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Abstract. In this paper we prove the existence of a compact global attractor for a reaction–diffusion equation on R
N . We do

not assume that the nonlinear term is differentiable (just continuous) and, also, we do not guarantee the uniqueness of solutions
of the Cauchy problem. Besides, the growth and dissipative conditions are different from the ones used in previous papers on
the topic. An application is given to the Fitz–Hugh–Nagumo system, which models the transmission of signals across axons.
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1. Introduction

A great number of processes coming from Physics, Chemistry, Biology, Economics and other sciences
can be described by reaction–diffusion equations. One of the most interesting problems concerning
partial differential equations is to understand the asymptotic behaviour of the solutions of the equation
when time grows to infinite. The study of the asymptotic behaviour of the system is giving us relevant
information about “the future” of the phenomenon described in the model. In this context, the concept
of global attractor has become very important in the literature.

In this paper we study the asymptotic behaviour of the solutions of the following reaction–diffusion
system:

ut = a∆u − f (x, u), x ∈ R
N , t > 0, (1)

u(0) = u0 ∈
[
L2(

R
N)]d

, (2)

where u is an unknown vector function, that is, u(x, t) = (u1, . . . , ud), x ∈ R
N , t > 0, f (x, u) =

(f 1, . . . , fd), and ut = ∂u/∂t. We assume the following conditions:

(H1) The real d × d matrix a has a positive symmetric part 1
2 (a + a∗) � AI , where A > 0.

(H2) f = f0 + f1, f0(x, u) = (f 1
0 , . . . , fd

0 ), f1(x, u) = (f 1
1 , . . . , fd

1 ), where f j
i are Caratheodory

functions, that is, they are continuous on u and measurable on x.
(H3) There exist positive functions C0(x), C1(x) ∈ L1(RN ) and constants αβ > 0, pi � 2 verifying(

f0(x, u), u
)

� α|u|2 − C0(x), (3)
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(
f1(x, u), u

)
� β

d∑
i=1

∣∣ui
∣∣pi − C1(x). (4)

(H4) There exist positive functions C2(x) ∈ L2(RN ), C3(x) ∈ L1(RN ), and constants γ, η > 0
verifying∣∣f0(x, u)

∣∣ � C2(x) + η|u|, (5)

d∑
i=1

∣∣f i
1(x, u)

∣∣pi/(pi−1) � C3(x) + γ
d∑

i=1

∣∣ui
∣∣pi . (6)

As an application, we consider the Fitz–Hugh–Nagumo system, which is a well known model of
transmission of signals across axons (see [44,41]).

In the sequel, we shall use the notation H = [L2(RN )]d, V = [H1(RN )]d and V ′ = [H−1(RN )]d,
together with the respective norms ‖ · ‖, ‖ · ‖V and ‖ · ‖V ′ . By ‖ · ‖r, | · |, (·, ·)H , (·, ·) we denote the usual
norm in Lr(RN ), the norm in R

d (or R
N ), the scalar product in H and the usual scalar product in R

d (or
R

N ), respectively, so that (u, v)H =
∑d

i=1

∫
RN uivi dx =

∫
RN (u, v) dx. For simplicity, for any u, v ∈ V

we shall use also the following notation:

|∇u|2 =
d∑

i=1

∣∣∇ui
∣∣2 =

d∑
i=1

N∑
j=1

∣∣∣∣∂ui

∂xj

∣∣∣∣2

,

(∇u,∇v) =
d∑

i=1

(
∇ui,∇vi) =

d∑
i=1

N∑
j=1

∂ui

∂xj

∂vi

∂xj
, (∇u,∇v)H =

∫
RN

(∇u,∇v) dx.

For p = (p1, . . . , pd) we define the space

Lp(
R

N)
= Lp1

(
R

N)
× · · · × Lpd

(
R

N)
.

The aim of this paper is to prove the existence of a compact global attractor of (1)–(2) in the phase
space H .

The existence of attractors for reaction–diffusion equations on unbounded domains has been studied
by many authors before (see [1,5,17,19,20,33,37,39,46,48]). Different phase spaces have been consid-
ered in the previous papers: weighted spaces [5], Lq spaces [1,19,39,46], Sobolev spaces [1,37,48] and
spaces of bounded functions [33].

Our paper continues the line of investigation started in [46] (see also [39]).
One of the main differences is the fact that we do not assume f to be differentiable on the variable u

(just continuous). Also, we do not assume conditions providing the uniqueness of solutions. Neverthe-
less, by defining a multivalued semiflow instead of a semigroup of operators the asymptotic behaviour
of solutions can be studied in the same way (see [31]). It is worth to remark that one of the difficul-
ties which appears as a consequence of this lack of uniqueness is that, unlike the case with uniqueness,
there are some restrictions in the kind of estimates we can obtain. This occurs because we do not have
a regular approximation for each solution of the equation and, as a result, we cannot obtain formally
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the necessary estimates and justify them after that with suitable approximations. We are only able to
get the estimates that the regularity properties of the solutions allow. In particular, this problem appears
when we need to prove the asymptotic compactness of the solutions. For example, in order to obtain this
property in the space L2, an estimate of the solutions in the space H1, which is compactly imbedded in
L2 for bounded domains, is usually proved. In our case we do not know how to obtain such an estimate.
To avoid this problem the method of the energy equation, which has been successfully used in many
papers for equations with uniqueness of solutions (see, for example, [21,28,34,35,42,46]) and also for a
wave equation without uniqueness [7], is an appropriate tool. Another useful approach, which is slightly
different but in a similar line, has been used in [22,23] and [24].

