
Towards Program Optimization through
Automated Analysis of Numerical Precision

Michael D. Linderman Matthew Ho
David L. Dill Teresa H. Meng

Computer Systems Laboratory
Stanford University
Stanford, CA, USA

{mlinderm, matthew.ho, thm}@stanford.edu,
dill@cs.stanford.edu

Garry P. Nolan
Microbiology & Immunology

Stanford University
Stanford, CA, USA

gnolan@stanford.edu

Abstract
Reducing the arithmetic precision of a computation has real perfor-
mance implications, including increased speed, decreased power
consumption, and a smaller memory footprint. For some architec-
tures, e.g., GPUs, there can be such a large performance difference
that using reduced precision is effectively a requirement. The trade-
off is that the accuracy of the computation will be compromised. In
this paper we describe a proof assistant and associated static anal-
ysis techniques for efficiently bounding numerical and precision-
related errors. The programmer/compiler can use these bounds to
numerically verify and optimize an application for different input
and machine configurations. We present several case study applica-
tions that demonstrate the effectiveness of these techniques and the
performance benefits that can be achieved with rigorous precision
analysis.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification–Validation; D.3.4 [Programming Lan-
guages]: Processors–Optimization; G.1.0 [Mathematics of Com-
puting]: Numerical Analysis–Computer Arithmetic

General Terms Design, Performance, Verification

Keywords Numerical Precision, Static Error Analysis, Floating-
Point Numbers, Fixed-Point Numbers

1. Introduction
For many programmers numerical precision is an afterthought;
developers choose the numerical type with the maximum practi-
cal precision for their variables (typically double) and treat these
operands as real numbers. Floating and fixed point numbers are
only an approximation to the real numbers. In the worst case this
approximation manifests itself in subtle bugs [17]. And so program-
mers over-provision, using a more precise representation than is
necessary, with the goal of preventing numerical precision errors.
The choice of numerical types has real impacts on application per-
formance, though, and should not be made casually.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO’10 April 24–28, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-60558-635-9/10/04. . . $10.00

The absence of tools for program-driven analysis of numeri-
cal errors makes it difficult for programmers to rigorously evalu-
ate performance-accuracy trade-offs. We encountered this absence
first-hand when re-implementing a Bayesian network inference ap-
plication [1] (described in Section 4) that targets modern general
purpose processors (GPPs), graphics processing units (GPUs) and
programmable logic (FPGAs). This work grew out of efforts to ver-
ify and optimize this application for the different kinds of fixed and
floating arithmetic available on those platforms.

On GPPs, GPUs and FPGAs reducing precision can improve
application performance. When targeting FPGAs, or designing cus-
tom application-specific hardware (ASICs), reduced precision di-
rectly translates to fewer gates and narrower datapaths, and thus po-
tentially to reduced energy consumption and increased maximum
clock rate [14]. On GPPs, reduced precision can reduce functional
unit latency, e.g. division, and improve memory and arithmetic
throughput [13]. Switching from 64 to 32-bit floating point po-
tentially improves memory bandwidth and cache utilization (mea-
sured in operands per time or volume) by 2× and the throughput
of the 128-bit SIMD SSE unit by 2× as well. The difference is
even more striking for GPUs: 32-bit arithmetic throughput is 933
GigaFLOPs peak vs. 78 GigaFLOPs for 64-bit floating point on the
2009 NVIDIA Tesla C1060.

The challenge is to determine when precision reduction is possi-
ble. Detailed simulation and testing, along with hand analysis, is the
most commonly used technique. However simulation is time con-
suming, requires both working “ideal” and test implementations,
and does not guarantee the absence of problems in cases not tested.
Compile-time program-driven static analysis, which can efficiently
and accurately bound numerical errors in a computation without
considering a potentially unbounded set of inputs, offers a desir-
able alternative. In contrast to simulation, static analysis provides
comprehensive coverage and guaranteed bounds on rounding er-
rors. These bounds will by definition be pessimistic; our goal is
to ensure that they are accurate enough to be useful for program
verification and optimization.

In this paper we introduce Gappa++, an enhanced version of
the Gappa proof assistant1 [6], and a set of accompanying tech-
niques that enable automated analysis of numerical errors in fixed
and floating point, linear and non-linear, computations. Gappa++
extends Gappa’s interval arithmetic (IA)-based proof engine with
an affine arithmetic (AA)-based engine that can more accurately

1 We obtained Gappa 0.11.3 from http://lipforge.ens-lyon.fr/www/gappa/,
our modified version along with case study inputs can be obtained from
http://merge.stanford.edu/gappa

bound linear computations with correlated errors. Using Gappa++
we verify the correctness and optimize the performance for several
real-world applications.

This paper makes the following contributions:

• We describe Gappa++, a novel static precision analysis tool that
enhances the Gappa proof assistant with: 1) an AA-based ex-
tension that computes more accurate bounds for linear compu-
tations; 2) better support for transcendental functions; and 3)
support for rounding modes on NVIDIA GPUs.

• We present analysis techniques for verifying and optimizing
applications using the proof assistant for GPPs, FPGAs and
GPUs. We detail the GPU assembly-to-Gappa transformations
used to accurately model the GPU’s hardware intrinsics.

• We present three representative application case studies: Bayesian
network inference [1], neural prosthetics [25], and Black-
Scholes stock option pricing [2], that demonstrate the effec-
tiveness of the proof assistant, and the performance benefits
that can be achieved with rigorous precision analysis.

The remainder of the paper is organized as follows: Section 2
provides relevant background on fixed and floating point arith-
metic, IA and AA; Section 3 describes the Gappa++ proof assis-
tant; Section 4 presents several application case studies; and finally
Section 5 concludes.

