §2.1). We shall thus answer
the following questions:

(i) Question 1: How do the various notions of acyclicity and of bounded hyper-
tree-width relate to the concept of bounded clique-width?

(ii) Question 2: Are Boolean conjunctive queries tractable if their clique-width
is bounded by some fixed constant k?

(iii) Question 3: Bounded clique-width is currently the most general restriction
on structures which makes the model checking problem for monadic second order
formulae (so-called MS1 formulae, see §2.2) tractable. Can the tractability barrier
be pushed any further by using known generalizations of acyclicity that are more
powerful than clique-width?

As for the first question, we provide an exact classification of the expressive power
of the various restrictions. The result is depicted in Figure 1.1 (Definitions of all these
concepts are provided in §2.1). The arrows in the figure point from the less powerful
concept to the more powerful one. In particular, it is shown in this paper, that if a
class C of hypergraphs is of bounded clique-width, then C is of bounded query-width
(and, hence, also of bounded hypertree-width). Moreover, it is also shown e.g. that
β-acyclicity is uncomparable with bounded clique-width.

In [29] it was shown that the evaluation of a class C of Boolean conjunctive
queries is tractable (actually, it is even in LOGCFL), if C is of bounded hypertree-
width. Putting this together with our new result that bounded clique-width implies
bounded query-width (see Figure 1.1), we immediately obtain that the evaluation of
a class C of Boolean conjunctive queries is tractable, if C is of bounded clique-width.
Thus Question 2 is positively answered.
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Fig. 1.1. Expressive power of various restrictions on hypergraphs

As for the third question, we prove that the restriction to hypergraphs of bounded
query-width or bounded β-hypertree-width is not sufficient to guarantee tractability
of MS1 queries. Thus bounded clique-width remains so far the most general restriction
on structures that guarantees the tractability of arbitrary fixed MS1 queries.

While tree-width can be recognized in linear time [7], it is currently unclear
whether bounded clique-width can be recognized in polynomial time. We therefore



Hypergraphs in Model Checking 3

propose generalized tree-width (gtw), a cyclicity measure located between tree-width
and clique-width. It will be easy to see that bounded gtw is recognizable in polynomial
time. Moreover, we shall prove that the evaluation of MS1 queries over structures of
bounded gtw is indeed tractable.

This paper is structured as follows: In §2 we recall some basic notions and results.
Restrictions on the form of the queries and of the structures will be considered in §3
and in §4, respectively. In §5, we show how the considerations of §4 can be used for
defining generalized tree-width. Finally, in §6, we give some concluding remarks.

2. Preliminaries.

2.1. Various notions of width and acyclicity. A graph is a pair G = 〈V , E〉
consisting of a set V of vertices (or nodes) and a set E of edges. We only consider
undirected graphs without self-loops and without multiple edges here. Hence, in
particular, every edge E ∈ E is a two-element subset of V . Two vertices are called
adjacent, iff they are the endpoints of an edge in E . A set W ⊆ V is a module of a graph,
iff the elements in W cannot be distinguished by the other vertices, i.e.: every vertex
in V −W is either adjacent to all vertices W ∈ W or to none. A subgraph is a graph
〈V ′, E ′〉, s.t. V ′ ⊆ V and E ′ ⊆ E hold. A subgraph is induced, iff E ′ is the restriction
of E to those edges with both endpoints in V ′. In a labelled graph, every vertex has
exactly one label. A k-graph is a labelled graph with k labels. Usually, these labels
are taken from the set {1, . . . , k}. A k-graph can be represented as 〈V , E ,V1, . . . ,Vk〉,
where V is a set of vertices, E is a set of edges and the sets V1, . . . ,Vk are (possibly
empty) subsets of V that form a partition of V .

A hypergraph is a pair H = 〈V , E〉 consisting of a set V of vertices and a set E of
hyperedges. A hyperedge H ∈ E is a subset of V . A subhypergraph 〈V ′, E ′〉 of 〈V , E〉
is obtained by deleting vertices and/or hyperedges, i.e.: V ′ ⊆ V and there exists a
subset F ⊆ E , s.t. E ′ = {H ∩ V ′ |H ∈ F}. With every hypergraph H = 〈V , E〉,
we can associate the following two graphs: The primal graph (which is also called
the Gaifmann graph) P(H) has the same vertices V as H. Moreover, two vertices
V1, V2 ∈ V are connected by an edge in P(H), iff there is a hyperedge H ∈ E , s.t. both
V1 and V2 are contained in E . The incidence graph I(H) is a bipartite graph with
vertices in V ∪E . Moreover, there is an edge in I(H) between two vertices V ∈ V and
H ∈ E , iff (in the hypergraph H) V occurs in the hyperedge H . The incidence graph
can either be considered as an unlabelled graph or as a 2-graph, with the labels V
and E , respectively.

In order to determine the clique-width of a (labelled or unlabelled) graph, we
have to deal with so-called k-expressions t and the graphs G(t) generated by such
k-expressions:

(i) Let i ∈ {1, . . . , k} and let V be a vertex. Then i(V ) is a k-expression. The
corresponding graph consists of a single vertex V whose label is i.

(ii) Let r and s be k-expressions that have no vertices in common. Then r ⊕ s

is also a k-expression. The graph thus generated is the (disjoint) union of the graphs
G(r) and G(s).

(iii) Let i, j ∈ {1, . . . , k} with i 6= j and let r be a k-expression. Then ηi,j(r)
is also a k-expression. The corresponding graph is the same as G(r) augmented by
edges from every vertex with label i to every vertex with label j.

(iv) Let i, j ∈ {1, . . . , k} with i 6= j and let r be a k-expression. Then ρi→j(r)
is also a k-expression whose graph is the same as G(r) except that all vertices with
label i in G(r) are relabelled to j.
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The graph generated by a k-expression t can be either considered as a labelled
graph with labels in {1, . . . , k} or as an unlabelled graph (by ignoring the labels
assigned by t). Every subexpression s of a k-expression t generates a subgraph G(s) of
G(t) (when considered as an unlabelled graph). The clique-width cw(G) of a (labelled
or unlabelled) graph G is the minimum k, s.t. there exists a k-expression that generates
G. Obviously, cw (G) ≤ n for every graph with n vertices. It can be shown that every
clique has clique-width 2, e.g. the clique with four nodes V1, V2, V3, V4 can be generated
by the 2-expression η1,2(2(V4) ⊕ ρ2→1(η1,2(2(V3) ⊕ ρ2→1(η1,2(2(V2) ⊕ 1(V1)))))).

A tree decomposition of a graph 〈V , E〉 is a pair 〈T, λ〉, where T = 〈N, F 〉 is a tree
and λ is a labelling function with λ(p) ⊆ V for every node p ∈ N , s.t. the following
conditions hold:

(i) ∀V ∈ V , ∃p ∈ N , s.t. V ∈ λ(p).
(ii) ∀E ∈ E with endpoints V1 and V2, ∃p ∈ N , s.t. V1 ∈ λ(p) and V2 ∈ λ(p).
(iii) ∀V ∈ V , the set {p ∈ N : V ∈ λ(p)} induces a connected subtree of T .
The width of a tree decomposition 〈T, λ〉 is max({|λ(p)| − 1 : p ∈ N}). The

tree-width tw(G) of a graph G is the minimum width over all its tree decompositions.
A join tree of a hypergraph 〈V ,H〉 is a labelled tree 〈T, λ〉 with T = 〈N, F 〉 and

a labelling function λ with λ(p) ∈ H for every node p ∈ N . Moreover, the following
conditions hold:

(i) ∀H ∈ H, ∃p ∈ N , s.t. λ(p) = H .
(ii) “connectedness condition”: Let λ(p1) = H1 and λ(p2) = H2 for two distinct

nodes p1 and p2. Moreover, suppose that some vertex V ∈ V occurs in both hyperedges
H1 and H2. Then V must also occur in all hyperedges that are used as labels on the
path from p1 to p2.

A hypergraph is α-acyclic, iff it has a join tree.
In [12], a query decomposition of a hypergraph 〈V ,H〉 is defined as a pair 〈T, λ〉

where T = 〈N, F 〉 is a tree and λ is a labelling function with λ(p) ⊆ (V ∪H) for every
p ∈ N and

(i) ∀H ∈ H, ∃p ∈ N , s.t. H ⊆ {V |V ∈ λ(p) ∩ V or ∃H ′ ∈ λ(p) ∩ H with
V ∈ H ′}.

(ii) “connectedness condition”: ∀V ∈ V , the set {p ∈ N : V ∈ λ(p)} ∪ {q ∈
N : ∃H ∈ H, s.t. H ∈ λ(q) and V occurs in the hyperedge H} induces a connected
subtree of T .1

The width of a query decomposition 〈T, λ〉 is max({|λ(p)| : p ∈ N}). The query-
width qw(H) of a hypergraph H is the minimum width over all its query decomposi-
tions. From [12] we know that a hypergraph H is α-acyclic, iff qw(H) = 1 holds.

In [29], a hypertree decomposition of a hypergraph 〈V ,H〉 is defined as a triple
〈T, χ, λ〉 where T = 〈N, F 〉 is a tree and χ and λ are labelling functions with χ(p) ⊆ V
and λ(p) ⊆ H for every p ∈ N . Moreover, the following conditions hold:

(i) ∀H ∈ H, ∃p ∈ N , s.t. H ⊆ χ(p), i.e.: “p covers H”.
(ii) “connectedness condition”: ∀V ∈ V , the set {p ∈ N : V ∈ χ(p)} induces a

connected subtree of T .
(iii) ∀p ∈ N , χ(p) contains only vertices that actually occur in at least one

hyperedge of λ(p).
(iv) For every p ∈ N , if a vertex V occurs in some hyperedge H ∈ λ(p) and if

V is contained in χ(q) for some node q in the subtree below p, then V must also be

1Note that, in the original definition in [12], it is also required that ∀H ∈ H, the set {p ∈ N :
H ∈ λ(p)} is a connected subtree of T . However, this restriction is of no use as far as the tractability
of the evaluation of queries is concerned. We have therefore omitted this condition here.
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contained in χ(p).

The width of a hypertree decomposition 〈T, χ, λ〉 is max({|λ(p)| : p ∈ N}). The
hypertree-width hw (H) of a hypergraph H is the minimum width over all its hypertree
decompositions.

