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ABSTRACT

Aims. We aim to compute the mass and velocity anisotropy profiles ofAbell 2142 and, from there, the pseudo phase space density
profile Q(r) and the density slope - velocity anisotropyβ − γ relation, and compare them with theoretical expectations.
Methods. The mass profiles have been obtained by using three techniques based on member galaxy kinematics, namely the caustic
method, the method of Dispersion - Kurtosis and MAMPOSSt. Through the inversion of the Jeans equation it has been possible to
compute the velocity anisotropy profiles.
Results. The mass profiles, as well as the virial values of mass and radius, computed with the different techniques are in agreement
with one another and with the estimates coming from X-ray andweak lensing studies. A concordance mass profile is obtainedby
averaging the lensing, X-ray and kinematics determinations. The cluster mass profile is well fit by an NFW profile withc = 4.0± 0.5.
The population of red and blue galaxies appear to have a different velocity anisotropy configuration, red galaxies being almost isotropic
while blue galaxies are radially anisotropic, with a weak dependence on radius. TheQ(r) profile for the red galaxy population agrees
with the theoretical results found in cosmological simulations. Theβ − γ relation matches the theoretical relation only in the inner
region when considering the red galaxies. The deviations might be due to the theoretical relations not taking into account the presence
of baryons and using DM particles as tracers.

Key words.

1. Introduction

The measure of the mass of cosmological objects, such as clus-
ters of galaxies, has proven to be an important tool for cosmo-
logical applications. The mass is not a direct observable, and
many techniques have been developed to infer it by measuring
observable quantities. Two methods that are widely used to infer
the mass profile of galaxy clusters are the X-ray and the lensing
techniques. The former makes use of the observations of the X-
ray emission of the hot intracluster plasma (ICM hereafter). The
lensing technique makes use of the relativistic effect of distortion
of the trajectories of light emitted by distant background galaxies
due to the mass of the observed cluster. These two methods have
anyway some limitations. In the case of X-ray technique, the
limitation comes from the usual assumption that the plasma of
the cluster is in hydrostatic equilibrium, and the cluster approxi-
mately spherically symmetric (Ettori et al. 2002) with no impor-
tant recent merger activity (Böhringer & Werner 2010). As for
the lensing technique, its limitation is that it allows to compute
the projected mass only, and this includes all the line-of-sight
mass contributions. The complementarity of the different tech-
niques is a great advantage to reliably constrain the mass ofa
cluster.

In this article, we use another kind of information, coming
from the kinematics of the galaxies belonging to the observed
cluster. In fact, the potential well of the cluster, due to the mass,

is the main driver of the orbital motion of the galaxies which, in
the absence of mutual interactions, can be treated as test particles
in the gravitational potential of the cluster. The kinematics of
galaxies therefore carries the information about the mass content
of the cluster. The motion takes place in a 6-dimensional phase
space, but the observations are able to capture only 3 of these
dimensions, namely 2 for the position and one for the line of
sight (los, hereafter) velocity. This is one of the most important
limitations of the mass estimate through the observation ofthe
kinematics of galaxies. To overcome this issue, most methods
assume spherical symmetry.

A spherically symmetric density profile following the univer-
sal relation provided by Navarro et al. (1996, 1997) (NFW here-
after) has often been adopted in these analyses. With the advent
of simulations with higher and higher resolution, the universality
of the NFW profile has been questioned (see e.g. Ludlow et al.
2013; Navarro et al. 2004; Vogelsberger et al. 2011). The self-
similarity of the DM-only haloes seems to be broken, and sub-
stituted with the pseudo phase space density (PPSD hereafter)
Q(r) = ρ/σ3, whereρ is the total matter density profile andσ is
the 3D velocity dispersion of the tracers of the gravitational po-
tential (Ludlow et al. 2010; Taylor & Navarro 2001). The use of
the radial velocity dispersion instead of the total one has proven
to be a valid and robust alternative for the computation of the
PPSD, in this case calledQr(r). The link between these two for-
mulations of the PPSD is constrained by the velocity anisotropy

Article number, page 1 of 11

http://arxiv.org/abs/1311.1210v2


(hereafter, anisotropy) of the system, which plays a non trivial
role in shaping the structure of a system. The density profile
and the anisotropy profile are in fact found to correlate. A best-
fit relation is provided by Hansen & Moore (2006) and Ludlow
et al. (2011), linking the logarithmic slope of the density pro-
file γ = d ln ρ/d ln r and the anisotropyβ(r) = 1 − (σt/σr)2,
whereσr andσt are, respectively, the velocity dispersions of
the radial component and of one of the two tangential compo-
nents. Hereafter we will refer to anisotropy asβ or the equiva-
lent σr/σt = 1/

√

1− β2. We also denote the relation between
anisotropy and logarithmic slope of the density profile as theβ−γ
relation.

In this article, we study Abell 2142 (A2142 hereafter), a rich
galaxy cluster atz ∼ 0.09. The great amount of galaxy mem-
bers allows us to derive the total mass profile, testing different
models, as well as performing dynamical analyses deriving the
anisotropy of the orbits of galaxies, and computing the pseudo
phase space density profile and theβ − γ relation. This cluster
shows evidence of some recent mergers. In fact, the X-ray emis-
sion appears to have an elliptical morphology elongated in the
Northwest-Southeast direction (Akamatsu et al. 2011; Marke-
vitch et al. 2000). The merging scenario is supported also bythe
presence of substructures of galaxies lying along the direction of
the cluster elongation, as found in the SZ maps by Umetsu et al.
(2009), lensing analysis by Okabe & Umetsu (2008) and anal-
ysis of the distribution of los velocities of Owers et al. (2011).
However, analysingXMM-Newton images to investigate the cold
fronts of A2142, Rossetti et al. (2013) exclude the mergers to be
major ones, but rather of an intermediate degree.

Throughout this paper, we adopt aΛCDM cosmology with
H0 = 70 km s−1 Mpc−1, Ω0 = 0.3,ΩΛ = 0.7. The virial quanti-
ties are computed at radiusr200.