2. Background and Related Work
2.1 Floating and Fixed Point Error
Evaluating a computation includes two primary sources of error:
1) approximation errors (often termed methodical errors), such as
approximating ex as 0 for x � 0; and 2) rounding errors, produced
when using an insufficiently precise numerical representation.

Rounding errors result from having only finite precision to rep-
resent real numbers. Fixed point numbers are represented as m ·2e,
where m is the signed mantisaa and 2e is an implicit, constant scal-
ing factor determined by the format. Floating point numbers (fol-
lowing the IEEE 754 standard [21]) are implemented as sign·1.m·
2(e−bias), where m is the unsigned mantissa and e is the variable
exponent2.

The maximum fixed point rounding error is a function of the for-
mat and independent of the magnitude of the number. The floating
point rounding error is dependent on both the format and magnitude
of the number. An approximate error model for round-nearest-even
(RNE) is given by:

xf = x + x · 2−(t+1) · ε
xf ◦ yf = (xf • yf) + (xf • yf) · (2−(t+1) · ε (1)

where xf is the floating point representation of a real number x,
◦ is the floating point implementation of the operation •, t is the
mantissa bit width, and ε ∈ [−1, 1] is the error term [24] (2−(t+1)

corresponds to .5 ULPs, or unit in the last place, which is the dif-
ference between adjacent floating point numbers). Note that not all
floating point conversions or arithmetic operations introduce round-
ing errors. Some numbers, e.g. .5, and operations, e.g., subtraction
of numbers of similar magnitude [24], can be represented exactly.

To bound numerical errors programmers can run exhaustive
simulations comparing different implementations to an “ideal” ver-
sion. However, as discussed earlier, these simulations can be dif-
ficult and time-consuming to prepare and run and provide limited
test coverage. While simulation will continue to be a part of the ver-

2 Fully IEEE-compliant implementations also provide subnormal numbers.
Gappa supports subnormal numbers, but for brevity they are not discussed
here.

ification workflow, we would like to reserve that effort for the end
of the design process, where we test an implementation already op-
timized and checked by other means. Static analysis bounds errors
at compile time using the application source code, user-supplied
bounds on the inputs, and error models similar to Equation (1). Un-
like simulation, static analysis can produce provable error bounds,
and since these approaches require much less effort by the pro-
grammer, can be used to efficiently and even automatically explore
the design space. The trade-off is that by their nature static analysis
techniques are conservative, often overly so.

Static analysis tools seem to be split between those used for
program verification [3, 15, 10, 4], and those designed for program
optimization [19, 7, 8, 23, 14, 16, 5]. There are numerous tech-
niques for static analysis. In general, these techniques attempt to
construct a transfer function for the computation [19, 3, 15], use
a form of range-based arithmetic [7, 8, 14], e.g, interval or affine,
through which errors are propagated, or both [5]. Often, the static
analysis is combined with simulation in hybrid static-dynamic ap-
proaches [23]. In this work, we propose a static analysis approach
using a combination of range arithmetic and algebraic rewriting
that provides high accuracy, i.e., tight error bounds, efficient evalu-
ation, and is suitable for integration into the compiler.

The most similar work is the Caduceus static analyzer for C
programs [4]. Caduceus integrates Gappa (along with other tools)
into its back-end proof infrastructure for proving assertions about
C applications. The focus of Caduceus is verification, while the
focus of this work is program optimization, and extending Gappa
to support a broader set of computations.

2.2 Interval and Affine Arithmetic
Interval arithmetic (IA) [18] represents a number, x̄, by an inclusive
interval, [x.lo, x.hi] such that x.lo ≤ x ≤ x.hi. For each operation
there is a corresponding IA implementation, e.g. IA addition is
given as

z̄ = x̄ + ȳ = [x.lo + y.lo, x.hi + y.hi].

Similar formulas can be derived for other common mathematical
operations. The primary weakness of IA is overestimation, particu-
larly in the presence of correlated variables. In the simplest exam-
ple, if x̄ = [−1, 1], x̄− x̄ will result in [−2, 2] instead of 0. Over-
estimation accumulates throughout the computation, potentially re-
sulting in an exponential growth in the range estimates.

Affine arithmetic (AA) [9] is a refinement to IA that addresses
the above problem by keeping track of correlations between vari-
ables. Instead of an interval, a number, x, is represented by an affine
expression, given as

x̂ = x0 + x1ε1 + x2ε2 + . . . + xnεn where εi = [−1, 1]. (2)

Each εi is an independent source of uncertainty, and may contribute
to the uncertainty of more than one variable. Thus correlations are
preserved. In the simple example above, if x̂ = x0 + x1ε1, the
expression x̂− x̂ will return 0.

As a more complex example, consider the fixed-point expres-
sion y = c·x1+(x2−x1) adapted from [7], where x1 = [−10, 10]
RNE with 3 fractional bits, x2 = [−5, 5] RNE with 2 fractional bits
and all operations are RNE with 3 fractional bits. The AA expres-
sion for o is

x̂1 = 10ε1 + 2−4εe1

x̂2 = 5ε2 + 2−3εe2dc · x1 = 5ε1 + 2−5εe1 + 2−4εe3dx2 − x1 = −10ε1 + 5ε2 − 2−4εe1 + 2−3εe2

ŷ = −5ε1 + 5ε2 − 2−5εe1 + 2−3εe2 + 2−4εe3

Absolute Error

D
en

si
ty

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4 IA
AA

Figure 1. IA and AA bounds, along with a histogram of simulated
errors for c · x1 + (x2 − x1)

where εe1, εe2, εe3 are the rounding errors in x1, x2, c · x1 respec-
tively. Figure 1, shows both the IA bound on the rounding error (as
computed with Gappa), the AA bounds, and a histogram of simu-
lated errors for 100,000 trials3. IA does not capture the correlated
error in x1 and as a result produces less accurate bounds.