A conjunctive query Q is a first-order formula in prenex form whose only con-
nectives are ∃ and ∧. With every conjunctive query, we can associate a hypergraph
H, whose vertices V1, . . . , Vn correspond to the variables x1, . . . , xn occurring in Q.
Moreover, for every atom A with variables Var(A) = {xi1 , . . . , xiα

}, there is a hy-
peredge H = {Vi1 , . . . , Viα

} in the hypergraph and vice versa. Then the notions of
hypertree-width, query-width and acyclicity carry over in a natural way from hyper-
graphs to conjunctive queries. Likewise, the incidence graph or the primal graph of
a conjunctive query Q is simply the corresponding graph of the associated hyper-
graph H. Actually, the clique-width or tree-width of a hypergraph H can be either
defined as the corresponding width of the incidence graph or the primal graph. If not
indicated otherwise, we shall assume that the clique-width and the tree-width of a
hypergraph H refer to the incidence graph (considered as an unlabelled graph). As
a justification of this choice, note that there are NP-hard classes of queries, s.t. the
clique-width of their primal graphs is bounded by some fixed constant k. Consider,
for example, the class C of conjunctive queries CLIQUEm asking whether a graph
(V , E) has a clique of size m, for integers m. This class of queries is well known
to be NP-hard (cf. [26], problem GT19). CLIQUEm is expressed by the formula
∃x1, ∃x2, . . . , ∃xm :

∧

1≤i<j≤m( (xi 6= xj) ∧ E(xi, xj) ). The primal graph associated
to CLIQUEm is a clique of m vertices and has clique-width k = 2 for any m > 1.
Thus, Question 2 asked in the introduction has a trivial negative answer, in case the
clique-width of a query is defined based on its primal graph. The question becomes
highly non-trivial instead if, as done in the present paper, we define the clique-width
of a query (or of a hypergraph) on the basis of its incidence graph.

Clique-width and tree-width are hereditary properties in that cw(G ′) ≤ cw(G)
and tw(G′) ≤ tw(G) hold for every induced subgraph G ′ of a graph G. Moreover, any
subhypergraph H′ of a hypergraph H gives rise to an induced subgraph I(H′) of the
incidence graph I(H). Hence, if H′ is an arbitrary subhypergraph of H, then cw (H′) ≤
cw(H) and tw(H′) ≤ tw(H) hold, where cw and tw are defined via the incidence
graph of a hypergraph. In contrast, α-acyclicity, query-width and hypertree-width
do not share this property, e.g.: a hypergraph H can be α-acyclic even though some
subhypergraph H′ is not. Likewise, H can have a subhypergraph H′, s.t. qw (H) <

qw(H′) or hw(H) < hw (H′) hold. The notions of β-acyclicity and β-hypertree-width
can be regarded as the hereditary counterparts of α-acyclicity and hypertree-width:
In [24], a hypergraph H is defined to be β-acyclic, iff every (not necessarily induced)
subhypergraph H′ of H is α-acyclic. Analogously, we can define the β-hypertree-width
of H as the max({hw(H′) : H′ is a subhypergraph of H}). In [24], another notion of
acyclicity is presented, namely γ-acyclicity. Any hypergraph, that is γ-acyclic, is also
β-acyclic. An algorithmic definition of γ-acyclicity will be given in §4.1.

In this work, we shall compare the expressive power of the above defined notions
of width. Let x, y ∈ {tree, clique, query, hypertree, β-hypertree}. Moreover, let C be
a class of hypergraphs (or graphs). We say that C is of bounded x-width, if there exists
some constant k, s.t. every hypergraph (or graph, respectively) in C has x-width less
than or equal to k. Moreover, we say that bounded x-width implies bounded y-width, if
every class C of hypergraphs (or graphs) that is of bounded x-width is also of bounded
y-width.
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Fig. 2.1. H, I(H) and QD

We conclude this section with an example, that should help to illustrate some of
the main concepts used in this paper:

Example. Consider the conjunctive query Q = A(x1, x2, x3)∧B(x2, x4)∧C(x3, x4)
consisting of 3 atoms and 4 variables. Consequently, the corresponding hypergraph
H = 〈V , E〉 is made up of 4 vertices V = {V1, V2, V3, V4} and 3 hyperedges E =
{H1, H2, H3} with H1 = {V1, V2, V3}, H2 = {V2, V4} and H3 = {V3, V4}. Then the in-
cidence graph I(H) is the bipartite graph with vertices in {V1, V2, V3, V4, H1, H2, H3},
s.t. two nodes Vi and Hj are adjacent in I(H), iff, in the hypergraph H, Vi occurs in
the hyperedge Hj .

The hypergraph H and the incidence graph I(H) are displayed in Figure 2.1.
Moreover, also a query decomposition QD of H is shown there. Note that QD has
width 2. Due to the cycle {V2, V3}, {V3, V4}, {V4, V2}, the hypergraph H is not acyclic
and, therefore, H cannot have a query decomposition of width 1. Hence, we have in
fact qw(H) = 2. Finally, a k-expression t (with k = 5) generating the graph I(H) can
be obtained via the following algorithm:

Initialization (nodes Hi): First we introduce all nodes H1, H2 and H3 with pair-
wise distinct labels, i.e.: we set s0 := 1(H1) ⊕ 2(H2) ⊕ 3(H3).

Iteration (nodes Vj): In a loop over all nodes V1, . . . , V4, we carry out the following
steps: Introduce the node Vj with label 4, draw all required edges between Vj and the
Hi’s and relabel Vj to 5, i.e.:
s1 := ρ4→5(η4,1(4(V1) ⊕ s0)) s2 := ρ4→5(η4,1(η4,2(4(V2) ⊕ s1)))
s3 := ρ4→5(η4,1(η4,3(4(V3) ⊕ s2))) s4 := ρ4→5(η4,2(η4,3(4(V4) ⊕ s3)))

Then s4 is the desired k-expression that generates I(H). Note that the above
algorithm is applicable to any bipartite graph. Hence, in any bipartite graph B with
nodes in N1 ∪ N2, the condition cw (B) ≤ min(|N1|, |N2|) + 2 is fulfilled. �

2.2. Tractability via bounded width or acyclicity. In model checking, one
is interested in the (efficient) evaluation of certain logical formulae (= “queries”) over
finite relational structures. To this end, the various notions of width and acyclicity
recalled in the previous section have been explored in two principal ways: They have
been either used to restrict the relational structures or the queries. Restrictions on the
structures in terms of tree-width and clique-width have been investigated in the area
of graph grammars and graph algorithms. On the other hand, restrictions imposed
on the queries like the various forms of acyclicity as well as bounded query-width
and hypertree-width have been mainly analysed in database theory and constraint
satisfaction. Note that, so far, only tree-width is common ground for both directions
of research.
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In this paper, we shall first deal with restrictions on the form of the queries. Recall
that the evaluation of arbitrary first-order queries is PSPACE-complete (cf. [34, 35]).
Actually, even if we restrict the form of first-order queries to conjunctive queries
(where only conjunctions and existential quantification are allowed), then the query
evaluation is still NP-complete (see [11]). If conjunctive queries are further restricted
to α-acyclic conjunctive queries, then this problem becomes tractable (cf. [36]). How-
ever, acyclicity is a very severe restriction. Hence, in recent years, several attempts
to deal with “almost acyclic queries” have been made. In particular, several notions
of width have been introduced, in order to extend the class of tractable conjunctive
queries, namely tree-width, query-width and hypertree-width (cf. [12, 25, 29, 31, 33]).
In [28] and [29], it has been shown that, for some fixed k, the class of conjunctive
queries with hypertree-width ≤ k properly contains the classes where the tree-width
(of the incidence graph or of the primal graph) or the query-width, respectively, is
bounded by k. Moreover, the concept of hypertree-width is a generalization of α-
acyclicity in that a conjunctive query is acyclic, iff it has hypertree-width 1.

In [15], the complexity of testing certain graph properties is investigated. In terms
of model checking, this corresponds to evaluating a fixed query over finite graphs. If
the queries are (arbitrary but fixed) first-order formulae, then this problem is tractable
for all finite graphs without any further restrictions. However, the expressive power
of first-order logic is comparatively weak. Hence, attempts were made to investigate
larger classes of queries. In fact, many interesting graph properties like 3-colourability,
Hamiltonian circuit, partition into triangle, . . . (cf. [15, 26]) are expressible as monadic
second order queries. Note that there are basically two ways of representing a graph
by a logical structure, namely: either the domain consists both of vertices and edges
or the domain consists of vertices only. In the former case, quantified variables of a
monadic second order formula may refer to edges or vertices whereas in the latter case,
only quantification over vertices is allowed. Formulae in the former case are referred to
as MS1 formulae while formulae in the latter case are called MS2 formulae. It has been
shown that MS2 formulae can be evaluated in polynomial time (in fact, even linear
time suffices) over a class C of graphs, if C is of bounded tree-width. The restriction
to bounded clique-width has proved to allow for a much larger class of structures
than bounded tree-width. In particular, bounded tree-width implies bounded clique-
width (cf. [19]), while the converse is in general not true, e.g., the class of cliques is
of bounded clique-width (where the bound is simply 2) but of unbounded tree-width.
It has been shown that the evaluation of fixed MS1 formulae over a class C of graphs
is tractable, if C is of bounded clique-width (cf. [15, 16, 17]).

3. Restricting the Form of the Queries. In this section we consider the
case of conjunctive queries over arbitrary relational structures, where the queries are
subjected to restrictions that guarantee tractability. It has already been recalled in the
previous section that bounded hypertree-width is the most powerful concept studied
so far. We shall now show that bounded clique-width does not allow for a bigger class
of conjunctive queries than bounded hypertree-width. More precisely, in the proof
of Theorem 3.1, we shall provide an algorithm that, when given a k-expression for
(the incidence graph of) some hypergraph H, constructs a query decomposition of H
whose width is ≤ k.

It is convenient to introduce some additional notation first. In the proof of Theo-
rem 3.1, we are going to deal with three kinds of graphs or hypergraphs, respectively,
i.e.: a hypergraph H′, the incidence graph I ′ of H′ and the query decomposition
QD′ of H′. We shall therefore speak about H-vertices, I-vertices and Q-vertices (or,
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equivalently, H-nodes, I-nodes and Q-nodes), when referring to the vertices in H′,
I ′ or QD′, respectively. Likewise, we shall encounter two kinds of labels, namely the
labels assigned by the k-expression t′ and the labels of the Q-nodes in the query de-
composition QD′. In order to avoid confusion, we shall refer to these labels as t-labels
(for the labels of the I-vertices according to the k-expression t′) and Q-labels (in case
of the Q-nodes), respectively. Strictly speaking, t′ assigns t-labels to the nodes in I ′

(i.e.: the I-nodes). However, every I-node uniquely corresponds either to a hyperedge
or to an H-vertex in H′. Hence, as an abbreviation, we shall speak about the “t-label
of a hyperedge” or the “t-label of an H-vertex”, when we refer to the t-label of the
I-vertex corresponding to this hyperedge or H-vertex, respectively. We shall say that
a Q-node q of the query decomposition QD′ “covers” an H-vertex V , iff either V

is contained in the Q-label λ′(q) or λ′(q) contains some hyperedge H , s.t. V is an
H-vertex occurring in this hyperedge H . Finally, for every ` ∈ {1, . . . , k}, we define
the set Q`(QD′) of Q-nodes as Q`(QD′) = {p : p is a Q-node in QD′ and the Q-label
of p contains a hyperedge or an H-vertex with t-label `}.