2. The data

The photometric information has been obtained from the SDSS
DR7 database1, searching for the galaxies having 238◦.983 <
RA < 240◦.183, 26◦.633< DEC < 27◦.834 and petroMagr′ < 22.
The spectroscopic information has been provided by Owers etal.
(2011). The full sample is composed of 1631 galaxies with both
photometric and spectroscopic information. The cluster center
is assumed to coincide with the X-ray center provided by De
Grandi & Molendi (2002).

Two algorithms have been used to select cluster members,
those of den Hartog & Katgert (1996) and Mamon et al. (2013),
hereafter dHK andclean, respectively. Both identify cluster
members on the basis of their location in projected phase-space2:
R, vrest, using the spectroscopic values for the velocities. We
adopt the membership determination of dHK, resulting in 996
members. In fact, theclean algorithm removes one more galaxy
but it is very close to the distribution of selected members and
it seems unlikely to be an interloper. Anyway, this galaxy isat
≈ 3 Mpc from the cluster center, which should make no differ-
ence in the analysis here. Fig. 1 shows the location of galaxies
in the projected phase-space diagram and the members identifi-
cation of the two methods.

1 http://cas.sdss.org/astro/en/tools/chart/chart.asp
2 R is the projected radial distance from the cluster center (weassume
spherical symmetry in the dynamical analyses). The rest-frame veloc-
ity is defined asv = c (z − z) / (1+ z). The mean cluster redshiftz is
re-defined at each new iteration of the membership selection, until con-
vergence.

Fig. 1. Distribution of the galaxies of Abell 2142 in the projected
phase-space of projected radii and line-of-sight rest-frame velocities.
Cluster members, as identified by both dHK andclean algorithms, are
denoted by blue filled dots. The red diamond is the galaxy identified as
member by dHK but not by theclean algorithm. The purple solid lines
are the caustic, described in Sect. 3. The vertical dashed line locates the
virial radius of the concordance model (see Sect. 4).

Fig. 2. Color magnitude diagramg′ − r′ vs. r′. Red (blue) points
are relative to red (blue) member galaxies. Black points aregalaxies,
for which we have photometric information, that are not identified as
members. The red solid line locates the Red Sequence.

The cluster mean redshift and line-of-sight velocity disper-
sion, as well as their uncertainties, have been computed using
the biweight estimator (Beers et al. 1990) on the redshifts and
rest frame velocities of the members:〈z〉 = 0.08999± 0.00013,
σlos = 1193+58

−61km/s.

2.1. The color identification

We identify the Red Sequence iteratively by fitting theg′ − r′

vs. r′ color-magnitude relation of galaxies withr′ < 19.5 and
g′ − r′ > 0.7, then selecting galaxies within±2σ of the found
sequence (whereσ is the dispersion around the best fit rela-
tion). We refer to the cluster members within±2σ of the Red
Sequence, and those above this range, as Red Sequence galax-
ies, and to the cluster members more than 2σ below the Red
Sequence as blue galaxies, as shown in Fig. 2.
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Table 1. Coordinates, with respect to the cluster center, and radii of the
areas of the three main substructures, as found by Owers et al. (2011)

xc [Mpc] yc [Mpc] r [Mpc]

S2 0.600 0.763 0.467

S3 2.007 1.567 0.700

S6 2.327 –0.180 0.812

Table 2. Number of galaxies in the three samples.

Sample ntot n200

ALL 996 706

RED 564 447

BLUE 278 162

Notes. For each sample, the total number of member galaxies and the
number of member galaxies withinr200, the latter being the value of the
concordance model (see Sect. 4), are shown.

2.2. Removal of substructures

Owers et al. (2011) found some substructures in A2142, proba-
bly groups that have been recently accreted by the cluster. These
substructures can alter the kinematics of the system since they
still retain memory of the infall kinematics. For this reason, we
compute the mass profile of the system excluding the galaxies
belonging to these substructures. In particular we consider the
largest substructures in this cluster, namely S2, S3 and S6,fol-
lowing the nomenclature of Owers et al. (2011). Therefore, we
remove galaxies inside circles, the centers and radii of which are
reported in Table 1.

2.3. The samples

Some of the techniques (described in Sect. 3) that we use to com-
pute the mass profile of the cluster rely upon the assumption of
equilibrium of the galaxy population. Red galaxies are likely
an older cluster population than blue galaxies, probably closer
to dynamical equilibrium (e.g. Moss & Dickens 1977; van der
Marel et al. 2000). For this reason, red galaxies constitutea bet-
ter sample for the application of such techniques. Among red
galaxies, those outside substructures (see Sect. 2.2) are the most
likely to be in dynamical equilibrium. We therefore use these
galaxies for the determination of the mass profile.

The three samples that will be used hereafter are as follows.
We will refer to the sample made of all the member galaxies to as
the ALL sample. BLUE will be the sample made of blue galax-
ies. RED will be the sample made of red galaxies not belonging
to the substructures described in Sect. 2.2. See Table 2 for a
summary of the number of galaxies belonging to each sample.

3. The techniques

The methods we use, described hereafter, all assume spherical
symmetry.

3.1. Methods

DK: The dispersion kurtosis technique, hereafter shortened to
DK, first introduced by Łokas (2002), relies upon the joint
fit of the los velocity dispersion and kurtosis profiles of the
cluster galaxies. In fact, fitting only the los velocity disper-
sion profile to the theoretical relation coming from the pro-
jection (see Mamon & Łokas 2005b for single integral for-
mulae for the case of simple anisotropy profiles) of the Jeans
equation (Binney & Tremaine 1987) does not lift the intrinsic
degeneracy between mass profile and anisotropy profile de-
terminations (as Łokas & Mamon 2003 showed for the Coma
cluster). This technique assumes spherical symmetry and dy-
namical equilibrium of the system, and it allows to estimate
the virial mass, the scale radius and the value of the cluster
velocity anisotropy, considered as a constant with radius.