For affine, i.e., linear, operations, the resulting affine forms can
be derived from Equation (2). The results of a non-linear operation,
f(. . .), are no longer affine. To obtain an affine expression, f is
replaced with a linear approximation f∗, and a new ε term is added
to the expression to capture the approximation error. Many AA
implementations use Chebyshev approximations, f(x) = Ax +
B + δε for non-affine operations [9]. For large input ranges, the
added error term δε can be larger than the numerical errors we are
trying to analyze. Thus IA or AA alone are often ill suited for non-
linear computations; in these cases alternative techniques, such as
algebraic rewriting (described in Section 3), are needed.

3. Gappa++ Proof Assistant
Gappa++ extends the Gappa proof assistant [6] to better support
transcendental functions and linear computations. This section de-
scribes both Gappa and our extensions.

3.1 Gappa
Gappa proves the validity of logical properties involving the bounds
of mathematical expressions. The initial application for Gappa was
verifying libm implementations of elementary functions.

Gappa only manipulates expressions on real numbers. Floating
or fixed point arithmetic is expressed with separate “rounding op-
erators”, functions that map a real number x to its rounded value
�(x). Rounding is captured explicitly and specifically for each
operand. Bounds on the rounding or numerical error are computed
from �(x) − x, the enclosure of the difference of the approximate
and ideal value.

The Gappa input script for the computation in Figure 1 is shown
in Figure 2. Each script has four parts: 1) the code segment with
rounding operators of the form

[fixed|float]<precision,direction>

2) a set of hypotheses, e.g., x1 m in [-10,10]; 3) a set of en-
closures to be proved, e.g., o fx-o m in ?; and 4) an optional set
of hints (not shown). Using this script Gappa computes the bounds
on absolute error in o fx - o m = [-.28125,.28125], given the hy-
potheses on x1 m, x2 m.

All values within Gappa are expressed as intervals, and IA plays
a key role in ensuring that Gappa proofs are machine checkable.

3 Unless otherwise noted all simulated errors in this paper are computed
using an extended precision (60-bit mantisaa) implementation as the “ideal”
reference

c_m = 0.5;
o_m = (c_m*x1_m)+(x2_m-x1_m);
c_fx = fixed<-1,ne>(c_m);
x1_fx = fixed<-3,ne>(x1_m);
x2_fx = fixed<-2,ne>(x2_m);
o_fx fixed<-3,ne> = (c_fx*x1_fx)+(x2_fx-x1_fx);
{ x1_m in [-10,10] /\ x2_m in [-5,5] ->
o_fx-o_m in ? }

Figure 2. Gappa input script for bounding the rounding error in the
expression from Figure 1. A note about syntax and convention: the
rounding operator on the left-hand side of the equals is applied to
all operations, but not variables, on the right-hand side; we use the
suffixes m, f, and fx to represent mathematically ideal, floating
and fixed point variables, respectively.

Enclosures are only one type of predicate. Floating and fixed point
numbers are actually discrete sets; Gappa includes FIX and FLT
predicates, which indicate a number is uniquely representable at a
given precision. These predicates are to identify situations, cited
in Section 2, in which numbers or expressions are uniquely repre-
sentable, and thus no rounding errors are introduced. This capabil-
ity separates Gappa from other tools that use a simpler error model.

As discussed previously, IA fails to capture correlations be-
tween expressions with shared terms. Gappa uses algebraic rewrit-
ing to expose correlated errors. For example, ◦(a)−b can be rewrit-
ten as (◦(a) − a) + (a − b)), which separates the rounding error
from the difference of a and b. IA without rewriting would compute
the enclosures of ◦(a) and b separately, then subtract them, poten-
tially leading to a much larger bound on the difference. In contrast
to AA, which also captures correlations, algebraic rewriting can be
used to generate tight bounds over large input ranges for non-linear
operations, such as log, that have well-known algebraic properties.
Adding additional support for transcendental functions to Gappa
was a key part successfully applying Gappa++ to the applications
in Section 4.

3.2 Operator, Rewriting and Rounding Extensions
Several of the case study applications make use of log and exp
functions. We added these operators, along with their base-2 vari-
ants, exp2 and log2 to Gappa.

We incorporated new rewriting rules for these operations, in-
cluding

log(a)− log(b) → log(1 + (a− b)/b)

exp(a)− exp(b) → exp(b) · (exp(a− b)− 1)

a + log(b) → log(exp(a) · b)
and many similar variants. These rewriting rules help isolate the
rounding errors in expressions with transcendental functions, even
when using large input ranges.

Along with new operators and rewriting rules, we also added a
new rounding operator, cuda 32, which implements the semantics
of 32-bit floating point arithmetic on NVIDIA GPUs. cuda 32 is
similar to ieee 32, but without subnormal numbers [20].

3.3 Affine Extension
In theory, algebraic rewriting should be sufficient to capture cor-
related errors. As practical matter, however, Gappa often does not
rewrite aggressively enough, as shown by the loose bounds in Fig-
ure 1. For linear expressions, AA is more effective at capturing
correlated errors, and so we developed an AA extension to the
Gappa proof engine to improve accuracy in these cases. The AA
engine is invoked with a hint in the input script. At each invocation
Gappa++ passes to the AA extension hypotheses on input variables

0 5 10 15 20 25 30−4
e−
04

−2
e−
04

0e
+0

0
2e
−0
4

4e
−0
4

Filter Iteration

Ab
so

lu
te

 e
rro

r

IA
AA

Sim

Figure 3. AA and IA error bounds along with simulated error
(gray region) for simple IIR filter in Equation (3)

and rounding errors; the AA extension returns a new bound for
the expression, computed with AA, that is added to Gappa++ as a
hypothesis. The AA result is one of several potential bounds com-
puted within Gappa++; if the AA engine fails to return a tighter
bound, it is ignored by Gappa++. Thus there is no risk, other than
to execution time, for using the AA hint.