Theorem 3.1 (query-width is bounded by clique-width). Let H be an arbitrary
hypergraph with incidence graph I(H). Then qw(H) ≤ cw (I(H)) holds.

Proof. Let H be a hypergraph with incidence graph I and let t be a k-expression
that generates I. Note that every subexpression t′ of t generates a subgraph I ′ of the
incidence graph I. Moreover, every such I ′ uniquely defines a hypergraph H′. Then
we construct a query decomposition QD′ of H′ inductively on the structure of t′ with
the following properties:

1. QD′ is a query decomposition of H′ of width ≤ k.
2. For every ` ∈ {1, . . . , k}, the above defined set Q`(QD′) of Q-vertices, if not

empty, forms a connected subtree of QD′, s.t. the root of this subtree coincides with
the root of QD′ itself. Moreover, if the incidence graph I ′ actually contains an I-node
with t-label `, then the Q-label λ(r) of the root r of QD′ also contains at least one
I-node with t-label `.

3. Suppose that p is a Q-node in QD′, V is an H-vertex with t-label ` and p

covers V . Moreover, let the Q-node q be the parent of p in QD′. Then either q also
covers V or the Q-label λ′(q) contains some I-node N whose t-label is `.

For the construction of QD′, we consider each of the four basic operations of a
k-expression separately.

Introduction of a new vertex: Let t′ = i(N) for some node N in I, i.e.: N either
corresponds to a hyperedge or to an H-vertex in H′. In either case, the corresponding
query decomposition QD′ consists of a single node r whose Q-label is the singleton
{N}. Thus, QD′ trivially fulfills the above Conditions 1 through 3.

Disjoint union: Let t′ = s1 ⊕ s2. Moreover, let J1 and J2 be the (disjoint)
subgraphs of I defined by s1 and s2, respectively, and let H1 and H2 be the corre-
sponding hypergraphs. By the induction hypothesis, there exist query decompositions
QD1 = 〈T1, λ1〉 and QD2 = 〈T2, λ2〉 of H1 and H2, respectively, for which the above
three conditions hold. Let r1 and r2 denote the root nodes of T1 and T2, respectively.
Then we construct the new query decomposition QD′ = 〈T ′, λ′〉 in the following way:
T ′ has a new root node r and the subtrees T1 and T2, s.t. r1 and r2 are the child nodes
of r. As for the labelling function λ′, the Q-labels of the Q-nodes in QD1 and QD2

are left unchanged. The Q-label λ′(r) of the new root r is defined from the Q-labels
of r1 and r2 as follows: Let R = λ1(r1) ∪ λ2(r2). By assumption, the H-vertices and
hyperedges in R are assigned at most k different t-labels by t′. Then we construct
the Q-label λ′(r) by selecting one representative from R for each t-label according to
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t′. Of course, there can be at most k such representatives. We shall now show that
the Conditions 1 through 3 hold for QD′:

(i) Condition 1: By the above construction of λ′ and by the induction hypoth-
esis, the width of QD′ is clearly ≤ k. It remains to prove that QD′ is indeed a query
decomposition of H′. By the induction hypothesis, every hyperedge of H1 occurs in
some Q-label of QD1 and every hyperedge of H2 occurs in some Q-label of QD2 and,
thus, also in some Q-label of QD′. Moreover, the connectedness condition follows
from the induction hypothesis and the fact that I ′ is obtained as the disjoint union
of J1 and J2. Hence, in particular, the hypergraphs H1 and H2 have no H-vertices
in common.

(ii) Condition 2: Let ` ∈ {1, . . . , k}. By the induction hypothesis, Q`(QD1)
and Q`(QD2) form connected subtrees of the query decompositions QD1 and QD2,
respectively. Moreover, the roots of these subtrees coincide with the roots of QD1

and QD2, respectively, and if J1 or J2 contains an I-node with label `, then λ1(r1)
or λ1(r2), respectively, indeed contains an I-node with t-label `. By our construction,
Q`(QD′) is obtained as follows:

Q`(QD′) =



















Q`(QD1)∪
Q`(QD2) ∪ {r} if s1 and s2 contain an I-node with t-label `

Q`(QD1) ∪ {r} if only s1 contains an I-node with t-label `

Q`(QD2) ∪ {r} if only s2 contains an I-node with t-label `

∅ otherwise

In all of these four cases, Condition 2 clearly holds.
(iii) Condition 3: Let p be a Q-node in QD′ and let q be the parent of p in QD′.

In particular, p is not the new root node r in QD′ and, therefore, p already existed
before, say in QD1. Now suppose that V is an H-vertex with t-label `, s.t. p covers
V in QD′. If p is the root r1 of QD1, then q is the new root r in QD′, which (by
Condition 2) contains some I-node N with t-label `. On the other hand, if p 6= r1,
then also q is a Q-node of QD1 and Condition 3 holds by the induction hypothesis.

Introduction of edges: Let t′ = ηi,j(s1). Moreover, let J1 be the subgraph of
I defined by s1 and let H1 be the corresponding hypergraph. Note that the ηi,j

operation may have added some new edges in the incidence graph and, therefore, a
hyperedge H in H′ will, in general, contain more H-vertices than if we consider H

as a hyperedge in H1. In fact, we may assume w.l.o.g., that the application of ηi,j

to s1 indeed creates a new edge in I ′, which did not exist in J1. Otherwise, the
hypergraphs H′ and H1 would be identical and the query decomposition QD1 of H1

would also be the desired query decomposition of H′.
In order to distinguish between hyperedges in H′ and H1, we shall write H and

H−, respectively, i.e.: by H−, we denote a hyperedge in H1 and by H we denote the
corresponding hyperedge in H′. Of course, we have H− ⊆ H but, in general, H− = H

is not true.
By the induction hypothesis, there exists a query decomposition QD1 = 〈T1, λ1〉

of H1 for which the above three conditions hold. Then we construct the query decom-
position QD′ = 〈T1, λ

′〉 of H′ in such a way, that the tree T1 is left unchanged. As
for the labelling function λ′ of QD′, recall that I ′ is a bipartite graph. Moreover, by
assumption, ηi,j creates at least one new edge in I ′. Hence, we may assume w.l.o.g.,
that i is the t-label of H-vertices only and j is the t-label of hyperedges only. By
Condition 2 of the induction hypothesis, Qj(QD1) is a connected subtree of QD1

whose root coincides with the root r1 of QD1. Thus, the Q-label λ1(r1) contains a
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hyperedge G− with t-label j. Then λ′ is defined as follows: The Q-label of the root
r1 is left unchanged, i.e., λ′(r1) := λ1(r1). Likewise, if the Q-label of some Q-node
p 6= r1 does not contain an H-vertex with label i, then we do not alter this Q-label.
In the Q-label of all other Q-nodes, we replace the H-vertices with t-label i by the
hyperedge G.2

Now it can be easily checked, that Condition 2 holds for QD′, i.e.: by our construc-
tion of the labelling function λ′, the sets Q`(QD′) are obtained from Q`(QD1) for
` ∈ {1, . . . , k} in the following way:

Q`(QD′) =







{r1} if ` = i

Qi(QD1) ∪ Qj(QD1) if ` = j

Q`(QD1) otherwise

In all of these three cases, Condition 2 obviously holds.

For the proof of Condition 3, let p be a Q-node in QD′ and let q be the parent of
p in QD′. Moreover, let V be an H-vertex with t-label `, s.t. p covers V . Then we
have to show that either q also covers V or the Q-label λ′(q) contains some I-node N

whose t-label is `. Of course, p and q are also Q-nodes in QD1. Then we distinguish
the following cases:

(i) Case 1: Suppose that ` 6= i. If V occurs in some hyperedge H of the Q-label
λ′(p), s.t. the corresponding hyperedge H− already occurred in the Q-label λ1(p) in
QD1, then Condition 3 follows immediately from the induction hypothesis. Likewise,
if V itself is contained in λ′(p), then V was already contained in λ1(p) and we may
again conclude by the induction hypothesis that Condition 3 still holds for QD′. On
the other hand, suppose that V occurs in some hyperedge H from the Q-label λ′(p),
s.t. the corresponding hyperedge H− did not occur in the Q-label λ1(p) in QD1. In
other words, H = G and G was introduced into λ′(p), when we replaced the H-vertices
with label i by the hyperedge G in the Q-labels of all Q-nodes except for the root
node r1 of QD′. If q = r1, then Condition 3 clearly holds, since λ′(q) also contains G.
Otherwise, by Condition 2 of the induction hypothesis, also the parent node q of p in
QD1 contains some I-node N with t-label i in its Q-label λ1(q). By our construction,
N is replaced by the hyperedge G in λ′(q). Hence, V is also covered by q in QD′.

(ii) Case 2: Suppose that ` = i. W.l.o.g., we may assume that q 6= r1, since
otherwise q contains some I-node with t-label i by Condition 2 and we are done. By
our construction, V (with t-label i) itself cannot occur in the Q-label of the Q-node
p 6= r1 in QD′. Hence, there exists some hyperedge H in H′, s.t. V occurs in H and
H ∈ λ′(p). We distinguish two subcases for the t-label of H :
If H has the t-label j, then, by Condition 2, also λ′(q) contains some hyperedge H ′

with t-label j. Moreover, by the application of the ηi,j operation in the incidence
graph I ′, the hyperedge H ′ in H′ indeed contains all H-vertices with t-label i. Thus,
q clearly covers V in QD′.
Finally, suppose that H has a t-label different from j. Then H− already existed in
λ1(p) and the H-vertex V already occurred in the hyperedge H− of the hypergraph
H1. Hence, we may apply Condition 3 of the induction hypothesis, i.e.: either V

2Actually, this formulation is slightly inaccurate. Recall that, in general, a hyperedge H in H′

may have some additional vertices, which are not contained in the corresponding hyperedge H− in
H1, e.g.: Strictly speaking, we would have to write λ′(r1) := {H : H− ∈ λ1(r1)} ∪ {V ∈ λ1(r1)}
rather than λ′(r1) := λ1(r1). However, the meaning of the latter formulation is clear. Moreover, as
far as the incidence graph is concerned, H− and H refer to exactly the same I-node, anyway.