MAMPOSSt: The MAMPOSSt technique, recently developed
by Mamon et al. (2013), performs a maximum likelihood
fit of the distribution of galaxies in projected phase space,
assuming models for the mass profile, the anisotropy pro-
file, the projected number density profile and the 3D velocity
distribution. In particular, for our analysis we have used an
NFW model for the mass and the projected number density
profiles, either a simplified Tiret (Tiret et al. 2007) profile
or a constant value for the anisotropy profile and a Gaussian
profile for the 3D velocity distribution. As in the DK method,
to apply MAMPOSSt we must assume spherical symmetry
and dynamical equilibrium of the system. By this method we
estimate the virial mass, the scale radius of the mass density
profile and the value of anisotropy of the tracers.

Caustic: The caustic technique, introduced by Diaferio &
Geller (1997), is different from the other two methods, as
it does not require dynamical equilibrium, but only spherical
symmetry. Hence, this technique also provides the mass dis-
tribution beyond the virial radius. In projected phase space,
member galaxies tend to gather together. Measuring the ve-
locity amplitudeA of the galaxy distribution gives informa-
tion about the escape velocity of the system. In turn, the
escape velocity is related to the potential, hence the mass
profile: M(r) = M(r0) + (1/G)

∫ r

r0
A2(s)Fβ(s) ds, where

Fβ(r) = −2πG (3− β)/(2− β) r2ρ(r)/Φ(r) (Diaferio 1999).

Since the DK and MAMPOSSt techniques make use of the
assumption of dynamical equilibrium of the system, the use of
the RED sample allows a more correct application of those tech-
niques, since this sample is likely to be the most relaxed sample.
On the other hand, we use the ALL sample for the caustic tech-
nique.

3.2. Practical implementation

To compute the parameter values with the MAMPOSSt tech-
nique, we performed a Markov Chain Monte Carlo (MCMC)
procedure (see, e.g., Lewis & Bridle 2002), using the public
CosmoMC code of A. Lewis.3 In MCMC, the parameter space
is sampled following a procedure that compares the posterior
(likelihood times prior) of a point in this space with that ofthe
previous point, and decides or not to accept the new point fol-
lowing a criterion that depends on the two posteriors (we use
the Metropolis-Hastings algorithm). The next point is chosen
at random from a hyperellipsoidal gaussian distribution centered

3 http://cosmologist.info/cosmomc
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on the current point. This procedure ensures that the final den-
sity of points in the parameter space is proportional to the pos-
terior probability. MCMC then returns probability distributions
as a function of a single parameter, or for several parameters to-
gether. Here, the errors on a single parameter are computed by
marginalising the posterior probabilities over the other two free
parameters.

For the caustic technique, we use the ALL sample, since the
equilibrium of the sample is not required, also consideringthe
galaxies beyond the virial radius. To apply the caustic technique,
theFβ parameter (Diaferio 1999) must be chosen. The choice of
the parameter is quite arbitrary, hence we have tested 3 differ-
ent choices: the constant value 0.5, as first suggested in Diaferio
(1999), the constant value 0.7 as suggested in Serra et al. (2011),
and the profile described in Biviano & Girardi (2003). When
using the value 0.7 and the profile of Biviano & Girardi (2003),
the estimated virial masses are much greater than those obtained
with the other techniques relying on the dynamics of galaxies as
well as the results coming from the X-ray and the weak lensing
analysis (see below). Therefore we decided to consider onlythe
caustic technique withFβ = 0.5 (the same value has been re-
cently adopted by Geller et al. 2013). We adoptr0 = 0, which
relieves us from the choice of a mass at some finite radiusr0.
Once we have computed the mass profile, we fit it with a NFW
profile to obtain the estimate of the scale radius.

3.3. The scale radius of galaxy distribution

The NFW scale radius of the galaxy distribution is used as in-
put for the DK and MAMPOSSt analyses, therefore it has been
computed for the RED sample. The number density profile of
the spectroscopic sample is affected by the incompleteness issue.
We have corrected it using the completeness profile providedby
Owers et al. (2011).

We have divided the cluster in radial bins and counted the
galaxies inside each bin. In the bins where galaxies belonging
to substructures have been removed and where the presence of
a bright star in the cluster field caused a lack of detection, the
number density of galaxies is artificially reduced. In orderto
take this into account, we have assumed the galaxy density in
the affected regions to be equal to the mean density in the rest of
the bin.

The RED galaxy number density profile is well fit by a pro-
jected NFW profile (Łokas & Mamon 2001) with scale radius
equal to 0.95± 0.14 Mpc. The fit is an MLE fit performed on all
RED members withχ2

reduced= 0.83. The ALL and BLUE sam-
ples are less concentrated, the values of the scale radius being
1.84± 0.25Mpc for the ALL sample withχ2

reduced = 2.08 and
16± 11Mpc for the BLUE sample withχ2

reduced= 0.88. In Fig. 3
the surface number density profiles for the different samples are
shown. The scale radius for the BLUE sample is very high and
is due to a very flat distribution of these galaxies.

4. Mass profiles

4.1. Mass profiles obtained from the different methods

We have used the velocities of the galaxies withinr200
4 to com-

pute the mass profile of A2142. In Fig. 4, the velocity dispersion
profiles are shown, along with the best-fit profiles coming from
the DK and MAMPOSSt analyses.

4 r∆ is the radius within which the mean density is∆ times the critical
density of the Universe.

Fig. 3. Surface number density profiles for the ALL, RED and
BLUE samples, along with their best-fit projected NFW profiles. The
dashed vertical line locates the virial radius of the concordance model
(see Sect. 4).

The DK technique assumes a constant value for the
anisotropy, while we have chosen 2 profiles for the anisotropy
model in MAMPOSSt, a constant value and a Tiret profile
β(r) = β0 + (β∞ − β0) r/(r + ranis). Here, we setβ0 = 0 (inner
isotropy) and setranis to the scale radius of the galaxy number
density profile. In Sect. 5, we compute the anisotropy profilefor
the RED sample and find that it is not compatible with a Tiret
profile, therefore we made thea posteriori decision not to con-
sider the result of MAMPOSSt with a Tiret profile.