The AA extension only supports addition, subtraction and mul-
tiplication (with both single and dual variable terms); expressions
with other operators are ignored by the AA extension. The above
operations are implemented as suggested in [9], using the MPFR
multiple precision floating point library [11] to implement the co-
efficients with the same extended precision used within Gappa++
itself.

At creation, the AA engine reports to Gappa++ dependencies
on the enclosures of all input, e.g., x1 m, and on the magnitude of
all rounding errors, e.g.,

fixed<ne,-16>(x1_m)-x1_m

The latter information is used to generate the error epsilons
for rounding operations. Thus the AA extension can leverage
Gappa++’s best bounds on the error (and its predicate system, etc.)
Sometimes, however, the AA extension has more accurate infor-
mation about the magnitude of variables than Gappa++, and so
separate AA-based error bounds are computed. The tighter of these
two errors bounds is chosen for each rounding operator.

Using the affine extension in Gappa++, we can calculate more
accurate bounds for linear expressions. For example, for the
script in Figure 2, Gappa++ computes more accurate bounds of
[-.21875,.21875]. The difference in accuracy is even more pro-
nounced for more complex computations, particularly those with
feedback. Figure 3 shows the IA, AA and simulated errors for the
simple filter

yn = xn + c1yn−1 + c2yn−2 (3)

where c1 = 1√
2

, c2 = .5, xn = [−64, 64] and all computations and
operands are RNE with 16 fractional bits (adapted from [7]). As the
simulation shows, since the filter is stable, the error is also stable
(after some number of iterations). The AA error is also stable, while
the IA error is not. The IA error, computed with an unmodified
version of Gappa, grows exponentially and is too large to be usable.

The trade-off for using the AA extension is execution time.
AA maintains significantly more information for each variable, and
is thus slower to compute enclosures than IA methods. However,
computing bounds for 30 filter iterations took only .38s using

Gappa++ vs. .35s for plain Gappa4. For contrast the corresponding
simulation took 130s.

In general, the affine extension increased the execution time of
Gappa++ by up to 12× and memory usage by up to 10×. However,
even the largest affine problem we ran (Section 4.2) completed in
less than 125s, and most took less than a minute. So even with
the AA extension, the static analysis techniques are still faster than
simulation. We are working to improve the performance of the AA
extension and believe significant reductions in execution time can
be made by reducing the number of times Gappa invokes the affine
engine.

4. Case Studies
The development of Gappa++ was motivated by several informat-
ics applications, presented as case studies in this section. Each ap-
plication demonstrates a different Gappa++ usage model, includ-
ing: optimizing numerical approximations (network inference, Sec-
tion 4.1); comparing different sources of error (neural prosthetics,
Section 4.2); and verifying that an application satisfies an absolute
error bound (option pricing, Section 4.3).

4.1 Bayesian Inference
The inside of a cell is a complex dynamical environment in which
proteins interact in complex causal networks. Understanding the
causal structures of these networks on a per-individual basis is im-
portant for advancing both basic biological and clinical knowledge.
The structure of these networks can be inferred using Bayesian
techniques; however, the algorithm is extremely computationally
demanding [1].

Previous efforts have achieved > 10× speedups using special-
ized accelerators, such as GPUs and FPGAs. Porting this applica-
tion to these platforms is challenging. Incorporating rigorous preci-
sion analysis into our workflow helped us improve the performance
of the FPGA version by 33% plus 4× better precision, and speedup
the baseline CPU implementation by 15% without reducing overall
accuracy.

The algorithm uses Monte-Carlo Markov Chain sampling to ex-
plore the space of potential graphs. Inside the inner-most loop is the
accumulation of local scores, lsn, which represent the log proba-
bilities of particular parent-child relationships. The accumulation is
implemented as

acc += log(1+exp(ls[i]-acc));

The log(1 + exp(x)) expression is only non-linear over a small
region around 0 and can be approximated as 0 or x for x � 0
and x � 0 respectively. The approximations are much faster than
the actual computation, and so it is beneficial to set the boundaries
within which we actually do the computation as tight as possible.

The original implementation used [-30,30] as the approxima-
tion boundary, chosen to be conservative with respect to accuracy.
However, using Gappa++ we can show that those bounds are too
conservative, and do not actually improve overall accuracy. The
baseline implementation already used float precision; however,
that does not mean that 32-bit computations are being performed.
GCC with optimization level 3 (-O3) actually emits double pre-
cision operations for log(1 + exp(x)), only rounding to 32-bits
at the end. Our Gappa++ analysis (an example script is shown in
Figure 4a) is driven from the assembly, and accurately models the
actual precision in use.

