Reducible chains in several types of 2-connected graphs*

Fuji Zhang and Xiaofeng Guo

Department of Mathematics, Xinjiang University, Wulumuqi, Xinjiang, China

Received 30 March 1988
Revised 30 October 1990

Abstract

Let \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, and \mathcal{G}_3 denote the sets of all 2-connected graphs, minimally 2-connected graphs, critically 2-connected graphs, and critically and minimally 2-connected graphs, respectively. We introduce the concept of \mathcal{G}_i-reducible chains of a graph G in \mathcal{G}_i, $i = 0, 1, 2, 3$, and give the upper bound and the lower bound of a number of \mathcal{G}_i-reducible chains of G which are both sharp. Furthermore, a construction method of \mathcal{G}_3 is obtained.

Let $G = (V(G), E(G))$ be a finite simple graph, and let $\kappa(G)$ be the connectivity of G. G is 2-connected if $\kappa(G) \geq 2$, G is minimally 2-connected if $\kappa(G) = 2$ but $\kappa(G - e) < 2$ for any $e \in E(G)$, and G is critically 2-connected if $\kappa(G) = 2$ but $\kappa(G - v) < 2$ for any $v \in V(G)$.

We denote by \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2 and \mathcal{G}_3 the sets of all 2-connected graphs, minimally 2-connected graphs, critically 2-connected graphs, and critically and minimally 2-connected graphs, respectively. We call a vertex v critical if $\kappa(G) > 2$ but $\kappa(G - v) < 2$. The cyclomatic number of G and the degree of a vertex v in G are denoted by $\gamma(G)$ and d_v, respectively.

A satisfactory construction method of \mathcal{G}_0 can be found in Tutte's book [2]. Dirac gave a construction method of \mathcal{G}_1. In this paper, by using the concept of \mathcal{G}_3-reducible chain, we obtain a method for constructing \mathcal{G}_i, $i = 0, 1, 2, 3$, and give the sharp upper and lower bounds of the number of \mathcal{G}_i-reducible chains.

Definition 1. Let H be a subgraph of G. The graph induced by $E(G) - E(H)$ is denoted by $G - H$ (i.e., $E(G - H) = E(G) - E(H)$, and $V(G - H) = \{v \mid v$ is incident with an edge in $E(G) - E(H)\}$).

* The project was supported by NSFC.
Definition 2. A block in G is a maximal 2-connected subgraph of G. A block B of G is said to be extremal if B and $G - B$ have exactly one common vertex.

Definition 3. Let P be a path in G of length greater than or equal to 1. If both the degrees of the origin and terminus of P are not equal to 2 and the degree of any other vertex of P is equal to 2 in G, then P is said to be a maximal chain (note that if both the degrees of the origin and terminus of P are greater than 2, then P may also be called 'handle', as in topology).

Definition 4. Let $G \in \mathcal{K}_i$, $i = 0, 2, 3$, and let P be a path of G. If $G - P \in \mathcal{K}_i$, we call P a \mathcal{K}_i-reducible chain, otherwise a \mathcal{K}_i-irreducible chain. The number of \mathcal{K}_i-reducible chains of G is denoted by $\rho_i(G)$.

Lemma 5. Let $G \in \mathcal{K}_0$. Then:

(i) $G \in \mathcal{K}_0$ iff the length of any \mathcal{K}_0-reducible chain of G is greater than 1;
(ii) if $G \in \mathcal{K}_1$ then the length of any \mathcal{K}_1-reducible chain of G is not equal to 2;
(iii) $G \in \mathcal{K}_0$ iff the length of any \mathcal{K}_0-reducible chain of G is greater than 2.

Proof. (i) and (ii) are straightforward, so we only prove (iii). By (i) and (ii), we only need to prove the sufficiency.

By (i), we have that $G \in \mathcal{K}_0$. If $G \notin \mathcal{K}_0$, then there exists a noncritical vertex v in $V(G)$. If $d_C(v) = 2$, there is a \mathcal{K}_0-reducible chain of length 2 in G. If $d_C(v) > 2$, any edge incident with v is a \mathcal{K}_i-reducible chain of length 1 in G. Both cases contradict the assumption.

Lemma 6. Let $G \in \mathcal{K}_i$. Let G_1 be a 2-connected subgraph of G and $A_1 = V(G_1) \cap V(G - G_1)$.