Hypergraphs in Model Checking 11

occurs in some hyperedge F− in H1, s.t. F− ∈ λ1(q) or λ1(q) contains some I-node
N whose t-label is i. In the former case, F ∈ λ′(q) and, therefore, q also covers V in
QD′. In the latter case, N is replaced by G in λ′(q) and, again, q covers V in QD′.

It remains to prove that also Condition 1 still holds, i.e.: QD′ indeed is a query
decomposition of H′ with width ≤ k. Actually, the bound on the width follows
immediately from the induction hypothesis and the fact that |λ′(p)| ≤ |λ1(p)| holds
for every Q-node p ∈ T1. Moreover, for every hyperedge H in H′, QD1 contains a
Q-node p with H− ∈ λ1(p) and, therefore, also H ∈ λ′(p) holds. The only difficult
part of the proof is to show that QD′ fulfills the connectedness condition. In fact,
this is the only place in the whole proof of Theorem 3.1, where we actually need the
Conditions 2 and 3 of our construction.

Now let V be an arbitrary H-vertex of H′ and let ` denote the t-label of V . Then
we have to show that the set of Q-nodes that cover V form a connected subtree in
QD′. To this end we distinguish the following cases:

(i) Case 1: Let ` 6= i. In this case, for every hyperedge H in H′ with V ∈ H ,
we know that also V ∈ H− holds. Moreover, by the induction hypothesis, the set
of Q-nodes P1 = {p ∈ T1 : V ∈ λ1(p)} ∪ {q ∈ T1 : ∃H−, s.t. H− is a hyperedge in
H1, H− ∈ λ1(q) and V ∈ H−} induces a connected subtree of T1. First, suppose
that V does not occur in the hyperedge G by which all H-vertices with t-label i

were replaced when we constructed λ′ from λ1. In this case, the set of Q-nodes
P ′ = {p ∈ T1 : V ∈ λ′(p)} ∪ {q ∈ T1 : ∃H , s.t. H is a hyperedge in H′, H ∈ λ′(q)
and V ∈ H} coincides with P1 and we are done. So suppose that V occurs in the
hyperedge G. But then, by our construction, P ′ = Qi(QD1) ∪ P1 holds, where both
of the sets Qi(QD1) and P1 are connected subtrees of T1 containing the root r1 of T1.
Thus, P ′ is also connected.

(ii) Case 2: Suppose that ` = i. It suffices to show the following fact: Let q be
an arbitrary Q-node that covers V and let q0, q1, . . . , qm for some m ≥ 0 denote the
path in QD′ from the root r1 = q0 of T1 to the Q-node q = qm. Then every Q-node
qα along this path covers V .
Of course, the root r1 = q0 covers V , since λ′(r1) contains the hyperedge G with
t-label j, which (by the ηi,j operation) is adjacent to the H-vertex V in I ′. For the
other Q-nodes qα with α > 0, we know that they can no longer contain the H-vertex
V itself in their Q-label λ′(qα). Hence, in particular, λ′(qm) contains some hyperedge
H , s.t. the H-vertex V occurs in H . Similarly to Case 2 in the proof of Condition
2 above, we have to distinguish two subcases depending on whether the t-label of H

equals j or not.
If H has the t-label j, then we know by Condition 2, that every Q-node qα on the
path from qm to the root r1 of QD′ contains some hyperedge H ′ with t-label j in its
Q-label λ′(qα). Moreover, (by the ηi,j operation) the hyperedge H ′ in H′ contains all
H-vertices with t-label i. Hence, in this case, every such Q-node qα in QD′ indeed
covers V .
On the other hand, suppose that the t-label of H is different from j. Then no H-
vertex is added to this hyperedge by the ηi,j operation. Hence, V already occurred in
the corresponding hyperedge H− of the hypergraph H1 and also the Q-label λ1(qm)
in QD1 already contained the hyperedge H−. Hence, we may apply Condition 3
of the induction hypothesis, i.e.: either V occurs in some hyperedge F− in H1, s.t.
F− ∈ λ1(qm−1) or λ1(qm−1) contains some I-node N whose t-label is i. In the former
case, F ∈ λ′(qm−1) and, therefore, q also covers V in QD′. In the latter case, N is
replaced by G in λ′(qm−1) and, hence, again q covers V in QD′. By an easy induction
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argument, we can show that in fact every Q-node qm−β with β ∈ {1, . . . , m−1} covers
V in QD′.

Renaming of labels: Let t′ = ρi→j(s1). Moreover, let J1 be the subgraph of
I defined by s1 and let H1 be the corresponding hypergraph. By the induction
hypothesis, there exists a query decomposition QD1 of H1 for which the above three
conditions hold. We claim that then QD1 is also the desired query decomposition QD′

of H′. Note that by the renaming of labels, no new vertices or edges are introduced in
I ′. Hence, H′ is identical to H1 and, therefore, QD1 is clearly a query decomposition
of H′, i.e.: Condition 1 holds.

The sets of Q-nodes Q`(QD′) with ` ∈ {1, . . . , k} are obtained from the sets
Q`(QD1) in the following way:

Q`(QD′) =







∅ if ` = i

Qi(QD1) ∪ Qj(QD1) if ` = j

Q`(QD1) otherwise

Hence, also Condition 2 follows immediately from the induction hypothesis.
As for Condition 3, let p be a Q-node in QD′ and let q be the parent of p in QD′.

Moreover, let V be an H-vertex with t-label `, s.t. p covers V . The only interesting
case is that the t-label of V was changed from i to j by the ρi→j operation. But then,
by the induction hypothesis, either q covers V in QD1 or the Q-label λ1(q) contains
some I-node N whose t-label (in s1) is i. In the former case, q still covers V in QD′

and in the latter case the Q-label λ′(q) contains the I-node N , which now has the
t-label j. Hence, in either case, Condition 3 holds.

The converse of Theorem 3.1 is clearly not true. This is due to the fact that
the clique-width is a hereditary property w.r.t. induced subgraphs (and any subhy-
pergraph H′ of a hypergaph H indeed gives rise to an induced subgraph I(H′) of
the incidence graph I(H)) whereas α-acyclicity, query-width and hypertree-width are
not. In particular, we can take any hypergraph H′ with high clique-width and pos-
sibly high hypertree-width and transform it into the following hypergraph H: Let H

be a new hyperedge that contains all vertices of H′ and let H be the result of adding
H to H′. Then H is α-acyclic and, therefore, qw(H) = hw(H) = 1 holds. On the
other hand, the incidence graph of H′ is an induced subgraph of the incidence graph
of H. Hence, the clique-width of H is at least as high as in case of H′.

The following example will help to illustrate the construction in the proof of
Theorem 3.1.

Example. Consider the conjunctive query A(x1, x2, x3) ∧ B(x2, x3, x4). The cor-
responding hypergraph H has 4 vertices {V1, V2, V3, V4} and 2 hyperedges H1 =
{V1, V2, V3} and H2 = {V2, V3, V4}. The incidence graph I of H and the tree rep-
resentation of a k-expression t (with k = 3) generating I are displayed in Figure 3.1.

Now let us traverse the tree representation of t bottom-up and see, what the
various subexpressions of t and the corresponding query decompositions look like.
Actually, we shall only discuss the subexpressions si along the left-most path of the
tree representation of t in detail. The corresponding query decompositions QDi are
depicted in Figure 3.2.

The query decomposition QD1 corresponding to s1 = 1(V1) consists of a single
node labelled by V1. Likewise, from 3(H1) we get a query decomposition with a single
node labelled by H1. Hence, the labelling of the new root in the query decomposition
QD2 corresponding to s2 = 1(V1) ⊕ 3(H1) contains both V1 and H1 from its child
nodes, since they have different labels in s2. In the query decomposition QD3 obtained
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Fig. 3.1. I and t

from s3 = η1,3(s2), we have to replace all occurrences of V1 outside the root of QD2 by
the hyperedge H1. Actually, in this case, this step was not really necessary. However,
when we discuss the k-expression s6 below, it will become clear why this replacement
is, in general, required.

Now consider the query decomposition QD4 corresponding to the k-expression
s4 = s3 ⊕ η1,3[1(V4) ⊕ 3(H2)]. The subtree in QD4 corresponding to η1,3[1(V4) ⊕
3(H2)] is obtained analogously to the query decomposition QD3 corresponding to s3.
Moreover, in the root of QD4, we are only allowed to select one representative from
the sets {V1, V4} and {H1, H2}, respectively, since V1 and V4 (when considered as
nodes in the graph generated by s4), on the one hand, and H1 and H2, on the other
hand, have the same label in s4.

No new ideas are required for the construction of the query decomposition QD5

corresponding to the k-expression s5 = s4 ⊕ (2(V2) ⊕ 2(V3)). Note that in the query
decomposition QD6 corresponding to s6 = t = η2,3(s5), it is indeed necessary to
replace the occurrences of V2 and V3 by the hyperedge H1. In particular, QD5 is no
longer a valid query decomposition after the η2,3 operation has been applied to the
incidence graph. This is due to the fact that after this operation, the hyperedge H1

contains the vertex V3 in the corresponding hypergraph. But then the connectedness
condition would be violated by QD5, since the root covers the vertex V3 (since this
vertex is now contained in H1) and also the right-most leaf node of QD5 covers the
vertex V3. However, in QD5, the node lying in between them only contains V2. �

Recall from [29] that qw(H) ≥ hw (H) holds for every hypergraph H. Hence, by
Theorem 3.1, we immediately get:

Corollary 3.2 (hypertree-width is bounded by clique-width). Let H be an
arbitrary hypergraph with incidence graph I(H). Then hw(H) ≤ cw(I(H)) holds.

Moreover, by the correspondence between queries and hypergraphs, we have:

Corollary 3.3 (width of a conjunctive query). Let Q be a conjunctive query
with incidence graph I(Q). Then hw(Q) ≤ qw (Q) ≤ cw (I(Q)) holds.

The above corollary has another interesting aspect: Apart from the special case
of k ≤ 3, it is not known whether graphs with clique-width ≤ k can be recognized in
polynomial time for fixed k (cf. [14]). In contrast, conjunctive queries (or, equivalently,
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Fig. 3.2. Query decompositions QD1, . . . , QD6

hypergraphs) with hypertree-width ≤ k actually can be recognized in polynomial
time. In fact, this decision problem is highly parallelizable since it is even contained
in the low complexity class LOGCFL (cf. [29]). In other words, apart from being the
more general concept, bounded hypertree-width also has better properties as far as
recognizing such conjunctive queries is concerned.