Figure 4b compares the error in the positive and negative ap-
proximations, i.e. x− log(1 + exp(x)), and the rounding error in-

4 These and all other performance results in this paper are measured using
wall clock time on a 2.66 GHz Core 2 Quad with 8 GB of RAM, having
been compiled with GCC -O3 unless otherwise noted

@rf = float<ieee_32,ne>;
@rd = float<ieee_64,ne>;
y_m = log(1+exp(rf(x)));
y_f_ rd = log(1+exp(rf(x)));
y_f = rf(y_f_);
p = log(1+exp(x_p));
n = log(1+exp(x_n));
{x in [-8,8] /\
 x_p in [8,50] /\
 x_n in [-50,-8] ->
 y_f - y_m in ? /\
 x_p - p in ? /\
 0 - n in ? } 10 12 14 16 18 20

0
2

4
6

Boundary of Approximation
M

ax
im

um
 A

bs
ol

ut
e

Er
ro

r

approx
float
gpu

b)

2 4 6 8 10 12 14 16

0
5

10
15

20
25

30

Boundary of Approximation

M
ax

im
um

 A
bs

ol
ut

e
Er

ro
r

approx
18x11
18x10

c)
x1e-3

35

x1e-6

1
3

5
7

12 13 14 15 16 17 18

0
1

2

Boundary of Approximation

Ab
so

lu
te

 E
rro

r

approx
gappa++

Boundary of Approximation

approx
gappa++

x1e-6 x1e-6

0
1

2
Ab

so
lu

te
 E

rro
r

a)

d) e)

Figure 4. Gappa++ and simulation-based analysis of the approximation of score accumulation in inference algorithm: a) Gappa++ script
used in panel b; b), c) absolute error vs. boundary of approximation for CPU, GPU (b) and FPGA-based (c) implementation; negative and
positive approximations overlap and are represented by a single line; d), e) simulation and Gappa++-computed errors at the positive (d) and
negative (e) approximation boundaries.

troduced in the log(1+exp(x)) computation for both “float” imple-
mentation on the CPU and the same code compiled for an NVIDIA
GPU (Gappa++ analysis of GPU applications is described in more
detail in Section 4.3). The “crossover” point where the rounding
error exceeds that of the approximation is much less than 30. Con-
tinuing to perform the actual computation beyond the cross-over
point only reduces performance. Setting the boundary to a still con-
servative [-16,16] improves GPP performance on our benchmark
platform by 15%. Tightening the approximation boundary only re-
quires modifying a single constant, making this an effort-efficient
optimization in an already heavily optimized application.

The above results are verified with detailed simulation. Fig-
ure 4d,e shows simulated errors (gray region) vs. the approximation
vs. the Gappa++ estimates. Note that the Gappa++ estimate is com-
puted over the entire non-approximated range, i.e. [-12,12], and
thus represents the maximum error over that space. Gappa++ ac-
curately captures the error at the positive boundary. The analytical
“crossover” point matches the simulated convergence of the com-
putation and approximation errors. Interestingly, this convergence
occurs when there is insufficient precision to capture the effect of
the 1+ operation. Above this threshold the computation effectively
simplifies to the approximation.

At the negative boundary, where the result is near 0 and floating
point numbers are much more precise, the absolute errors are very
small and the actual computation and approximation only converge
for very negative inputs. Although the actual computation is more
precise in the region, that additional precision does not necessarily
improve overall accuracy (which is set by the positive boundary)
and so maintaining the more conservative boundary only slows the
application (small, subnormal, numbers are slower on modern x86
processors).

A second interesting feature is the step function increase at 16
in the Gappa++ error bounds. This results from a limitation in the
range-based analysis being performed. The bulk of the Gappa++ er-
ror results from the double-to-single rounding operation occurring
at the end of the computation. At large x, however, because the in-
put x is rounded to single precision, the output of log(1 + exp(x))
is effectively rounded to single precision; a fact that Gappa++ does
not capture in its predicates and rewriting. This is a subtle effect,
and one that we are actively working to handle in future iterations
of Gappa++.

Precision analysis plays an even larger role in the FPGA port-
ing effort. On the FPGA, the algorithm is implemented using
fixed point arithmetic and block RAM-implemented lookup ta-
bles (LUT) for the log(1 + exp(x)) accumulation. Our goal is to
maximize performance and accuracy (compared to baseline CPU
implementation). Performance on the FPGA is a direct function of
the amount of aggregate bandwidth we can extract from the block
RAM (BRAM) macros distributed throughout the chip. Specifi-
cally, the peak FPGA performance can be modeled as

Number of RAMs
0.5 + RAMs per LUT

· Clock Rate (4)

and thus we need to minimize the RAMs per LUT we use.
The Xilinx Virtex5 FPGAs we are using for this application

have several BRAM configurations: 36x10 (10 bits of address, 36-
bit words); 18x11; and 2× 18x10. The original implementation
used 36x9 with a boundary of -12,16, which translates to .5 BRAM
per LUT (each BRAM is dual ported). This configuration truncates
the input to the LUT to 4 fractional bits to form the address (5
integer bits, 4 integer bits). The truncation is the dominant source
of error in the FPGA implementation, since the actual accumulation
is performed with 16+ fractional bits.

Table 1. Difference equations for filter second-order sections used
in neural prosthetic system

DF I yn = b0xn + b1xn−1 + b2xn−2 − a1yn−1 − a2yn−2

DF II wn = xn − a1wn−1 − a2wn−2

yn = b0wn − b1wn−1 − b2wn−2

The first optimization is to use the entire address to pick up an
additional factional bit. Using Gappa++ we can do better. Since the
error is dominated by the truncation, we can use the narrower 18 bit
configurations to get more address space (18x11) or more ports (2×
18x10). Shrinking the range over which we use the LUT reduces
the number of integer bits needed, and thus increases the precision
of the truncation. Figure 4c shows the error for different boundaries
and BRAM configurations; the optimal boundaries are [-8,8] for
both configurations. The latter trades away an additional fractional
bit for a 33% increases in performance (.25 RAM per LUT vs. .5
RAM per LUT). Since we already have increased precision over the
original, we choose the faster 18x10 configuration. Thus as a result
of this analysis, the performance of the FPGA implementation
improves 33% over the original 36x9 configuration, with 2 bits
(4×) more precision, all within the same resource usage.