We have also tried to assume different mass profiles and
velocity anisotropy models in MAMPOSSt, namely a Burkert
(Burkert 1995), a Hernquist (Hernquist 1990) and a Softened
Isothermal Sphere profile (Geller et al. 1999), all with bothcon-
stant and Tiret profile for the anisotropy. The resulting estimates
of virial mass and mass profile concentration are very similar
to the case of NFW mass profile with constant anisotropy, with
differences of the order of very few percent. We therefore only
considered the NFW model for the mass profile.

The results are summarised in Tab. 3. Fig. 5 shows the de-
tailed results of our MAMPOSSt MCMC analysis.

In Fig. 6, we show the mass profiles obtained from the dif-
ferent methods, along with the virial values of mass and radius.
The results coming from the X-ray (Akamatsu et al. 2011) and
weak lensing (Umetsu et al. 2009, WL hereafter) analysis are
also shown.

4.2. Concordance mass profile

We now combine the constraints from the different mass mod-
elling methods to build aconcordance mass profile. We attempt
to give the same weight to kinematics, X-ray and WL in the final
estimate of the parameters, so we now compute a single value
coming from kinematical techniques for the scale radius, and
one for the virial radius. For this we take the mean of the values
rs andr200 of the different methods, inversely weighting by the
symmetrized errors. Since the measures of these two quantities
by the various methods are not independent (as they are based
on essentially the same data-sets) we multiply the error on the
average by

√
3, 3 being the number of values used to compute
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Fig. 5. Parameter space and probability distribution functions for the virial radius, mass profile scale radius and velocity anisotropy, as found
by MAMPOSSt. The coloured regions are the 1,2,3σ confidence regions, while the red stars and the red arrows locate the best-fit values. These
are based upon an MCMC analysis with 6 chains of 40 000 elements each, with the first 5000 elements of each chain removed (this is theburn-in
phase that is sensitive to the starting point of the chain). The priors were flat within the range of each panel, and zero elsewhere.

Table 3. Virial quantities of Abell 2142 obtained from different techniques

Method sample M200 [1015M⊙] r200 [Mpc] rs [Mpc] c σr/σt

caustic (Fβ = 0.5) ALL 1.26+0.54
−0.42 2.17+0.27

−0.28 0.58+0.12
−0.10 3.7±0.9

DK RED 1.32+0.11
−0.21 2.20+0.06

−0.12 0.93+0.39
−0.10 2.4±0.6 1.0+0.20

−0.04

MAMPOSSt RED 1.28+0.14
−0.49 2.18+0.08

−0.32 0.83+1.73
−0.35 2.6+2.0

−1.9 1.0+0.50
−0.20

Kinematics 1.31+0.26
−0.23 2.19± 0.14 0.64± 0.17 3.4± 0.9

X-ray 1.11+0.55
−0.31 2.08+0.30

−0.22 0.74±0.31 2.8±1.1

WL 1.24+0.18
−0.16 2.16±0.10 0.51±0.08 4.3±0.7

Concordance model 1.25±0.13 2.16±0.08 0.54±0.07 4.0±0.5

Notes. Values of virial mass, virial radius, scale radius and concentration for different techniques, the average value of the kinematical techniques
after symmetrizing the errors, and the value of the concordance model, obtained as the result of the average of all the values coming from the
different techniques (see Sect. 5 for the average procedure). X-ray values come from Akamatsu et al. (2011), weak lensing (WL) from Umetsu
et al. (2009). Both for X-ray and WL we had the values and the errors of the virial radius and the concentration: we have symmetrized these errors
and propagated them to obtain the estimates of the errors on the scale radii.
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Fig. 4. Velocity dispersion profiles for the ALL, RED and BLUE
sample. For the RED sample we also show the best-fit profile coming
from the DK analysis (black), and the profile computed after the MAM-
POSSt analysis (dashed red). The dashed vertical line locates the virial
radius of the concordance model (see Sect. 4).

Fig. 6. Mass profiles computed from the different methods. The black
dash-dotted line and the triangle with error bars refer to DKtechnique,
the dashed blue line and blue square to the caustic method, the solid red
line and red point to MAMPOSSt. The symbols with error bars refer to
the virial mass and radius. The purple diamond with error bars is the
result of the X-ray analysis, while the orange star is the onecoming from
weak lensing analysis. The shaded area is the 1σ confidence region of
the mass profile according to the MAMPOSSt results.

the average. In fact, the usual error on the weighted averagede-
creases like the square root of the number of values.

The mean value and its error are shown as solid and dashed
lines in the left panels of Fig. 7. In the right panels of Fig. 7, we
plot the values of scale and virial radius obtained from the three
independent methods: kinematics, X-ray and WL. The average
error-weighted value and its error, this time computed without
multiplication factor (since the three measures are independent),
arer200 = 2.16± 0.08,rs = 0.54± 0.07.

5. Velocity anisotropy profiles

The Jeans equation can be solved forβ(r) to obtain information
about the anisotropy of the orbits of the system. The Jeans equa-
tion contains 4 unknown quantities, therefore to solve it weneed

Fig. 7. Virial (top panels) and scale (bottom panels) radius for all
the methods.Left panels: blue diamonds are values obtained from the
caustic technique, red ones for MAMPOSSt, and black ones forDK
(from left to right, respectively). The average value and its error are the
solid and dashed lines, respectively. See the text for the computation of
the error.Right panels: values obtained from the kinematical analysis,
X-ray and WL (from left to right, respectively). The averagevalue and
its error are the solid and dashed lines, respectively.

other 3 relations, namely the Abell integrals to relate the pro-
jected number density and velocity dispersion to the real ones
and assume a mass profile for the cluster. Thisanisotropy inver-
sion was first solved by Binney & Mamon (1982), but several
other authors have provided simpler algorithms. We follow the
approach of Solanes & Salvador-Sole (1990), and we test the
results by comparing them with those obtained following theap-
proach of Dejonghe & Merritt (1992). Once the mass profile
is specified, this procedure is fully non parametric. In fact, in-
stead of fitting the number density profile, we bin and smooth
it with the LOWESS technique (see, e.g. Gebhardt et al. 1994).
We then obtain the 3D number density profile by using Abel’s
equation (e.g., Binney & Mamon 1982). In the same way, we
smooth the binnedσlos profile. This procedure requires the so-
lution of integrals up to infinity. Mamon et al. (2010) showed
that a 3σ clipping removes all the interlopers beyond 19 virial
radii. Therefore, an extrapolation up to such a distance is enough
to solve the integrals having infinity as limit of integration. We
use 30 Mpc as the maximum radius of integration, and extrap-
olate the smoothed profiles up to this limit. A factor 2 change
of the upper limit of integration does not affect our results in a
significant way.