(i) If $G \in \mathcal{K}_2$, then each vertex in $V(G_1) - A_1$ is a critical vertex of G_1.
(ii) If $G \in \mathcal{K}_1$, then $G_1 \in \mathcal{K}_1$ [1, Corollary 3.3].
(iii) If $G \in \mathcal{K}_0$, then $G_1 \in \mathcal{K}_0$.

Proof. (i) Suppose that there is a vertex $v \in V(G_1) - A_1$ such that $G_1 - v$ is 2-connected. Since $G \in \mathcal{K}_2$, there exists a vertex $u \in V(G) - v$ which is a cut vertex of $G - v$. By $G_1 - v \in \mathcal{K}_2$, $G_1 - \{u, v\}$ is contained in one component D of $G - \{u, v\}$. Furthermore, by $v \in V(G_1) - A_1$, v is not adjacent to any vertex in $V(G) - V(D) - u - v$, and u is also a cut vertex of G, contradicting that $G \in \mathcal{K}_0$.

(iii) By (ii), we have $G \in \mathcal{K}_0$. If $G \notin \mathcal{K}_0$, there is a noncritical vertex u of G_1. By (i), u is a vertex in A_1. Moreover, by $G_1 - u \in \mathcal{K}_0$ and $G_1 \in \mathcal{K}_0$, $d_{G_1}(u) = 2$, namely, in G_1 there are exactly two vertices, say v_1 and v_2, adjacent to u. Let $e_1 = uv_1$, $e_2 = uv_2$. From [1, Theorem 3.1], $G - e_1$ has exactly two extremal blocks, say B_1 and B_2, containing v_1 and u respectively. Clearly, B_1 contains $G_1 - u$ and B_2 contains e_2, since $G_1 - u \in \mathcal{K}_0$ and $e_2 = uv_2$. Thus $v_2 \in V(B_1) \cap V(B_2)$ and $G - e_1 = B_1 \cup B_2$. By the same reason, $B_2 - e_2$ has two extremal
blocks, containing \(v_2 \) and \(u \) respectively. But, then \(G - e_2 = B_1 \cup B_2 - e_2 + e_1 \) would be 2-connected. This contradicts that \(G \in \mathcal{G}_i \).

Now Lemma 6 is proved. \(\square \)

Theorem 7. Let \(G \in \mathcal{G}_i \), \(i = 0, 1, 3 \), and \(v(G) \geq 2 \). Then \(\rho_i(G) \geq v(G) + 1 \).

Proof. We first prove that \(\rho_0 \geq v(G) + 1 \).

If \(v(G) = 2 \), the theorem is obviously true.

Suppose it holds for \(2 \leq v(G) < v \), we consider the case \(v(G) = v \).

Let \(P \) be a chain of \(G \) with origin \(x \) and terminus \(y \).

Case 1: \(P \) is a \(\mathcal{G}_r \)-reducible chain.

Then \(G - P \in \mathcal{G}_i \). By the induction hypothesis, we have that

\[
\rho_0(G - P) \geq v(G - P) + 1 = v(G) - 1 + 1 = v(G).
\]

Take a \(\mathcal{G}_r \)-reducible chain \(P' \) of \(G - P \) with origin \(x' \) and terminus \(y' \). If \(x \) and \(y \) are not internal vertices of \(P' \), then \(P' \) is a \(\mathcal{G}_r \)-reducible chain of \(G \). If both \(x \) and \(y \) are internal vertices of \(P' \), then the path from \(x \) to \(y \) contained in \(P' \) is a \(\mathcal{G}_r \)-reducible chain of \(G \). In the other cases, without loss of generality, we may assume that \(x \) is an internal vertex of \(P' \) but \(y \) is not, and \(y \neq x' \). Then the path from \(x \) to \(y' \) contained in \(P' \) is a \(\mathcal{G}_r \)-reducible chain of \(G \). Note that \(P \) is a \(\mathcal{G}_r \)-reducible chain of \(G \). We have that \(\rho_0(G) \geq v(G) + 1 \).

Case 2: \(P \) is a \(\mathcal{G}_r \)-irreducible chain of \(G \).

Then \(G - P \notin \mathcal{G}_i \). From [1, Theorem 3.1], the block-cut-vertex graph \(bc(G - P) \) is a nontrivial path and \(G - P \) has exactly two extremal blocks \(B_1 \) and \(B_2 \) with cyclomatic number greater than zero, and, for \(i = 1, 2 \), \(B_i \) and \(G - B_i \) have exactly two common vertices.