4. Restricting the Form of the Structures. In this section we consider
monadic second-order queries over hypergraphs, where quantification is allowed over
variables that stand for vertices or hyperedges. Moreover, there are two unary predi-
cates PV , PH and a binary predicate edg with the following meaning: PV (x), PH(x)
state that the argument x is a vertex or a hyperedge, respectively, of the hyper-
graph. By edg(v, h) we can express that the vertex v is contained in the hyperedge h.
Clearly, these formulae correspond to MS1 formulae that are evaluated over the inci-
dence graphs (when considered as a labelled graph with two labels) of hypergraphs.
Thus, the evaluation of such formulae is tractable, if the incidence graphs under con-
sideration are of bounded clique-width. From [16] we know that a class of labelled
graphs with p labels (for fixed p ≥ 1) is of bounded clique-width, iff the same graphs
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without labels are of bounded clique-width. Hence, in the sequel, we shall ignore the
two different labels of the nodes of the incidence graph, since they have no effect on
the tractability of the evaluation of MS1 formulae.

It has already been mentioned that clique-width is a hereditary property while α-
acyclicity and hypertree-width are not. In case of restrictions on the queries, this does
not matter. However, if we look for appropriate restrictions on the structures, then
it can be easily verified that α-acyclicity or bounded hypertree-width will clearly not
suffice to make the evaluation of any fixed MS1 formula tractable. Instead, we shall
consider β-acyclicity and β-hypertree-width here as well as γ-acyclicity, which is even
slightly more restrictive than β-acyclicity. It will turn out that γ-acyclic hypergraphs
have clique-width ≤ 3 and that the β-hypertree-width of any hypergraph is less than
or equal to the clique-width (of the incidence graph). Hence, γ-acyclicity of a class
of hypergraphs implies bounded clique-width (w.r.t. the incidence graph) which, in
turn, implies bounded β-hypertree-width. In other words, γ-acyclicity and bounded
β-hypertree-width can be considered as “lower and upper bounds”, respectively, on
the expressive power of the notion of bounded clique-width. However, we shall also
show that bounded β-hypertree-width is not sufficient to ensure the tractability of
the evaluation of an arbitrary but fixed MS1 formula.

In the second part of this section, we shall have a brief look at the primal graph
of hypergraphs.

4.1. Clique-width of the incidence graph. In [20], D’Atri and Moscarini
provided an algorithm for recognizing γ-acyclic hypergraphs. (For details, see the
original paper or [24]). In terms of the incidence graph of a hypergraph, we get an
algorithm consisting of the following rules:

1. deletion of isolated nodes: If a node N in I has no adjacent node, then N

may be deleted.
2. deletion of “ear nodes”: If a node N in I has exactly one adjacent node, then

N may be deleted.
3. contraction of two-element modules: If two nodes N and N ′ in I are adjacent

to exactly the same nodes in V − {N, N ′}, then one of them may be deleted.

Moreover, we assume that an edge is deleted from the incidence graph, if one of
its endpoints is deleted by one of these rules. Then a hypergraph H is γ-acyclic, iff the
exhaustive, non-deterministic application of the above rules transforms the incidence
graph I(H) into the empty graph.

As far as the clique-width (of the incidence graphs) of γ-acyclic hypergraphs is
concerned, several known results can be combined to get

Theorem 4.1 (γ-acyclicity implies bounded clique-width). Every γ-acyclic hy-
pergraph has clique-width ≤ 3 (w.r.t. the incidence graph).

Proof. ([8]) Let H be an arbitrary γ-acyclic hypergraph. We know from [2] that
the incidence graph I(H) is “(6,2)-chordal”. Building upon a characterization of
“distance-hereditary” graphs in [4], it was shown in [21] that a graph is bipartite,
(6,2)-chordal, iff it is bipartite, distance-hereditary. Finally, in [27], it is shown that
any distance-hereditary graph has clique-width ≤ 3.

When we define the notion of generalized tree-width in §5, we shall revisit the
algorithm from [27] which constructs a 3-expression of any given distance-hereditary
graph. In particular, this algorithm can be used to compute a 3-expression for the
incidence graph of a given γ-acyclic hypergraph. The example in §5 for a modified
version of this algorithm will also help to illustrate the above theorem.
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In the remainder of this section, we compare the clique-width (of the incidence
graph) with β-acyclicity and β-hypertree-width.

Theorem 4.2 (clique-width of the incidence graph versus β-acyclicity). The
class of β-acyclic hypergraphs is of unbounded clique-width (w.r.t. to the incidence
graph).

Proof. Consider the sequence (Hn)n≥1 of hypergraphs, where Hn has the vertices
V = {y1, . . . , yn} ∪ {xij : 1 ≤ i < j ≤ n} and n hyperedges H1, . . . , Hn with

Hl = {yl} ∪ {xαβ : α < β ≤ l} ∪ {xlγ : l < γ ≤ n} for l ∈ {1, . . . , n},

i.e.: H1 = {y1, x12, x13, . . . , x1n}, H2 = {y2, x12, x23, . . . , x2n}, H3 = {y3, x12, x13, x23,

x34, . . . , x3n}, . . . , Hn = {yn, x12, . . . , x1n, x23, . . . , x2n, . . . , x(n−1)n}. The β-acyclici-
ty of Hn can be shown via the following observation: Let Hi, Hj , Hk be hyperedges
of Hn with i < j < k. Then the relation Hi ∩ Hj ⊆ Hk holds. Now let H′ be
a subhypergraph of Hn with vertices V ′ ⊆ V and m hyperedges H ′

i1
, . . . , H ′

im
, s.t.

Hi1 , . . . , Him
are hyperedges in Hn and H ′

ij
= Hij

∩V ′ holds for every j ∈ {1, . . . , m}.

W.l.o.g., let 1 ≤ i1 < i2 < . . . < im ≤ n. Then H′ is α-acyclic, since a join tree of H′

can be obtained by labelling the root node with H ′
im

and attaching m− 1 child nodes
with the labels H ′

i1
, . . . , H ′

i(m−1)
to the root.

It remains to prove that the incidence graphs (In)n≥1 of (Hn)n≥1 are of un-
bounded clique-width. In fact, we show that cw(In) ≥ n holds for every n ≥ 2.
Suppose on the contrary that In is defined by some k-expression t with k ≤ n − 1.
Moreover, let t′ be a subexpression in t, s.t. for some i ∈ {1, . . . , n} the nodes Hi

and yi as well as at least n − 2 nodes from the set {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin}
(consisting of n − 1 nodes) have already been introduced in t′ and let t′ be minimal
with this property, i.e.: no proper subexpression t′′ of t′ has this property. By the
minimality of t′, this subexpression t′ is of the form t′ = r⊕s for appropriately chosen
k-expressions r and s. Then we derive a contradiction in the following way:

Fact 1: Suppose that two vertices Hα and Hβ with α 6= β have been introduced by the
k-expression t′. Then Hα and Hβ have different labels in the graph generated by t′. This can
be seen as follows: Suppose on the contrary that Hα and Hβ have the same label. W.l.o.g.,
let α < β. Then the vertices in Vβ = {yβ} ∪ {x1β , . . . , x(α−1)β , x(α+1)β, . . . , x(β−1)β, xβ(β+1),
. . . , xβn} distinguish the vertices Hα and Hβ. Hence, all of the edges connecting Hβ with
the vertices in Vβ must already exist in t′. Thus, all of the vertices in {Hβ} ∪ Vβ must
have already been introduced in one of the subexpressions r or s of t′, which contradicts the
minimality of t′.

Fact 2: Suppose that the vertices Hα and xβγ with arbitrary α, β and γ have been
introduced by the k-expression t′. Note that Hα is adjacent to all of the vertices in Vα =
{yα} ∪ {x1α, . . . , x(α−1)α, xα(α+1), . . . , xαn}, while xβγ is not. Hence, one can show analo-
gously to Fact 1 above that Hα and xβγ have different labels.

Fact 3: If the vertices Hα and yβ with arbitrary α and β have been introduced by the
k-expression t′, then Hα and yβ have different labels, since Hα and yβ are also distinguished
by the vertices in the above set Vα.

In order to conclude the proof, we define a set S of n vertices of t′, s.t. these vertices
have pairwise distinct labels in t′.

(i) Hi is in S.

(ii) Let X denote those vertices in {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin}, that already exist
in the k-expression t′. By assumption, X has at least n − 2 elements. Now we traverse X

from right to left. If the label of some xαβ ∈ X does not occur in X to the right of xαβ, then
we add xαβ to S. Otherwise, suppose that xγδ is a vertex to the right of xαβ, s.t. xαβ and
xγδ have the same label. Then we distinguish two cases: If α < i and β = i hold, then Hα
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distinguishes the nodes xαi and xγδ. Hence, Hα already exists in t′ and we may add Hα to
S. Otherwise (i.e.: α = i and β > i hold), Hβ distinguishes the nodes xiβ and xγδ. Hence,
Hβ already exists in t′ and we add Hβ to S.

(iii) Finally we consider yi. Let X ⊆ {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin} be defined as
above. If the label of yi does not occur in X, then we add yi to S. Otherwise, let xαβ denote
the right-most vertex in X that has the same label as yi. Then we distinguish the same cases
as above: If α < i and β = i hold, then Hα distinguishes the nodes xαi and yi. Hence, we
may add Hα to S. Otherwise (i.e.: α = i and β > i hold), we add Hβ to S.

Then S contains n vertices. In particular, all of the vertices Hα and Hβ that are added

to S by the above construction are pairwise distinct. Moreover, by the construction of S and

by the Facts 1 through 3 above, all of the vertices in S have pairwise distinct labels.

Actually, the above lower bound on the clique-width of the incidence graphs
(In)n≥1 is quite tight. This follows from the fact that the incidence graphs (In)n≥1 are
bipartite graphs, where one part of the partition has n nodes (namely {H1, . . . , Hn}).
Hence, as we have seen in the example in §2.1, In has clique-width ≤ n + 2.

Remark. Theorem 4.2 was shown independently in [8] as follows: It was shown
in [2], that β-acyclic hypergraphs have bipartite, “chordal” incidence graphs. More-
over, we know from [9], that bipartite permutation graphs are a subclass of bipartite,
chordal graphs. Finally, in [10] it was shown that the clique-width of bipartite per-
mutation graphs is unbounded. �

Now recall from Corollary 3.2 that the hypertree-width of any hypergraphH is less
than or equal to the clique-width of the incidence graph of a hypergraph. Moreover,
as has already been mentioned, the incidence graph I(H′) of any subhypergraph H′ of
H is an induced subgraph of I(H). Thus, cw(I(H′)) ≤ cw (I(H)) holds. We therefore
immediately get:

Corollary 4.3 (β-hypertree-width is bounded by clique-width). Let H be a hy-
pergraph with clique-width = k (w.r.t. the incidence graph). Then H has β-hypertree-
width ≤ k.