The result of the anisotropy inversion is shown in Fig. 8. The
confidence levels are obtained by estimating two error contribu-
tions. One contribution comes from the uncertainties in thenum-
ber density andσlos profiles. Since the number density profile is
affected by much smaller uncertainties than theσlos profile, we
only consider the error contribution from the latter. It is virtually
impossible to propagate the errors on the observedσlos through
the Jeans inversion equations to infer the uncertainties ontheβ
profile solution. We then proceed to estimate these uncertainties
the other way round. We modify theβ profile in two different
ways: 1)β(r) → β(r) + S + T r, and 2)β(r) → J β(r) + Y, us-
ing a wide grid of values for the constants, respectively (S , T )
and (J, Y). Using the mass and anisotropy profiles, it is then pos-
sible to determineσr(r) and then theσlos profile (e.g., Mamon
& Łokas 2005b). The range of acceptableβ profiles is deter-
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Fig. 8. Velocity anisotropy profile for the ALL, RED and BLUE
samples. The solid line is the result of the inversion of the Jeans equa-
tion, while the dotted lines are the 1σ confidence intervals. The vertical
dashed line locates the virial radius.

mined by aχ2 comparison of the resultingσlos profiles with the
observed one.

In addition, another source of uncertainty on theβ profile
solution comes from the uncertainty in the mass profile. This
is estimated by running the anisotropy inversion for four differ-
ent mass profiles corresponding to the combination of allowed
values of virial and scale radii within 1σ. The profiles obtained
modifying the mass profile (not shown) lie within the confidence
interval of the main result, hence the confidence interval repre-
sents well the uncertainty on the anisotropy profile.

The ALL sampleβ(r) depends weakly on radius: the inner-
most region is compatible with isotropy, while the anisotropy is
increasingly radial at large radii. The RED sample is compati-
ble with isotropy at almost all radii. The difference between the
two samples is almost entirely due to the BLUE galaxies, the
anisotropy of which is compatible with isotropy in the center,
then becomes rapidly radially anisotropic and finally flattens at
radii> 1Mpc.

As a check, we compare the values ofβ obtained from the
anisotropy inversion with the best-fit results of DK and MAM-
POSSt. In these techniques, we assumed a constant value of the
anisotropy for the RED sample, which appears to be a good as-
sumption given the results ofβ after the inversion. The value
estimated by both DK and MAMPOSSt isβ = 0.0, consistent
within the uncertainties with theβ profile shown in Fig. 8.

6. Q(r) and β − γ relations

We can take advantage of the results just found for the galaxy
populations of A2142 to test the PPSD profile and the rela-
tion linking the logarithmic slope of the density profile andthe
anisotropyβ(r).

The mass is dominated by dark matter, which is not an ob-
servable, so we use the galaxies as tracers of the total matter
dynamics. We thus consider the radial velocity dispersion and
velocity anisotropy that we measured (using our concordance
mass profile) for the galaxies (see Sect. 5), instead of thoseof
the dominant DM, which we cannot directly measure. We still
have a choice for the density profile in both the PPSD and the
β − γ relation: it could be either the total density profile or the

Fig. 9. Radial profiles ofQ (left columns) andQr (right columns)
within the virial radius, and the 1σ confidence regions (shaded areas),
for different types of member tracers: green for the ALL sample (top
panels), red for the RED sample (middle panels) and blue for the BLUE
sample. The shaded areas represent the propagation of the errors asso-
ciated withρ, σ andσr. The dashed lines are the power-law relations
Q(r) ∝ r−1.84 andQr(r) ∝ r−1.92 found by Dehnen & McLaughlin (2005)
on numerically simulated haloes. The vertical dotted lineslocate the
virial radius of the concordance model (see Sect. 4).

density profile of the tracer for which we compute the radial ve-
locity dispersion and the anisotropy.

6.1. Use of the total matter density profile

We begin by adopting the total density profileρ(r). We compute
both the PPSD profileQ(r) = ρ/σ3 and its radial counterpart
Qr(r) = ρ/σ3

r . In the top panels of Fig. 9, we show, for the
different tracers (ALL, RED, BLUE), the radial profile ofQ(r)
(left panels) andQr(r) (right panels) within the virial radius. In
order to compute the errors on the best-fit slope parameters,we
have assumed the number of independentQ andQr values to be
the same as those of the observed velocity dispersion profile(see
Fig. 4).

Assuming a power-law behaviour of the PPSD profile, as
suggested by Dehnen & McLaughlin (2005), we fit the profiles
of both Q(r) and Qr(r) in two ways: either keeping the expo-
nent fixed to the values found for haloes inΛCDM simulations
by Dehnen & McLaughlin (2005) or considering it as a free pa-
rameter. In Table 4 the results of such fits are shown. TheQ(r)
profile for the RED sample is in good agreement with ther−1.84

relation by Dehnen & McLaughlin (2005), the latter being al-
most always within the confidence interval of our results. The fit
of the profile with a linear relation in the log-log plane is compat-
ible with the theoretical value−1.84 within 1.7σ. On the other
hand, for the BLUE sample, the slope of the PPSD is steeper
than the theoretical expectation.