If \(v(B_i) = 1 \), then \(B_i \) consists of two chains of \(G \), each of them is obviously a \(\mathcal{G}_r \)-reducible chain of \(G \). If \(v(B_i) \geq 2 \), by the induction hypothesis, \(\rho_0(B_i) \geq v(B_i) + 1 \geq 3 \). Let \(Q \) be a \(\mathcal{G}_r \)-reducible chain of \(B_i \). By a similar argument as in Case 1, we can see that there is at least one \(\mathcal{G}_r \)-reducible chain of \(G \) in \(B_i \). We take a \(\mathcal{G}_r \)-reducible chain of \(G \) as \(P \). Then this case is reduced to Case 1. \(\square \)

From Lemma 6, we can assert that if \(G \in \mathcal{G}_1 \), then \(\rho_1(G) = \rho_0(G) \geq v(G) + 1 \), and if \(G \in \mathcal{G}_3 \), then \(\rho_3(G) = \rho_1(G) \geq v(G) + 1 \). Fig. 1 gives a graph \(G \in \mathcal{G}_3 \), which has exactly \(v(G) + 1 \) \(\mathcal{G}_3 \)-reducible chains. It shows that the lower bound given in the theorem is sharp.

![Fig. 1.](image-url)
When \(G \in \mathcal{G}_2 \), a 2-connected subgraph of \(G \) needn’t be critical. It is natural to look for a sharp lower bound of the number of \(\mathcal{G}_2 \)-reducible chains of \(G \). In fact, we have the following.

Theorem 8. If \(G \in \mathcal{G}_2 \) and \(v(G) \geq 2 \), then \(\rho_2(G) \geq \lceil \frac{1}{2}(v(G) + 1) \rceil \).

Proof. We will find \(\mathcal{G}_2 \)-reducible chains of \(G \) from \(\mathcal{G}_0 \)-reducible chains of \(G \).

Let

\[
R = \{ P \mid P \text{ is a } \mathcal{G}_0 \text{-reducible chain but not a } \mathcal{G}_2 \text{-reducible chain of } G \},
\]

\[
R_1 = \{ P \mid P \in R, \text{ and the origin and terminus of } P \text{ are adjacent} \},
\]

\[
R_2 = \{ P \mid P \in R, \text{ and the origin and terminus of } P \text{ aren’t adjacent} \}.
\]

If \(R \) is empty then \(\rho_2(G) = \rho_0(G) \), and the desired conclusion follows from Theorem 7. We may thus assume that \(R \neq \emptyset \). Let \(P \) be any element of \(R \). Then, by Lemmas 5 and 6, the length of \(P \) is greater than 2 and at least one of its end vertices \(x \) and \(y \), say \(x \), is noncritical in \(G - P \). Now we consider the following two cases.

Case 1: \(P \in R_1 \), namely, \(e = xy \in E(G) \).

Evidently, \(e \) is a \(\mathcal{G}_0 \)-reducible chain of \(G \) (see Fig. 2), and also a \(\mathcal{G}_2 \)-reducible chain of \(G \). For another \(P' \in R_1 \) with end vertices \(x' \) and \(y' \) such that \(G - P' - x' \in \mathcal{G}_0 \) and \(e' = x'y' \in E(G) \), obviously, \(e' \) is also a \(\mathcal{G}_2 \)-reducible chain of \(G \). Since the length of \(P' \) is greater than 2, \(x \neq x' \) or \(y' \). Otherwise, \(G - P - x \notin \mathcal{G}_0 \), a contradiction. Thus \(e \neq e' \).

Now we can conclude that \(|R_1| \) \(\mathcal{G}_0 \)-reducible chains in \(R_1 \) correspond to at least \(|R_1| \) \(\mathcal{G}_2 \)-reducible chains of length 1 in \(G \).

Case 2: \(P \in R_2 \), namely, \(e = xy \notin E(G) \).