It has already been recalled from [29] that α-acyclic hypergraphs have hypertree-
width = 1. Consequently, the β-acyclic hypergraphs have β-hypertree-width = 1.
Thus, by Theorem 4.2 and Corollary 4.3, we know that bounded clique-width im-
plies bounded β-hypertree-width while the converse is not true. Now the question
naturally arises as to whether bounded β-hypertree-width of the structures under
consideration suffices to guarantee the tractability of the evaluation of any MS1 for-
mula. Unfortunately, the answer given in Theorem 4.5 below is negative. Thus,
bounded clique-width remains the concept with the highest expressive power known
so far, s.t. MS1 queries are still tractable (cf. Figure 1.1). The proof of this result will
be based on the following lemma:

Lemma 4.4 (β-hypertree-width of hypergraphs with big hyperedges). Let H =
〈V , E〉 be a hypergraph, where every hyperedge H ∈ E has at least |V| − 2 vertices.
Then the β-hypertree-width of H is ≤ 3.

Proof. Let H′ = 〈V ′, E ′〉 be an arbitrary subhypergraph of H, i.e.: H′ is obtained
from H by deleting some hyperedges and/or vertices. Note that then also H′ contains
only “big” hyperedges, i.e.: every hyperedge H ′ ∈ E ′ has at least |V ′| − 2 vertices.

We have to show that H′ has a hypertree decomposition of width ≤ 3. In fact, we
show that H′ even has a query decomposition of width ≤ 3. Let H ∈ E ′ be an arbitrary
hyperedge. Then |V ′ −H | ≤ 2 holds. Let V1, V2 ∈ V ′, s.t. H ∪ {V1, V2} = V ′. Now we
can construct a query decomposition QD of width ≤ 3 for H′ as follows: Let the root
r of QD be labelled with λ(r) = {H, V1, V2}. Moreover, for every H ′ ∈ H′ −{H}, we
attach one child node p to r with label λ(p) = {H ′}.
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Theorem 4.5 (MS1 queries and bounded β-hypertree-width). The evaluation of
an arbitrary fixed MS1 query over a class C of hypergraphs is, in general, not tractable,
even if C is of bounded β-hypertree-width.

Proof. Let G = 〈V, E〉 be an arbitrary graph and let H = 〈V, H〉 be a hypergraph,
where the set H of hyperedges is defined as follows: H = {V − {x, y} : {x, y} is
an edge in E}, i.e.: every edge e of G is encoded by a hyperedge which contains all
vertices of V except for the endpoints of e. Then every hyperedge of H has |V | − 2
vertices. Thus, by Lemma 4.4 above, this hypergraph H has β-hypertree-width at
most 3. Moreover, the well known NP-complete problem of graph-3-colourability can
be expressed as an MS1 query on the incidence graph of H (when considered as a
labelled graph with two distinct labels for the nodes corresponding to vertices and
hyperedges in H, respectively. The unary predicates PV and PH refer to these labels.)
in the following way:

(∃C1)(∃C2)(∃C3) “C1, C2 and C3 provide a partition of V ” ∧
(∀x)(∀y)[ (PV (x) ∧ PV (y) ∧ (∃h)(PH (h) ∧ ¬edg(x, h) ∧ ¬edg(y, h)))

→ “x and y have different colours”]

Of course, the sentences “C1, C2 and C3 provide a partition of V ” and “x and y have
different colours” can be easily expressed as MS1 formulae, namely:

(∀x)[x ∈ C1∧x 6∈ C2∧x 6∈ C3]∨ [x ∈ C2∧x 6∈ C1∧x 6∈ C3]∨ [x ∈ C3∧x 6∈ C1∧x 6∈ C2]
and [x ∈ C1 ∧ y 6∈ C1] ∨ [x ∈ C2 ∧ y 6∈ C2] ∨ [x ∈ C3 ∧ y 6∈ C3], respectively.

4.2. Clique-width of the primal graph. In this section we compare the β-
acyclicity and β-hypertree-width with clique-width of the primal graph. By Corol-
lary 4.3, we know that bounded clique-width of the incidence graph implies bounded
hypertree-width. It can be easily checked that this implication is no longer true if we
consider the clique-width of the primal graph instead. This can be seen by inspecting
the class of cliques, whose primal graphs (which coincide with the cliques themselves)
have clique-width 2. On the other hand, the class of cliques is of unbounded tree-
width and, therefore, also of unbounded β-hypertree-width, since – in contrast to
hypergraphs – bounded tree-width and bounded hypertree-width coincide on graphs.
This is due to the fact that, for every graph, a hypertree decomposition 〈T, χ, λ〉 of
width k corresponds to a tree decomposition 〈T, χ〉 of width ≤ 2k.

Now the question naturally arises as to whether bounded clique-width of the
primal graphs allows for a strictly larger class of hypergraphs than bounded hypertree-
width or at least than bounded β-hypertree-width. Below, we give a negative answer.

Theorem 4.6 (clique-width of the primal graph versus β-acyclicity). The class
of β-acyclic hypergraphs is of unbounded clique-width w.r.t. the primal graphs.

Proof. We consider again the class (Hn)n≥1 of β-acyclic hypergraphs of Theorem
4.2, where Hn has the vertices V = {y1, . . . , yn} ∪ {xij : 1 ≤ i < j ≤ n} and the
hyperedges H1, . . . , Hn with Hl = {yl} ∪ {xαβ : α < β ≤ l} ∪ {xlγ : l < γ ≤ n} for
l ∈ {1, . . . , n}.

Similarly to Theorem 4.2, we show that the clique-width of the primal graph Pn

of Hn increases with n. Note however, that the situation here is a bit different from
Theorem 4.2. In particular, Pn contains only nodes yi and xij , but no Hi’s. Moreover,
the xij ’s form a big clique in Pn, since all of these vertices occur in the hyperedge
Hn. Nevertheless, we can show that cw(Pn) ≥ n−1

2 holds for every n ≥ 2.

Suppose on the contrary that Pn is defined by some k-expression t with k < n−1
2 .

Moreover, let t′ be a subexpression in t, s.t. for some i ∈ {1, . . . , n} the node yi and
at least n− 2 nodes from the set {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin} have already been
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introduced in t′. Moreover, let t′ be minimal with this property. Then t′ is again of
the form t′ = r ⊕ s. We derive a contradiction in the following way:

Fact 1: Suppose that two vertices yα and yβ with α 6= β have been introduced by the
subexpression t′ of t. Then yα and yβ have different labels in the graph generated by t′.
This is due to the fact that, for α < β, the vertices in Xβ = {x1β , . . . , x(α−1)β , x(α+1)β, . . .,
x(β−1)β, xβ(β+1), . . . , xβn} distinguish the vertices yα and yβ.

Fact 2: Let Xi be defined as Xi = {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin}. Moreover, suppose
that xαi and xγδ are nodes in Xi, s.t. α < γ (i.e.: xαi occurs in Xi “to the left” of xγδ)
and both nodes already exist in t′. Then either xαi and xγδ have distinct labels in t′ or yα

already exists in t′. This follows immediately from the fact that xαi is adjacent to yα in Pn,
whereas xγδ is not.

Fact 3: Let Xi be defined as above and suppose that xiβ and xγδ are vertices in Xi, s.t.
both vertices already exist in t′ and β < δ holds (i.e., again xiβ occurs in Xi “to the left” of
xγδ). Then either xiβ and xγδ have distinct labels in t′ or yβ already exists in t′, since yβ is
adjacent to xiβ in Pn but not to xγδ .

Now we define two sets X and Y of vertices which have already been introduced by t′.
These two sets together will contain n− 1 vertices in total. Moreover, we can show that the
vertices contained in each of these sets have pairwise distinct labels.

(i) Initially, we set X := ∅ and Y := {yi}.

(ii) Let X denote the set of those vertices in {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin}, that
already exist in the k-expression t′. By assumption, there are n − 2 such vertices. Now we
traverse the elements in X from right to left. If the label of some xαβ ∈ X does not occur in
X to the right of xαβ, then we add xαβ to X . Otherwise, suppose that xγδ is a vertex to the
right of xαβ, s.t. xαβ and xγδ have the same label. Then we distinguish two cases: If α < i

and β = i hold, then yα already exists in the k-expression t′ by Fact 2. Hence, we may add
yα to Y. Otherwise (i.e.: α = i and β > i hold), yβ must already exist in t′ by Fact 3 and
we add yβ to Y.

We have |X |+ |Y| = n−1. Thus, one of the sets X or Y must have at least n−1
2

vertices.

Moreover, these vertices have pairwise distinct labels in t′ by the construction (in case of X )

and by Fact 1 above (in case of Y).

By Theorem 4.6 above and the fact that β-acyclic hypergraphs have β-hypertree-
width 1, we know that bounded β-hypertree-width does not necessarily imply bounded
clique-width of the primal graph. Moreover, it has already been explained above that
bounded clique-width of the primal graph does not necessarily imply bounded β-
hypertree-width. We thus get the following result:

Corollary 4.7 (uncomparability). The concepts of bounded β-hypertree-width
of hypergraphs and bounded clique-width of the corresponding primal graphs are un-
comparable, i.e., on the one hand, there exists a class C1 of hypergraphs, s.t. the
β-hypertree-width of the hypergraphs in C1 is bounded by some fixed constant k while
the corresponding class of primal graphs is of unbounded clique-width. On the other
hand, there exists a class C2 of hypergraphs, s.t. the β-hypertree-width of the hyper-
graphs in C2 is unbounded while the clique-width of the corresponding primal graphs
is bounded by some fixed constant k.