The Qr(r) profiles of all 3 samples are in good agreement
with the relation that Dehnen & McLaughlin (2005) found for
simulatedΛCDM haloes,r−1.92. The better agreement for the
BLUE sample is due to the relatively larger uncertainty thatwe
have onσr with respect toσ, because of the large uncertainties
that affectβ(r). The profile for the RED sample is in agreement
with the theoretical relation within 0.3σ.
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Table 4. Best-fit parameters of the PPSD profile

Q(r) Qr(r)

A B A B

[M⊙ Mpc−3 km−3 s3] [M⊙ Mpc−3 km−3 s3]

Fixed slope

ALL 5534± 314 −1.84 25071± 3341 −1.92

RED 7727± 391 −1.84 38484± 5622 −1.92

BLUE 1753± 294 −1.84 3998± 1084 −1.92

Free slope

ALL 6342± 367 −2.28± 0.11 29175± 4223 −2.27± 0.24

RED 8034± 411 −2.00± 0.09 38881± 5665 −1.77± 0.23

BLUE 3121± 793 −2.97± 0.50 5413± 1810 −2.60± 0.67

Q(r) GAL Qr(r) GAL

A B A B

[10−9 Mpc−3 km−3 s3] [10−9Mpc−3 km−3 s3]

Fixed slope

ALL 6.82± 0.68 −1.84 28.49± 5.37 −1.92

RED 3.62± 0.46 −1.84 13.23± 3.21 −1.92

BLUE 0.98± 0.23 −1.84 1.30± 0.47 −1.92

Free slope

ALL 10.19± 25.60 −1.09± 0.15 46.94± 7.34 −1.09± 0.26

RED 8.21± 17.01 −0.90± 0.14 40.48± 6.69 −0.71± 0.25

BLUE 0.88± 1.81 −0.90± 0.61 1.52± 0.55 −0.52± 0.74

Notes. The PPSD profile is parametrized asQ(r) = A · rB. The first panel at the top shows the results of the fit ofQ(r) andQr(r) for the different
samples, both when keeping fixed the exponent to the values suggested by Dehnen & McLaughlin (2005), and when consideringthe exponent as
a free parameter. In the bottom panel, the one identified byQ(r) GAL andQr(r) GAL, the same quantities are shown, but referred to the PPSD
computed using the galaxy number density profile instead of the total matter density profile.

Ludlow et al. (2010) warn against fitting the pseudo phase
space density profile outside the scale radius, because of the up-
turn they find in theQ(r) profile in the outer regions. However,
for our 3 samples, none of theQ(r) andQr(r) profiles show sig-
nificant curvature in log-log space.

In Fig. 10, we show theβ(r) − γ(r) relation. Theβ − γ
relation of the ALL sample matches well that found by Hansen &
Moore (2006) on single-component dissipationless simulations
(cosmological and academic). However, theβ − γ relation for
the RED sample shows curvature, with lower values ofβ at the
steeper slopes (larger radii) than found in simulations by Hansen
& Moore (2006).

6.2. Use of the tracer density profile

We now repeat our analyses of the PPSD and theβ− γ relations,
replacing the total mass density with the number density of the
tracer of the sample.

In Fig 11, we show the PPSD computed using the galaxy
number density profile instead of the total matter density one.
For all three samples, bothQ(r) andQr(r) remain as power laws,

but are considerably shallower than the relation found by Dehnen
& McLaughlin (2005) on simulatedΛCDM halos.

In Fig. 12, we show theβ − γ relation computed using the
galaxy number density profile instead of the total matter density
one. The behaviour does not change significantly from the case
of theβ−γ relation computed using the total matter density pro-
file: the global shapes of the profiles are similar but the BLUE
sample now presents a noisier profile, while ALL and RED pro-
files are shifted toward higher values ofγ, reflecting the shal-
lower trend of the galaxy number density profile with respectto
the matter density one.

7. Conclusions and Discussion

We have computed the mass and velocity anisotropy profiles of
A2142, a nearby (z = 0.09) cluster, using the kinematics of clus-
ter galaxies. After a membership algorithm was applied, we con-
sidered the sample made of all members (ALL sample), as well
as two subsamples, consisting in blue member galaxies (BLUE
sample) and in red member galaxies that do not belong to sub-
structures (RED sample).

Article number, page 8 of 11



Munari, E. et al.: Mass, velocity anisotropy and pseudo phase space density profiles of Abell 2142

Fig. 10. Velocity anisotropy versus logarithmic slope of the total
density profile. The samples are ALL galaxies (top), RED (middle) and
BLUE galaxies (bottom panel). The dashed areas are the 1σ confidence
regions. Theβ−γ relation found by Hansen & Moore (2006) for single-
component dissipationless simulations is shown as the dotted lines. The
vertical dot-dashed line locates the value ofγ relative to the virial radius.

Fig. 11. Same as Fig. 9, but now using the radial profiles of galaxy
number density instead of total mass density to estimate thePPSD.

Fig. 12. Same as Fig. 10, but now using the radial profiles of galaxy
number density of the three samples instead of total mass density to
estimate the slope.

We have made use of three methods based on the kinematics
of galaxies in spherical clusters: DK, MAMPOSSt and Caus-
tic (see Sect. 3). The mass profiles, as well as the virial values
of the mass and the radius, are consistent among the different
methods, and in agreement with the results coming from the X-
ray (Akamatsu et al. 2011) and the weak lensing (Umetsu et al.
2009) analyses. Serra et al. (2011) found that the caustic tech-
nique tends to overestimate the value of mass in the central re-
gion of a cluster. Our results appear consistent with this finding,
the caustic mass profile increasing more rapidly with radiusin
the inner part with respect to the profiles coming from DK and
MAMPOSSt.