Since the degree of \(x \) in \(G - P \) is greater than 1, we may assume that the set of vertices adjacent to \(x \) in \(G - P \) is \(\{a_1, a_2, \ldots, a_t\} \), \(t \geq 2 \) (see Fig. 2). Obviously, for \(1 \leq i \leq t \), \(e_i = xa_i \) is a \(\mathcal{G}_2 \)-reducible chain of \(G \) corresponding to \(P \). Note that the number of \(\mathcal{G}_2 \)-reducible chains of \(G \) corresponding to \(P \) is at least two. For another \(P' \in R_2 \) with end vertices \(x' \) and \(y' \) such that \(G - P' - x' \in \mathcal{G}_0 \), if \(x' \in \{a_1, a_2, \ldots, a_t\} \), say \(x' = a_i \), then \(e_i = xa' \) is also a \(\mathcal{G}_2 \)-reducible chain.

![Fig. 2.](image-url)
Reducible chains in several types of 2-connected graphs

Fig. 3. (1) \(v(G) = 2m, \rho_2(G) = \left\lceil \frac{1}{2}(v(G) + 1) \right\rceil = m + 1\). (2) \(v(G) = 2m - 1, \rho_2(G) = \left\lceil \frac{1}{2}(v(G) + 1) \right\rceil = m\).

corresponding to \(P'\). Since \(x\) can not be the end vertex of a \(\mathcal{G}_r\)-reducible chain in \(R_2\) other than \(P\), each \(e_i\) corresponds to at most two \(\mathcal{G}_r\)-reducible chains in \(R_2\).

Now we conclude that there are at least \(\left| R_2 \right| \mathcal{G}_r\)-reducible chains corresponding to \(\left| R_2 \right| \mathcal{G}_r\)-reducible chains in \(R_2\).

Furthermore, for any \(P \in R_1, P' \in R_2\), their corresponding \(\mathcal{G}_r\)-reducible chains are different. Hence there are at least \(\left| R \right| \mathcal{G}_r\)-reducible chains of \(G\) corresponding to \(\left| R \right| \mathcal{G}_r\)-reducible chains of \(G\) in \(R\). Thus \(\rho_2(G) \geq \left| R \right|\). Now it follows from \(\rho_2(G) + \left| R \right| = \rho_0(G)\) that \(\rho_2(G) \geq \left\lceil \frac{1}{2}(v(G) + 1) \right\rceil \geq \frac{1}{2}(v(G) + 1)\).

Theorem 8 is thus proved. \(\square\)

Fig. 3 gives critical 2-connected graphs with \(v(G) \geq 2, \rho_0(G) = v(G) + 1,\) and \(\rho_2(G) = \left\lceil \frac{1}{2}(v(G) + 1) \right\rceil\). They show that the lower bound given in Theorem 8 is sharp.

Corollary. Let \(G\) be a graph with \(v(G) \geq 2\). If \(G \in \mathcal{G}_i\), then \(G\) has at least \(v(G) + 1\) vertices of degree 2. If \(G \in \mathcal{G}_i\), then \(G\) has at least \(2(v(G) + 1)\) vertices of degree 2.

Now we turn out attention to the upper bound of \(\rho_0(G)\) of \(G\).

Theorem 9. Let \(G \in \mathcal{G}_i, i = 0, 1, 2, 3,\) then \(\rho_i(G) \leq 3(v(G) - 1)\).

Proof. We denote the number of chains of \(G\) by \(\varepsilon(G)\). We substitute every chain by an edge to build a graph \(G'\) such that \(|E(G')| = \varepsilon(G), v(G') = v(G)\), and for any \(v \in V(G')\), \(d_{G'}(v) \geq 3\). Since

\[|E(G')| - v(G') + |V(G')| - 1, \quad \text{and} \quad |E(G')| - \frac{1}{2} \sum_{v \in V(G')} d_{G'}(v) > \frac{1}{2} |V(G')|,\]

we have \(\varepsilon(G) \leq 3(v(G) - 1)\). Therefore \(\rho_i(G) \leq \varepsilon(G) \leq 3(v(G) - 1)\).
In order to show that the upper bound given in Theorem 9 is sharp, we only need to give a graph G such that $G \in \mathcal{G}_3$, and $\rho_3(G) = 3(v(G) - 1)$. In fact, we can construct the desired graph G by subdividing every edge of a 3-regular 2-connected graph by inserting two vertices. It is evident that $G \in \mathcal{G}_3$ and $\rho_3(G) = 3(v(G) - 1)$. □

Our results can be used to construct four kinds of 2-connected graphs \mathcal{G}_i, $i = 0, 1, 2, 3$.