This case study helps demonstrate Gappa++’s effectiveness as
a backend analysis tool for performance optimization. We identi-
fied a join (φ node) in the dataflow graph with unequal error in-
coming on each branch. Using Gappa++ we are able to optimize
the boundary of the approximation to equalize the error on each
branch. Similar analyses and optimizations could be performed in
situations where the same variable is being computed in different
ways on different branches.

4.2 Neural Prosthetics
Neural prosthetics systems seek to restore lost movement or com-
munication functionality to patients with neural deficits [25]. These
systems translate the electrical messages sent between neurons,
recorded with electrodes implanted in the brain, into commands
for the prosthetic device. Reducing the power consumption of a
future implantable prosthetic processor (IPP) is a key challenge.
Previous estimates show that the IPP can be built within the allot-
ted power budget if implemented with energy-efficient fixed point
arithmetic [25]. Our goal is to use static analysis to help verify and
optimize that implementation.

One of largest power consumers is the front-end digital fil-
ter (4th order high-pass infinite impulse response (IIR) filter with
fc = 250 Hz implemented as two second-order-sections in series;
difference equations for direct form (DF) I and II implementations
are shown in Table 1). Using Gappa++ we can explore the effects
of rounding on the noise properties of the filter. Table 2 summarizes
the Gappa++ and simulated errors for both 32-bit floating point and
fixed point with 16 fractional bits, RNE, for DF I and II implemen-
tations. The Gappa++ results are obtained by unrolling the loop
into straight-line code until the errors stabilize (300 iterations in
this case).

Published results indicate that the root mean square (RMS) elec-
trical noise observed in the filtered signal would be ∼ ±3.9e-3 in
the above scenario [22]. The results in Table 2 suggest that a 16-bit
fixed point DF II implementation would be sufficient. Further, for
the DF II filter, the arithmetic appears to be a lesser source of er-
ror than coefficient quantization. If the user is comfortable with the
filter performance with quantized coefficients, the arithmetic preci-
sion could potentially be further optimized to improve performance
and energy-efficiency.

Our goal in this initial work is not to perform optimized float-
to-fixed (F2F) translation, but instead just to demonstrate that

Table 2. Summary of Gappa++ (above) and simulated (below) er-
ror bounds for IIR filter. Uniformly distributed [0,1] input rounded
to model data from 12-bit ADC.

DF I Actual Ideal Coeffs. Ideal Arith.

32-bit float ±9.77e-4 ±9.71e-4 ±1.10e-5
±2.02e-5

16-bit fix ±5.77e-2 ±5.51e-2 ±2.76e-3
±3.15e-3

DF II Actual Ideal Coeffs. Ideal Arith.

32-bit float ±9.70e-4 ±9.64e-4 ±1.10e-5
±6.15e-5

16-bit fix ±2.94e-3 ±2.61e-4 ±2.76e-3
±6.42e-4

Gappa++ can accurately bound errors for non-trivial linear and
non-linear computations. And thus could serve as the back-end
analysis tool for an optimizing F2F translator. Although not shown
here, Gappa++ can compute enclosures for individual variables
(not just differences) and thus can also be used to set the number of
integer bits to avoid overflow (a key part of F2F translation).

The difference between the DF I and II implementations is
an example of how otherwise functionally equivalent code can
have different numerical properties. The compiler could play a
role in helping the programmer smartly select among different
implementations for the same computation. In this case it is among
variants that have similar performance; in the next case study,
Black-Scholes, it is among variants with very different performance
characteristics.

4.3 Black-Scholes Stock Option Pricing
The Black-Scholes [2] algorithm, defined in Figure 5, analytically
computes the value of European-style stock options. Each option
can be computed independently and in parallel, and so Black-
Scholes is often used as a performance benchmark for different pro-
cessors, particularly x86 SSE extensions and GPUs. As described
earlier, GPUs can provide a 10× boost in computing power – if
– the application can be implemented using 32-bit floating point.
In the case of Black-Scholes, the programmer would like to verify
without time-consuming simulation that the GPU implementation,
for example, is accurate to less than one cent.

Using Gappa++ we verified that 64 and 32-bit IEEE-compliant
and 32-bit GPU-based implementations all are accurate to much
less than one cent relative to a mathematically ideal implementa-
tion. The Gappa++ and simulated error bounds are summarized in
Table 3. The analytical bounds are typically 1-3 orders of mag-
nitude larger than the simulated enclosures; however, in all cases,
Gappa++ produces sufficiently accurate bounds to verify that the
different implementations meet the penny threshold.

In the case of float and double the Gappa++ scripts are pur-
posely conservative. When compiled for sequential execution, the
compiler will often produce 64-bit floating point instructions for
the “float” implementation. When compiled for SSE units, how-
ever, most of the operations will be performed at 32-bit preci-
sion. Thus by using a uniform ieee 32 rounding operator in the
Gappa++ script we can ensure the application meets the required
error bounds even if all operations were computed using the SSE
unit.

Switching to 32-bit arithmetic can yield real performance bene-
fits. Table 4 summarizes the execution time for various implemen-
tations of Black-Scholes, including sequential float and double,
SSE float and double [12], and a NVIDIA 9800 GTX GPU [20].
Note that all implementations were compiled with icc -fast.

call = SN(d1)−X exp(−rT)N(d2)

put = X exp(−rT)N(−d2)− SN(−d1)

where

d1 =
log(S/X) + (r + σ2/2)T

σ
√

T

d2 = d1 − σ
√

T

Figure 5. Definition of Black-Scholes algorithm where S: stock
price, X: strike price, r: risk-free interest rate, T : time to expi-
ration, σ: voltatility, and N(x): fifth-order approximation of the
cumulative normal distribution function.