Munari et al. (2013) report the scaling relation between the
virial mass of clusters and the velocity dispersion of the mem-
ber galaxies within the virial sphere. Using the most realis-
tic (“AGN”) hydrodynamical simulation at their disposal, they
findσ1D = 1177 [h(z) M200/1015M⊙]0.364 for the galaxies within
the virial sphere, whereσ1D is the total 3D velocity dispersion
within r200, divided by

√
3. The analysis was carried out in the

6D phase space, hence is immune to projection effects. Nev-
ertheless, because of the statistical nature of the relation they
find, it provides a relation which is likely to hold for real, ob-
served systems in a relaxed state. As a test, we check the consis-
tency of the velocity dispersion – mass relation found by Munari
et al. (2013) with our findings for A2142. The values of virial
mass obtained with this relation are as follows: 1.42× 1015M⊙
for the ALL sample, 1.07 × 1015M⊙ for the RED sample and
2.50× 1015M⊙ for the BLUE sample. The values obtained for
the ALL and RED samples are in agreement, within the uncer-
tainties, with the concordance value of the mass of A2142. This
seems to indicate that RED cluster members are in, or very close
to, equilibrium. The large difference obtained for the BLUE
cluster members warns against using the blue galaxy los velocity
dispersion as a proxy for the cluster mass.

A glance at Table 3 indicates that our different estimates of
the mass concentrations are bimodal: the caustic and weak lens-
ing have values≃ 4, while those for the DK, MAMPOSSt and
X-ray methods are< 3.

Could these lower mass concentrations found by methods
based upon internal kinematics be a sign that A2142 is out of
dynamical equilibrium? The substructures found by Owers etal.
(2011) and the results by Rossetti et al. (2013) on the importance
of the mergers undergone by A2142 suggest that full relaxation
is to be excluded. On the other hand, the agreement on the virial
radius among the different method and with the results from X-
ray and lensing (the latter of which does not require equilibrium)
suggests that A2142 is not far from dynamical equilibrium. This
allows us to assume a concordance model for the mass profile,
with M200 = (1.25± 0.13)× 1015M⊙ andc = 4.0± 0.5.

Previous studies based on the kinematics of galaxies in clus-
ters have shown that galaxy populations have similar concentra-
tions to those of the total matter, or slightly smaller, bluegalax-
ies being instead much less concentrated (see, e.g., Biviano &
Girardi 2003; Katgert et al. 2004). On the other hand, Biviano
& Poggianti (2009) found in the ENACS clusters that the red
galaxy population has a concentration that is as much as 1.7
times lower than that of the total matter density profile. Here,
we find that the scale radius for the RED galaxy number den-
sity profile (0.95 kpc) is 1.8 times greater than that of the total
mass density profile from our concordance model, which is in
agreement with the ENACS result.

The scale radius of the BLUE population in Abell 2142 ap-
pears unusually high, leading to a concentration (using ourcon-
cordance virial radius) of 0.16 (best) or 0.39 (+1σ), which are

Article number, page 9 of 11



much lower than expected from previous studies. Blue galax-
ies within the virial cones of clusters are more prone to projec-
tion effects than red galaxies: Mahajan et al. (2011) analysed
clusters and their member galaxies in the SDSS, using los ve-
locities and cosmological simulations to quantify the projection
effects. They conclude that 44± 2% of galaxies with recent (or
ongoing) starbursts that are within the virial cone are outside the
virial sphere. Since galaxies with recent star formation have blue
colours, our BLUE sample includes this recent-starburst sub-
sample, plus perhaps some more galaxies with more moderate
recent star formation. Moreover, an analysis of cosmological
simulations by Mamon et al. (2010) indicates that there is a high
cosmic variance in the fraction of interlopers within the DMpar-
ticles inside the virial cone. This suggests that the unusually low
concentration of the blue galaxy sample could be a sign of an
unusually high level of velocity interlopers with low rest frame
velocities in front and behind Abell 2142.

Wojtak & Łokas (2010) found a virial radius that corre-
sponds tor200 = 2.15+0.10

−0.12Mpc, in excellent agreement with our
different estimates of the virial radius (Table 3). On the other
hand, they find a scale radiusrs = 1.0+0.3

−0.2Mpc not compatible
with our value of the concordance model, although in agree-
ment with the results of the DK, MAMPOSSt and X-ray analy-
ses. Note that Wojtak & Łokas assumed that the DM and galaxy
scale radii were equal. Such an unverified assumption may have
biased high their scale radius for the mass distribution. Onthe
other hand, the values of the DM scale radii that we found from
DK and MAMPOSSt (0.93 and 0.83 Mpc, respectively, see Ta-
ble 3) are quite close to that of the RED galaxy population used
as the tracer (0.95 Mpc).

The parameters describing the mass profile are then used to
invert the Jeans equation and compute the velocity anisotropy
for the three different samples considered. Despite large uncer-
tainties, theβ(r) profile for the full set of cluster members is
compatible with isotropy, becoming weakly radially anisotropic
in the outer regions. The behaviour of the RED sample is dif-
ferent. Although compatible within 1σ with isotropy at all
radii within r200, it has a marginally significant decreasing slope,
starting slightly radially anisotropic in the center and becoming
slightly tangentially anisotropic at large radii. The difference
between theβ(r) profiles for the ALL sample and the RED sam-
ple is mainly due to the behaviour of the BLUE sample, which
shows radial anisotropy at all radii except in the center where it
is isotropic.

The velocity anisotropy profile for the ALL sample in the
center is compatible with that found by Wojtak & Łokas (2010).
In the outer part, at≃ 3Mpc, the value ofσr/σθ found by Wojtak
& Łokas (2010) is higher and 1.4σ distant from ours. Analysing
a stacked sample of 107 ENACS clusters, Biviano & Katgert
(2004) found the orbits of ellipticals and S0s (hence red) galaxies
to be compatible with isotropy and those of early and late-type
spirals to have radial anisotropy. The velocity anisotropyprofile
for our BLUE sample presents a behaviour that lies in between
the profiles found in Biviano & Katgert for the early spirals and
the late spirals together with emission line galaxies, suggest-
ing agreement between their findings and ours. The anisotropy
profiles we found for the ALL sample appears to be consistent
with that measured in simulatedΛCDM haloes by Lemze et al.
(2012). The scatter in the anisotropy profiles is considerable in
the above-mentioned papers and this reflects the variety of con-
figurations of galaxy clusters. In this sense, the behaviourof the
anisotropy of A2142 does not present strong deviations fromthe
general trend.