Definition 10. Let G_i be a graph, $x, y \in V(G_i)$, $x \neq y$, and let P be a path disjoint from G_i and of length greater than or equal to one. Let $G = (G_i + P)_{(x,y)}$ denote the graph obtained from G_i by identifying the two end vertices of P with two vertices x and y of G_i, respectively.

Clearly, if $G_i \in \mathcal{G}_0$, then $G = (G_i + P)_{(x,y)} \in \mathcal{G}_0$. But, for $G_i \in \mathcal{G}_i$, $i = 1, 2, 3$, $G - (G_i + P)_{(x,y)}$ may not belong to \mathcal{G}_i. To ensure that $G \in \mathcal{G}_i$, we need to find some additional conditions.

Let H be a graph with $\kappa(H) = 1$, and let B be an extremal block of H. We denote by $V_f(B)$ the set of all the vertices in B such that $v \in V_f(B)$ if $d_B(v) = d_H(v)$.

Lemma 11. Let $G = (G_i + P)_{(x,y)}$ and $G_i \in \mathcal{G}_1$. Then $G \in \mathcal{G}_1$ if and only if (i) the length of P is greater than 1, (ii) for any $e \in E(G_i)$, there is an extremal block B in $G_i - e$ such that $V_f(B) \cap \{x, y\} = \emptyset$.

Proof. Obvious. □

Lemma 12. Let $G = (G_i + P)_{(x,y)}$ and $G_i \in \mathcal{G}_2$. Then $G \in \mathcal{G}_2$ if and only if (i) the length of P is not equal to two, (ii) for any $v \in V(G_i)$, there is an extremal block B in $G_i - v$ such that $V_f(B) \cap \{x, y\} = \emptyset$.

Proof. Obvious. □

Lemma 13. Let $G = (G_i + P)_{(x,y)}$ and $G_i \in \mathcal{G}_3$. Then $G \in \mathcal{G}_3$ if and only if (i) the length of P is greater than two, (ii) for any $e \in E(G_i)$, there is an extremal block B in $G - e$ such that $V_f(B) \cap \{x, y\} = \emptyset$, (iii) for any $v(\neq x, y)$ of degree 2 in G_i, there is an extremal block B' in $G_i - v$ such that $V_f(B') \cap \{x, y\} = \emptyset$.

Proof. The necessity is straightforward. So we only prove the sufficiency.

From (i) and (ii), we have $G \in \mathcal{G}_3$. From (i) and (iii), any vertex of degree 2 in G_i or the vertices on P must be critical in G. For any vertex of degree greater than two in G_i, $d_{G_i}(v)$ is equal to the number of extremal blocks of $G_i - v$. In fact, there is exactly one edge between v and any extremal block of $G_i - v$, since $G_i \in \mathcal{G}_3$. Therefore, there exist extremal blocks in $G - v$ and hence v is critical.

Now it follows that $G \in \mathcal{G}_3$. □
Definition 14. Let $G_1 \in \mathcal{G}_i$, $i = 0, 1, 2, 3$, and $G = (G_1 + P)_{(x,y)}$. We say that G is obtained from G_1 by a \mathcal{G}_i-operation. If $(G_1 + P)_{(x,y)}$ satisfies the conditions in Lemma 11, we say that G is obtained from G_1 by a \mathcal{G}_i-operation. Similarly, we can define the \mathcal{G}_2-operation and \mathcal{G}_3-operation.

Now we can obtain a construction method of \mathcal{G}_i, $i = 0, 1, 2, 3$.

From Theorems 7, 8, we know that if $G \in \mathcal{G}_i$, $i = 0, 1, 2, 3$, and $\nu(G) \geq 2$, then $\rho_i(G) > 0$. Let P_1 be a \mathcal{G}_i-reducible chain of G, and let $G_1 = G - P_1$. Then $G = (G_1 + P)_{(x,y)}$ can is said to be constructed from $G_1 \in \mathcal{G}_i$ by a \mathcal{G}_i-operation, by Lemmas 11–13 and Definition 14. Therefore we have the following.

Theorem 15. Let G be a graph in \mathcal{G}_i, $i = 0, 1, 2, 3$, and $\nu(G) \geq 2$. Then G can be constructed from a cycle by using \mathcal{G}_i-operations successively.

References