Table 3. Summary of Gappa++ and simulated error bounds for
Black-Scholes. Inputs: stock price = [5,30]; strike price = [1,100];
time = [.25,10]; R = .02; and volatility = .3.

Puts Gappa++ Simulation

double [-1.202e-12, 1.187e-12] [-3.064e-15, 2.998e-14]
float [-6.585e-4, 6.738e-4] [-1.286e-5, 1.349e-5]
gpu [-2.990e-3, 3.090e-3] [-2.196e-5, 1.367e-5]

Calls Gappa++ Simulation

double [-1.198e-12, 1.183e-12] [-1.399e-15, 1.323e-14]
float [-6.572e-4, 6.816e-4] [-6.335e-6, 6.246e-6]
gpu [-3.0e-3, 3.1e-3] [-8.319e-6, 1.093e-5]

Table 4. Execution for different Black-Scholes implementations
pricing 1,000,000 put and call options

Time (ms) Speedup

double 118 1.0
float 125 0.95
double SSE 104 1.13
float SSE 66 1.8
GPU 14 8.4

The float and double Gappa++ scripts are direct translations
of the application source code to Gappa syntax and rounding oper-
ators. The GPU script is the product of a separate translation pass,
taking CUDA PTX assembly as input, that introduces additional
error terms and rounding operators to faithfully model GPU opera-
tions.

The most relevant operations for Black-Scholes are multiply-
add (MAD), log and exp. The GPU’s MAD operator truncates the
intermediate result, and thus must be modeled as

float<cuda_32,ne>(a+float<cuda_32,zr>(b*x))

The GPU provides hardware support for the elementary functions
exp2 and log2, among others. “Fast” versions of exp and log
are synthesized from these intrinsic by multiplying the input or
output by the appropriate constant. The intrinsics have an additional
error compared to the correctly rounded single precision result (2
ULPs for exp2, 3 ULPs for log2). We model this additional error
by introducing additional hypotheses that express the actual result
as an approximation of the correctly rounded result. Specifically,
y=exp2(x) is modeled as

y_ = float<cuda_32,ne>(exp2(x));
...
{(y-y_)/y_ in [-2b-23,2b-23] /\ ...

log2 and other intrinsics are modeled similarly, using the errors
reported in the CUDA programming guide [20].

Although mostly straight-line code, the Black-Scholes imple-
mentation has two branches that require dataflow-style analysis.
At each branch we “decouple” the analysis by computing magni-
tude and error enclosures for all live variables. These enclosures are
modified by the conditional statement and used as hypotheses for
two new scripts (one for each branch). The enclosures computed
by the branch scripts are merged together with a ∪ operation at the
dataflow join.

In computing the bounds in Table 3 we made extensive use
of Gappa’s bisection feature. Bisection attempts to produce more
accurate error bounds by splitting the input ranges into disjoint
sub-ranges, computing the bounds on each sub-range, and merging
the results with the ∪ operator. The trade-off is increased runtime.
We bisected the ranges before the control flow decoupling into
500 uniform sub-ranges, and 100 sub-ranges after the decoupling.
For ieee 32 bisection improved the bounds from ∼ ±2.6e-2 to
∼ ±6.8e-4 with the total runtime increasing from ∼1s to ∼90s.
Analyses at other precisions showed similar trade-offs.

The Black-Scholes case study demonstrates Gappa++’s effec-
tiveness in bounding the error in complex, non-linear computations,
and the performance benefits that result from being able to confi-
dently reduce the arithmetic precision.

5. Conclusion
In this paper we have presented Gappa++, an enhanced version
of the Gappa proof assistant, and a set of techniques for using
Gappa++ to analyze numerical and precision-related errors in real
informatics applications. In a series of case studies we demon-
strated the effectiveness of Gappa++ across a range of applications
and hardware platforms, and showed the kinds of performance im-
provements that can be achieved with rigorous precision analysis.

Motivated by these results we argue that precision analysis
should be a more regular part of a programmer’s workflow. Al-
though Gappa++ was not directly integrated with the compiler in
this initial work, both the tool and analysis techniques described in
this work could be readily used as part of a compiler-based static
analysis suite. Gappa is already in use as a back-end in the Ca-
duceus static analyzer [4]. And none of the analysis performed
in this work required Gappa’s interactive features, such as hints;
the scripts were direct translation of the source code-under-test and
thus could be generated and invoked automatically.

Much of the precision analysis and optimization is effectively
dataflow-based, and could be integrated alongside similar passes
in an optimizing compiler. For example, in the Bayesian Inference
case study we used Gappa++ to equalize the error on the differ-
ent incoming branches at a join in the dataflow graph. The com-
piler could readily notify the programmer that such situations might
present optimization opportunities. With annotations to indicate
functional equivalence and acceptable error bounds, the compiler
could automatically compare and contrast different implementa-
tions and or verify correctness, as was done in the neural prosthetic
and Black-Scholes case studies.

We imagine and are actively working towards a future in which
the compiler helps the programmer verify and optimize the numer-
ical aspects of their application.

Both short and long-term hardware trends will make this kind
of tool support increasingly important. For example, GPUs have
already begun to support 64-bit floating point operations, although,
as discussed, with 2-10× less throughput than 32-bit arithmetic.
Selectively making use of 64-bit operations may enable additional
applications to use GPUs that for precision reasons were not able
to do so previously. A key challenge for the programmer and the

compiler is to identify the minimum set of operations that must be
performed at increased precision, so as to maximize performance.