With the information obtained on A2142, we are able to test
some theoretical relations regarding the interplay between the
mass distribution and the internal kinematics of a cluster.We
investigated the radial profile of the pseudo phase space density
Q(r), as well as its radial counterpartQr(r). When we consider
the total density profile to computeQ andQr, we find that the
profiles for A2142 are weakly consistent with the theoretical ex-
pectations (Dehnen & McLaughlin 2005; Ludlow et al. 2010)
when considering the ALL sample, but a good agreement is ob-
served in the RED sample. This strengthens the scenario of blue
galaxies being a population of galaxies recently fallen into clus-
ters, that have had no time to reach an equilibrium configuration
yet, or are heavily contaminated by interlopers.

Biviano et al. (2013) have performed a similar analysis on
MACS1206, a cluster atz = 0.44. They find aQ(r) profile with
a slope for the blue galaxies in agreement with the predictions
of Dehnen & McLaughlin (2005). We speculate that this differ-
ent behaviour might provide a hint on the dynamical history of
clusters. In fact, a cluster that has undergone the phase of vio-
lent relaxation only recently might present a population ofblue
galaxies in equilibrium. On the other hand, a cluster that has
undergone the violent relaxation phase since long, should have
had time to transform its blue galaxies into red ones. Therefore
the blue galaxy population would be mainly composed of only
recently accreted galaxies, hence not in dynamical equilibrium.

We estimate the PPSD profile of the total matter making the
assumption that the galaxy velocity dispersion is a good proxy
for the total matter dynamics. When we replace the total mass
density by the number density of the tracer for which we com-
pute the velocity dispersion, the PPSDs are shallower power-
laws than those found by Dehnen & McLaughlin (2005) in sim-
ulatedΛCDM haloes.

The anisotropy configuration of the internal kinematics re-
flects the formation history of the cluster. Therefore we expect a
relation between the anisotropy and the potential of the cluster.
A relation linking theβ(r) profile andγ(r), the logarithmic slope
of the potential, has been analysed and compared to the theo-
retical results provided by Hansen & Moore (2006), resulting in
a weak agreement. A correlation between theβ andγ appears
to hold out toγ ≃ −2.3 in the RED sample, corresponding to a
radial distance≃ 0.5 r200 ≃ 1 Mpc. Interestingly, cluster-mass
simulatedΛCDM haloes also follow the Hansen & Moore rela-
tion out to slopes ofγ ≈ −2.3 but not beyond (see Fig. 17 of
Lemze et al. 2012). Our considerations do not change when we
compute theβ−γ relation using the logarithmic slope of the num-
ber density profile of galaxies instead of the total matter density
profile.

This brings the question of what is more relevant for galaxy
clusters: the total mass density or the tracer number density?
One can argue that the PPSDs found inΛCDM haloes are the
consequence of the global gravitational potential (hence total
mass profile), violent relaxation, or more generally the mass
assembly of clusters through a combination of a several major
mergers and numerous minor mergers. Alternatively, one can
argue that it is inconsistent to associate the total densityprofile
to the tracer velocity dispersion profile and that one shouldin-
stead associate the tracer density profile to the tracer velocity
dispersion profile. Similar questions arise for the origin of the
NFW model for density profiles on one hand and of theβ − γ
relation on the other.

For giant elliptical galaxies, the NFW model must apply to
the DM component, while the observed tracer applies forβ − γ.
Indeed, Mamon & Łokas (2005a) have shown that the observed
inner aperture velocity dispersions are too high to be matched by
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a single NFW component (while the addition of a stellar Sérsic
component matches the observations). Moreover, in the ellipti-
cal galaxy remnants of binary mergers of spiral galaxies made of
stars, gas and DM, theβ−γ relation is well obeyed by the stellar
component (Mamon et al. 2006), but not well with the slope of
the total mass density profile (Mamon, unpublished).

So it surprising that the PPSDs that we measure for
Abell 2142 match better the relations found inΛCDM haloes
when the total density profile is used instead of the density pro-
file of the tracer used to estimate the velocity dispersion. Perhaps
one should not expect clusters to behave as elliptical galaxies.
Indeed, in comparison with the progenitors of elliptical galaxies,
the progenitors of clusters (galaxy groups) have deeper gravita-
tional potentials that more effectively prevent cooling and dis-
sipative contraction of gas. Moreover, cluster-mass halosgrow
relatively faster atz = 0 than galaxy-mass halos (e.g., van den
Bosch 2002), hence are built by more recent mergers than ellip-
tical galaxies, and these mergers, some major, will mix the inner
regions. For this reason, the baryonic and DM mass distributions
in clusters are closer than in elliptical galaxies.

At all radii, the RED galaxy sample shows somewhat lower
β for givenγ (measured with total mass density) than found in
simulated haloes. This slight mismatch might be due to the use
of galaxies as tracers of the internal kinematics of the cluster.
In fact, it has been shown (see e.g. Ludlow et al. 2010; Munari
et al. 2013) that galaxies and DM may have different kinematics.
Furthermore, the above-mentioned relations have been derived
using DM-only simulations, therefore the effect of the presence
of baryons is not taken into account. Finally, theβ − γ relation
may vary from cluster to cluster (Ludlow et al. 2011).

Before reaching any conclusion, we must keep in mind that
the present theoretical studies are lacking the influence ofthe
baryonic physics, as well as the dynamical processes actingon
galaxies but not on DM particles. This might induce the differ-
ences when comparing the theoretical predictions with the ob-
servational results.

When we will have a better control on these properties, the
PPSD might provide a powerful tool for the study of structure
formation. As an example, the PPSD of the blue galaxies in
A2142 appears very different from that found for the blue galax-
ies in another cluster, MACS J1206.2–0847 atz = 0.44 (Biviano
et al. 2013). This discrepancy suggests interesting perspectives
for the comprehension of the formation of galaxy clusters.
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