5. Generalized Tree-width. As has already been mentioned in §2, clique-
width is much more powerful than tree-width. On the other hand, the lack of an
efficient procedure for recognizing graphs with clique-width ≤ k for some arbitrary
but fixed k is a major drawback of clique-width. Hence, it is worth trying to extend the
notion of tree-width to some kind of “generalized tree-width”, which is more powerful
than tree-width and which is still efficiently recognizable. One such generalization is
proposed below.
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Recall from [23], that the existence of a big complete bipartite graph as a subgraph
of a graph G has a very bad effect on the tree-width of G, e.g.: consider the sequence
(Hn)n≥1 of hypergraphs, where Hn has vertices V = {x1, . . . , xn}∪{y1, . . . , yn} and n

hyperedges H1, . . . , Hn with Hi = {yi, x1, . . . , xn}. Then, for every n, the (incidence
graph In of the) hypergraph Hn has tree-width n, since it contains the complete
bipartite graph with nodes {x1, . . . , xn} and {H1, . . . , Hn}, respectively. On the other
hand, for every n, Hn is γ-acyclic, i.e.: the simple transformations of the γ-acyclicity
algorithm in [20] (recalled in §4.1) suffice to reduce the incidence graph of Hn to the
empty graph. In particular, the complete bipartite graph contained in the incidence
graph of any such hypergraph can be eliminated by these simple transformations. It
therefore makes sense to consider the following generalization of the tree-width:

Definition 5.1 (generalized tree-width). Let G be an arbitrary graph and let G ′

be the graph that results from exhaustive application of the following rules: deletion of
isolated nodes, deletion of ear nodes and contraction of two-element modules. Then
we define the generalized tree-width of G as gtw(G) = tw(G ′).

In order make sure that gtw(G) is well defined, we need the following property of
the above transformation rules:

Proposition 5.2. Let G be an arbitrary graph and let G ′ and G′′ be graphs that
result from exhaustive application of the following rules: deletion of isolated nodes,
deletion of ear nodes and contraction of two-element modules. Then G ′ and G′′ are
isomorphic.

Proof. The number of possible applications of the above transformation rules is
clearly finite. Hence, by general considerations on rewrite systems (cf. [3, 22]), it
suffices to prove the following “local confluence” property: Let G1 and G2 be graphs
that can be obtained from some graph G via a single rule application. Then there
exist graphs G′

1 and G′
2, s.t. G′

1 and G′
2 are isomorphic and Gi can be transformed into

G′
i (for i ∈ {1, 2}) via finitely many applications of the above transformation rules.

This can be easily shown by a case distinction over all 3× 3 possibilities of rules that
lead to G1 and G2, respectively, e.g.: Suppose that G1 is obtained from G via the first
rule (i.e., deletion of isolated nodes) and that G2 is obtained from G via the third rule
(i.e., contraction of two-element modules). Moreover, let Ni with i ∈ {1, 2} denote
the node that is deleted from G in order to arrive at Gi. Then G′

1 = G′
2 is simply

obtained from G1 by deleting also N2 (via the third rule) and by deleting N1 from G2

(via the first rule), respectively. The remaining cases are handled similarly.

A polynomial time algorithm for recognizing the graphs with gtw ≤ k for some
fixed k can be constructed in the obvious way, namely: First, an input graph G is
transformed into G′ via the transformation given in Definition 5.1 above. Then we can
apply the algorithm of [6], which decides in linear time, whether tw(G ′) ≤ k holds.

For our considerations on the tractability of evaluating MS1 formulae, we are
ultimately interested in the relationship between generalized tree-width and clique-
width. In Theorem 5.7 we shall show that bounded generalized tree-width implies
bounded clique-width. For the proof of this result, we have to revisit and appropriately
modify the algorithm in [27] for constructing a 3-expression of an arbitrary distance-
hereditary graph.

The notions of “pruning sequence” and “pruning tree” are central to the algorithm
in [27]. By slightly modifying these notions to our purposes here, we get the following
definitions.

Definition 5.3 (pruning sequence). Let G0 = G, G1, . . . ,Gn = G′ be a sequence
of graphs, s.t., for every i ≥ 1, Gi is obtained from Gi−1 by deleting some node Vαi
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via one of the following rules: deletion of isolated nodes, deletion of ear nodes and
contraction of two-element modules. Then S = s1, . . . , sn is called a pruning sequence
from G to G′, where si with 1 ≤ i ≤ n is defined as follows:3

(i) If Vαi
is an isolated node in Gi−1, then si = 〈(Vαi

, ∗), isolated 〉.
(ii) If Vαi

is an ear node in Gi−1, s.t. its only neighbour is Vβi
, then si =

〈(Vαi
, Vβi

), ear〉.
(iii) If Vαi

and Vβi
form a two-element module in Gi−1, s.t. Vαi

and Vβi
are

adjacent, then si = 〈(Vαi
, Vβi

), true〉. In this case, Vαi
is called a true twin of Vβi

in
Gi−1.

(iv) If Vαi
and Vβi

form a two-element module in Gi−1, s.t. Vαi
and Vβi

are not
adjacent, then si = 〈(Vαi

, Vβi
), false〉. In this case, Vαi

is called a false twin of Vβi

in Gi−1.
Definition 5.4 (pruning trees). Let G0 = G,G1, . . . ,Gn = G′ be a sequence of

graphs with G = (V , E) and G ′ = (V ′, E ′). Moreover, let S = s1, . . . , sn be a pruning
sequence from G to G′ and let V ′′ ⊆ V be defined as

V ′′ = {Vαi
| si = 〈(Vαi

, ∗), isolated 〉} ∪

{Vβi
| si = 〈(Vαi

, Vβi
), x〉 with x ∈ {ear, true, false} and Vβi

∈ V ′},

i.e., V ′′ contains those nodes from V that were eventually deleted as isolated nodes
plus those nodes which were “responsible” for the deletion of other nodes (i.e., of ear
nodes or true/false twins) without ever being deleted themselves.

Now let m = |V ′′|. Moreover, w.l.o.g., we assume that V ′′ = {V1, . . . , Vm}. Then
there exist m pruning trees T1, . . . , Tm corresponding to the pruning sequence S. These
pruning trees are directed, edge-labelled trees. They are obtained by the algorithm
construct-pruning-trees given below.

Algorithm construct-pruning-trees.
begin

/* initialization of the pruning trees */
for i := 1 to m do

Ti := the tree consisting of the root node Vi only;
od;

/* adding the nodes deleted from G to the pruning trees */
for i := n downto 1 do

if si = 〈(Vαi
, Vβi

), ear〉 then append Vαi
as right-most child to Vβi

and
label the edge from Vβi

to Vαi
as “ear”;

elsif si = 〈(Vαi
, Vβi

), true〉 then append Vαi
as right-most child to Vβi

and
label the edge from Vβi

to Vαi
as “true”;

elsif si = 〈(Vαi
, Vβi

), false〉 then append Vαi
as right-most child to Vβi

and
label the edge from Vβi

to Vαi
as “false”;

fi;
od;

end.

This algorithm is illustrated by the following example:
Example. Let the graph G = (V , E) be defined as V = {V1, . . . , V11} and E =

{{V1, V8}, {V1, V11}, {V2, V4}, {V2, V7}, {V2, V8}, {V3, V8}, {V3, V11}, {V4, V7}, {V5,

3In [27] and [32], emphasis is put on the introduction of nodes rather than on their deletion.
Hence, in the former papers, the order of the elements in a pruning sequence is reversed w.r.t. to the
definition here. However, the pruning trees defined next have essentially the same form as in [27].
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Fig. 5.1. G and T .

V6}, {V5, V7}, {V5, V8}, {V6, V8}, {V6, V9}, {V6, V10}, {V9, V10}}. The graph G is
displayed in part a) of Figure 5.1.

The nodes {V1, V3, V6, V9, V10, V11} can be deleted via the following pruning
sequence: 〈(V1, V3), false〉, 〈(V11, V3), ear〉, 〈(V3, V8), ear〉, 〈(V10, V9), true〉, 〈(V9, V6),
ear〉, 〈(V6, V8), true〉. We thus get the graph G ′ = (V ′, E ′) with V ′ = {V2, V4, V5,
V7, V8} and E ′ = {{V2, V4}, {V2, V7}, {V2, V8}, {V4, V7}, {V5, V7}, {V5, V8}}. Note
that no isolated node was thus deleted. Moreover, V8 is the only node in G′ that was
responsible for the deletion of other nodes. Hence, by the algorithm construct-
pruning-trees, only one pruning tree T can be constructed, which is depicted in
part b) of Figure 5.1. �

In [27], several fundamental properties of pruning trees are proven. In particular,
it is shown how a pruning tree T can be used to construct a 3-expression for the
subgraph of G that is induced by the nodes of T . Before we come to this algorithm,
we recall the following terminology from [27]: For a node V in the pruning tree T , we
write TV to denote the set of nodes of the subtree of T rooted at V . Moreover, we
call a node U in TV a twin descendant of V , iff either V = U or all the edges along
the path from V to U are labelled with “true” or “false”. Finally, by G[TV ] we denote
the subgraph of G that is induced by the nodes in TV .

Lemma 5.5 (pruning tree and adjacency). Let G = (V , E) and G ′ = (V ′, E ′) be
graphs and let S be a pruning sequence from G to G ′. Moreover, let T with root V be a
pruning tree that is obtained from S via the algorithm construct-pruning-trees.
Finally let U and U ′ be nodes in V, s.t. U is in T and U ′ is outside T . Then U and
U ′ are adjacent in G, iff V is adjacent to U ′ in G and U is a twin descendant of V .

Proof. Implicit in the proof of Lemma 3.7 in [27]
Example. Recall the graph G and the pruning tree T with root V8 in Figure 5.1.

The only twin descendants of V8 are the nodes V6 and V8 itself. On the one hand, the
nodes V6 and V8 are indeed adjacent to exactly the same nodes outside T , namely V2

and V5. On the other hand, the other nodes in T (namely V1, V3, V9, V10, V11) are not
adjacent to any node outside T .

Lemma 5.6 (3-expressions). Let G = (V , E) and G ′ = (V ′, E ′) be graphs and let
S be a pruning sequence from G to G ′. Moreover, let T denote a pruning tree that is
obtained from S via the algorithm construct-pruning-trees. Finally, let V be an
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arbitrary node in T with child nodes U1, . . . , Ul from left to right. Then there exists a
3-expression tV that defines the graph G[TV ], s.t. all twin descendants of V are labelled
with 2 in G[TV ] and all other nodes in TV are labelled with 1. Such a 3-expression can
be computed inductively by the algorithm construct-3-expression given below.

Proof. See Claim 3.9 in [27]

Algorithm construct-3-expression.
begin

t := 2(V );
let U1, . . . , Ul denote the child nodes of V from left to right;
for i := l downto 1 do

if the edge from V to Ui is labelled with “ear” then

t := ρ3→1(η2,3(ρ2→3(tUi
) ⊕ t));

if the edge from V to Ui is labelled with “true” then

t := ρ3→2(η2,3(ρ2→3(tUi
) ⊕ t));

if the edge from V to Ui is labelled with “false” then

t := tUi
⊕ t;

fi;
od;
tv := t;

end.