Long-term, more and more applications will be implemented on
high-performance heterogeneous systems (CPUs plus SSE, GPUs,
FPGAs, etc.) and high-efficiency embedded platforms; all of which
introduce non-trivial accuracy-performance trade-offs. As a result,
there will be a growing need to help developers automatically verify
and optimize the numerical behavior of their applications for these
new and different platforms.

Acknowledgments
The authors would like to sincerely thank Guillaume Melquiond,
the developer of Gappa, for making his software publicly available
and patiently answering our many questions. In addition we would
like to thank James Balfour, and the anonymous reviewers whose
valuable feedback has helped the authors greatly improve the qual-
ity of this paper. This work was partially supported by the C2S2
Focus Center, one of six research centers funded under the Focus
Center Research Program (FCRP), a Semiconductor Research Cor-
poration subsidiary; and NIH grant R01 CA130826-01.

References
[1] Narges Bani Asadi, Teresa H. Meng, and Wing H. Wong.

Reconfigurable computing for learning bayesian networks. In
Proc. of FPGA, pages 203–211, 2008.

[2] Fischer Black and Myron Scholes. The pricing of options and
corporate liabilities. Journal of Political Economy, 81(3):637–
654, 1973.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
L. Miné, D. Monniaux, and X. Rival. A static analyzer for
large safety-critical software. In Proc. of PLDI, pages 196–
207, 2003.

[4] Sylvie Boldo, J. C. Filliâtre, and Guillaume Melquiond. Com-
bining Coq and Gappa for certifying floating-point programs.
In Proc. of Symp. on Integration of Symbolic Comp. and Mech.
Reasoning, 2009.

[5] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou, and
Y. Zou. Evaluation of static analysis techniques for fixed-point
precision optimization. In Proc. of FCCM, pages 231–234,
2009.

[6] Florent de Dinechin, Christoph Quirin Lauter, and Guillaume
Melquiond. Assisted verification of elementary functions
using gappa. In Proc. of Symp. on Applied Computing, pages
1318–1322, 2006.

[7] F. Fang, Claire, Rob A. Rutenbar, and T. Chen. Fast, accurate
static analysis for fixed-point finite-precision effects in dsp
designs. In Proc. of Conf. on Computer-aided Design, page
275, 2003.

[8] F. Fang, Claire, Rob A. Rutenbar, M. Püschel, and T. Chen.
Toward efficient static analysis of finite precision effects in
dsp applications. In Proc. of DAC, pages 496–501, 2003.

[9] Liuz H. de Figueiredo and Jorge Stolfi. Self-Validated Numer-
ical Methods and Applications. Brazilian Mathematics Col-
loquium monographs. IMPA/CNPq, Rio de Janeiro, Brazil,
1997.

[10] J. C. Filliâtre and S. Boldo. Formal verification of floating-
point programs. In Proc. of ARITH, 2007.

[11] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick
Pélissier, and Paul Zimmermann. Mpfr: A multiple-precision

binary floating-point library with correct rounding. ACM
Trans. Math. Softw., 33(2):13, 2007.

[12] Anwar Ghuloum, Gansha Wu, Xin Zhou, Peng Guo, and Jesse
Fang. Programming option pricing financial models with Ct.
Technical report, Intel Corporation, 2007.

[13] Intel 64 and IA-32 Architectures Optimization Reference Man-
ual. Intel Corporation, 2009.

[14] D.-U. Lee, A. A. Gaffar, R. C. C. Chueng, O. Mencer, W. Luk,
and G. A. Constantinides. Accuracy-guaranteed bit-width op-
timization. IEEE Tran. on Computer-Aided Design of Inte-
grated Circuits and Systems, 25(10):1990–2000, 2006.

[15] Matthieu Martel. Semantics of roundoff error propagation in
finite precision calculations. Higher Order Symbol. Comput.,
19(1):7–30, 2006.

[16] Matthieu Martel. Program transformation for numerical pre-
cision. In Proc. of PEPM, pages 101–110, 2009.

[17] David Monniaux. The pitfalls of verifying floating-point com-
putations. ACM Trans. Program. Lang. Syst., 30(3):1–41,
2008.

[18] R. E. Moore. Interval Analysis. Prentice Hall, 1966.

[19] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee. Pre-
cision and error analysis of matlab applications during au-
tomated hardware synthesis for FPGAs. In Proc. of DATE,
pages 722–728, 2001.

[20] NVIDIA CUDA Compute Unified Device Architecture Pro-
gramming Guide. NVIDIA, 2.0 edition, 2008.

[21] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary
Floating Point Arithmetic. IEEE, 1985.

[22] Gopal Santhanam, Michael D Linderman, Vikash Gilja, Af-
sheen Afshar, Stephen I Ryu, Teresa H Meng, and Krishna V
Shenoy. Hermesb: a continuous neural recording system for
freely behaving primates. IEEE Trans Biomed Eng, 54(11):
2037–50, Nov 2007. doi: 10.1109/TBME.2007.895753.

[23] C. Shi and R. Broderson. Automated fixed-point data-type
optimization tool for signal processing and communications
systems. In Proc. of DAC, pages 478–483, 2004.

[24] P. H. Sterbenz. Floating Point Computation. Prentice Hall,
1974.

[25] Z. S Zumsteg, C. Kemere, S. O’Driscoll, G. Santhanam, R. E.
Ahmed, K. V. Shenoy, and T. H. Meng. Power feasibility of
implantable digital spike sorting circuits for neural prosthetic
systems. IEEE Trans Neural Syst Rehabil Eng, 13(3):272–
279, 2005. ISSN 1534-4320 (Print).