Note that if the pruning sequence from G to G ′ contains the deletion of an isolated
node V , then the subgraph G[TV ] of G is a distance-hereditary connected component of
G. As has already been recalled in §4.1, the incidence graphs of γ-acyclic hypergraphs
are precisely the distance-hereditary, bipartite graphs. Hence, the above algorithm can
be used to compute the 3-expression of (every connected component of) the incidence
graph of any γ-acyclic hypergraph. Moreover, it is now also clear why we never had
to delete an isolated node in the example above, since the graph G in part a) of
Figure 5.1 consists of a single connected component and this connected component is
not distance-hereditary.

Example. We put the algorithm construct-3-expression to work by continu-
ing the above example. The 3-expressions tV for the nodes V in the pruning tree T
in part b) of Figure 5.1 are obtained as follows. As a short-hand notation, we shall
write ti to denote the 3-expression tVi

for any i.

t1 = 2(V1)
t11 = 2(V11)
t3 = ρ3→1(η2,3(ρ2→3(t11) ⊕ (t1 ⊕ 2(V3))))
t10 = 2(V10)
t9 = ρ3→2(η2,3(ρ2→3(t10) ⊕ 2(V9)))
t6 = ρ3→1(η2,3(ρ2→3(t9) ⊕ 2(V6)))
t8 = ρ3→2(η2,3(ρ2→3(t6) ⊕ ρ3→1(η2,3(ρ2→3(t3) ⊕ 2(V8))))) �

We are now ready to prove the following desirable property of the generalized
tree-width.

Theorem 5.7 (bounded generalized tree-width implies bounded clique-width).
Let C be a class of graphs and let k be some fixed constant, s.t. gtw(G) ≤ k for all
G ∈ C. Then there exists a constant k′, s.t. cw(G) ≤ k′ for all G ∈ C.

Proof. Let G = (V , E) be an arbitrary graph and let G ′ = (V ′, E ′) be the graph
obtained from G by exhaustive application of the rules in Definition 5.1 (i.e., deletion
of isolated nodes, deletion of ear nodes and contraction of two-element modules).
Moreover, let gtw(G) ≤ k, i.e., the condition tw(G ′) ≤ k holds. Recall from [19],
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that then we have cw (G ′) ≤ τ with τ = 2k+1 + 1. It suffices to show that then also
cw(G) ≤ k′ with k′ = τ + 1 holds.

Let t′ be a τ -expression that generates G ′. We assume that t′ uses the τ la-
bels {2, . . . , k′}. Let S be a pruning sequence from G to G ′ and let T1, . . . , Tm de-
note the corresponding pruning trees with root nodes V1, . . . , Vm. Moreover, for ev-
ery i ∈ {1, . . . , m}, let ti denote the 3-expression obtained by the above algorithm
construct-3-expression for the subgraph G[Ti] of G. From these 3-expressions
t1, . . . , tm together with t′, we construct a k′-expression s for G as follows:

First we transform t′ into t′′ by the following replacement steps: For every Vi with
i ∈ {1, . . . , m}, s.t. Vi is still contained in G′, we know that Vi is eventually introduced
in t′ by some subexpression of the form `(Vi). By Lemma 5.6, Vi has the label 2 in
ti. Then we replace the subexpression `(Vi) in t′ either by ti (if ` = 2) or by ρ2→`(ti)
(if ` 6= 2).

Finally, all 3-expressions in {t1, . . . , tm} whose root node does not occur in G ′ any
more, are added to t′′ via the ⊕-operator. We thus set

s := t′′ ⊕
⊕

Vi 6∈V′

ti

Obviously, t′ is thus transformed into a k′-expression s using the labels {1, . . . , k′}. It
remains to show that s indeed generates the original graph G.

As far as the nodes are concerned, every node in V is either introduced by some
3-expression ti or it is still contained in V ′. In the latter case, it is introduced by t′.
Hence, by construction, s indeed introduces every node V ∈ V . On the other hand,
no node of G is introduced twice in s. This is due to the fact that any two distinct
pruning trees Ti and Tj have no nodes from V in common and for any pruning tree
Ti, only the root node of Ti can be contained in V ′.

As far as the edges of G are concerned, we know that each 3-expression ti clearly
introduces all edges in the subgraph G[Ti] of G. Likewise, t′ introduces the edges in
E ′. Hence, in order to show that s indeed introduces all edges {U, V } it only remains
to consider the following cases:

(i) Suppose that the nodes U and V occur in two distinct pruning trees Ti and
Tj , respectively. Moreover, let Vi and Vj denote the root nodes of these pruning trees.
It follows from Lemma 5.5 that then also Vi and Vj are adjacent. Moreover, Vi and Vj

must still be contained in V ′. Hence, this edge {Vi, Vj} is eventually introduced by t′

and thus by s. Moreover, by our construction of s and by Lemma 5.6, we know that
U has the same label ` as Vi when the subexpression `(Vi) in t′ is replaced by ti (if
` = 2) or by ρ2→`(ti) (if ` 6= 2). Likewise, U gets the same label as Vj . Hence, when
eventually the edge between Vi and Vj is introduced in s, then the edge between U

and V will be introduced as well.
(ii) Suppose that the node U occurs in some pruning tree Ti with root node Vi

and that V is contained in V ′. By the same considerations as above, we know from
Lemma 5.5 that then also Vi and V are adjacent. Moreover, U is introduced with the
same label ` as Vi when the subexpression `(Vi) in t′ is replaced by ti or by ρ2→`(ti),
respectively. Hence, when eventually the edge between Vi and V is introduced in s,
then the edge between U and V will be introduced as well.

Now consider also the opposite direction, i.e., we have to show that all edges
{U, V } introduced by s indeed exist in G. Again, if both nodes U and V are in the
same pruning tree Ti or if both nodes are left in V ′, then this is obviously the case.
Like above, it remains to consider the following two cases:
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(i) Suppose that the nodes U and V occur in two distinct pruning trees Ti and
Tj , respectively. Moreover, let Vi and Vj denote the root nodes of these pruning trees.
In order to introduce the edge {U, V }, the expression s and, therefore, t′ actually
introduces the edge {Vi, Vj}. Hence, Vi and Vj are indeed adjacent in G. Moreover, U

must have the same label as Vi in ti. Likewise, V and Vj have the identical labels in
tj . Hence, by Lemma 5.6, U is a twin descendant of Vi in the pruning tree Ti and V

is a twin descendant of Vj in Tj . Thus, by Lemma 5.5, U and V are indeed adjacent
in G.

(ii) Suppose that the node U occurs in some pruning tree Ti with root node Vi

and that V is contained in V ′. By the same considerations as above, we may conclude
by the Lemmas 5.5 and 5.6 that Vi and V are indeed adjacent, that Vi is a twin
descendant of Vi in the pruning tree Ti and, finally, that U and V are indeed adjacent
in G.

In other words, the k′-expression s introduces exactly the nodes in V and exactly
the edges in E . Hence, s is indeed the desired k′-expression.

Example. Let G and G′ be the graphs from the example above. The graph G
together with the pruning tree T are shown in Figure 5.1. Recall that G ′ has the form
G′ = (V ′, E ′) with V ′ = {V2, V4, V5, V7, V8} and E ′ = {{V2, V4}, {V2, V7}, {V2, V8},
{V4, V7}, {V5, V7}, {V5, V8}}. A 4-expression t′ of G′ can be constructed as follows.
(introduce V4) s1 := 2(V4) (introduce V2) s2 := 3(V2) ⊕ s1

(connect V2, V4) s3 := η2,3(s2) (introduce V7) s4 := 4(V7) ⊕ s3

(connect V4, V7) s5 := η2,4(s4) (connect V2, V7) s6 := η3,4(s5)
(introduce V8) s7 := 5(V8) ⊕ s6 (connect V2, V8) s8 := η3,5(s7)
(relabel V2) s9 := ρ3→2(s8) (introduce V5) s10 := 3(V5) ⊕ s9

(connect V5, V7) s11 := η3,4(s10) (connect V5, V8) s12 := η3,5(s11)

Then s12 is the desired 4-expression t′ using the labels {2, . . . , 5}.
Now recall that the 3-expression t of G[T ] has already been computed above.

The 5-expression s that generates G can be constructed according to the proof of
Theorem 5.7 by redefining s7 as s7 := ρ2→5(t) ⊕ s6. Then s12 yields the 5-expression
s that generates G. Note that in s, the η3,5 operation applied to s7 not only introduces
the edge {V2, V8} but also {V2, V6}. Likewise, by the η3,5 operation applied to s11,
the edge {V5, V6} is introduced. �

By the tractability results recalled in §2.2, Theorem 5.7 immediately yields
Corollary 5.8 (MS1 queries and generalized tree-width). The evaluation of

an arbitrary fixed MS1 query over a class C of graphs is tractable, if C is of bounded
generalized tree-width.

By Theorem 5.7, bounded generalized tree-width implies bounded clique-width
while the converse is clearly not true. Just consider the class of cliques, whose gener-
alized tree-width is unbounded while the clique-width of all these graphs is 2. Hence,
the concept of bounded generalized tree-width does not allow us to push the tractabil-
ity barrier for the evaluation of MS1 queries any further. However, the advantage of
this new concept is that, in contrast to bounded clique-width, it can be efficiently
recognized.

6. Conclusion. In this paper, we have compared query-width, hypertree-width,
and several notions of acyclicity of hypergraphs with clique-width. Note that we have
mainly considered the clique-width of the incidence graph here. When considering
restrictions on conjunctive queries, this choice is somehow justified by the fact that
the clique-width of the primal graph is irrelevant for the tractability. In particular, as
we have pointed out in §2, there are NP-hard classes of queries whose primal graphs
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are of bounded clique-width. On the other hand, when considering restrictions on
the form of the structures, the primal graphs also play an important role. Actually,
we have shown that β-acyclicity and bounded clique-width of the primal graph are
uncomparable. However, the exact position of bounded clique-width of the primal
graph in Figure 1.1 has to be determined yet.

In §5 we have shown how the insights from the comparison of γ-acyclicity with
bounded clique-width can be used for an easy generalization of the tree-width. As
long as no polynomial time algorithm for recognizing graphs with clique-width ≤ k

(for some arbitrary but fixed k) has been found, the search for an appropriate general-
ization of the tree-width is an interesting research area. We have provided a first and
very simple step in this direction, to which further steps should be added, e.g.: rather
than just considering two-element modules, we might take arbitrary modules and in-
vestigate recursively the generalized tree-width of such a module. Likewise, rather
than just deleting ear nodes, we might consider the splitting of a graph into its bicon-
nected components. Here we also have the effect that a single biconnected component
may contain a module, that was not a module in the overall graph. Likewise, con-
traction of a module to a single node may allow us to further decompose a graph into
biconnected components. The interplay between these two kinds of decompositions
deserves further research efforts.
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