Another difference appears in the growth conditions. In particular, in [46] (and also in other papers as
[1,37,39,48]) the constant p has an additional restriction which depends on N . We do not assume any
restrictions and, instead, we suppose the dissipative condition (4). In such a way we extend to the case
of unbounded domains a type of conditions which have been used frequently for the case of bounded
domains (see [4,15,23,29]). We note that, in [15] and [23], the existence of the global attractor in the
case of nonuniqueness and bounded domains is proved.

Finally, in order to conclude the review and the comparison of the previous results we note that in [1],
unlike the other papers, the dissipative condition (3) is weaker, because α is considered as a function of
the space variable x. It is an open problem whether or not this kind of condition could be applied to the
case of nonuniqueness.

The asymptotic behaviour of equations without uniqueness of the Cauchy problem has been studied by
several authors in the last years. In our opinion there are two important reasons which justify the interest
of the researches in such type of equations. On the one hand, they contain important models coming from
Mathematical Physics, as we can see in the example of the relevant three-dimensional Navier–Stokes
equations (see [6]). On the other hand, they allow to weaken the conditions imposed in the nonlinear
functions involved in the equations, which are in many cases very restrictive. In this way we can extend
the class of equations for which the asymptotic behaviour of solutions can be studied. Several results
concerning the existence of global attractors in the case of nonuniqueness have been proved for dif-
ferential inclusions (see [25,31,32]), reaction–diffusion equations (see [15,17,23]), parabolic problems
(see [13,45]), phase-field equations (see [22,24]), wave equations (see [7,16]), the three-dimensional
Navier–Stokes equations (see [6,9,10,16,36,40]), delay ordinary differential equations [12] or degener-
ate parabolic equations [18]. As far as we know the theory of attractors for equations without uniqueness
was studied at first in [3].

We note that several approaches have been used in order to develop a general theory of attractors
for equations without uniqueness. In this paper we use the method of multivalued semiflows (see [2,
14,30,31]). Another approach, which is rather similar, is the method of generalized semigroups (see [6,
18]). A comparison of these two theories can be found in [11]. We note also that the theory of trajectory
attractors have been also fruitfully applied to treat equations without uniqueness (see [15,16,36,40]). The
main difference with the previous approaches is the fact that a new phase space is defined. In this space
the whole trajectory of any solution is a point, and the global attractor is obtained for the translation
semigroup.

The main result of this paper is the following:

Theorem 1. Let (H1)–(H4) hold. Then the system (1)–(2) defines a multivalued semiflow in the phase-
space H , which possesses a compact invariant global attractor A. Also, A is the minimal closed attract-
ing set.



114 F. Morillas and J. Valero / Attractors for reaction–diffusion equations

This paper is organized as follows. In the second section we obtain some a priori estimates and prove
the existence of solutions of the Cauchy problem. In the third section we define the multivalued semiflow
and prove that its graph is weakly closed. In the fourth section we check first that the semiflow is asymp-
totically compact (using the method of the energy equation) and then that it is upper semicontinuous and
has compact values. Finally we obtain the existence of the global attractor and apply this result to the
Fitz–Hugh–Nagumo model of transmission of signals across axons. In the last section we give another
proof of the asymptotic compactness property, but now using the second method, which we have called
the monotonicity method.

2. Existence of solutions and a priori estimates

Let Lp(0, T ; Lp(RN )) = Lp1 (0, T ; Lp1 (RN )) × · · · × Lpd(0, T ; Lpd(RN )), p = (p1, . . . , pd), and
q = (q1, . . . , qd), where 1

pi
+ 1

qi
= 1. Conditions (5)–(6) imply that for any u ∈ Lp(0, T ; Lp(RN )) ∩

L2(0, T ; H) we have∫ T

0

∫
RN

∣∣f0
(
x, u(t, x)

)∣∣2
dx dt � K0

(
T + ‖u‖2

L2(0,T ;H)

)
, (7)

∫ T

0

∫
RN

d∑
i=1

∣∣f i
1

(
x, u(t, x)

)∣∣qi dx dt � K1

(
T +

d∑
i=1

∥∥ui
∥∥pi

Lpi (0,T ;Lpi (RN ))

)
. (8)

First we shall give the definition of a weak solution.

Definition 2. The function u(t, x), t ∈ [0, T ], x ∈ R
N , is said to be a weak solution of (1) on [0, T ] if

u ∈ L2(0, T ; V )∩Lp(0, T ; Lp(RN ))∩L∞(0, T ; H) and u satisfies Eq. (1) in the distribution sense, that
is,

−
∫ T

0
(u, vt)H dt −

∫ T

0
(au, ∆v)H dt +

∫ T

0

∫
RN

(
f (x, u), v

)
dx dt = 0, (9)

for all v ∈ [C∞
0 ([0, T ] × R

N )]d.

It follows from this definition and (7)–(8) that the time derivative ut of any weak solution u belongs to
the space L2(0, T ; V ′) + L2(0, T ; H) + Lq(0, T ; Lq(RN )) ⊂ Lq(0, T ; Y ) = Lq1 (0, T ; V ′ + Lq1 (RN )) ×
· · · × Lqd(0, T ; V ′ + Lqd(RN )), where Y = V ′ + Lq(RN ). Since u ∈ L2(0, T ; V ) ⊂ Lq(0, T ; Y ), u
belongs to C([0, T ], Y ), and then the inclusion u ∈ L∞(0, T ; H) implies that t �→ u(t, ·) is weakly
continuous with values in the space H (see [43, Lemma 1.4, p. 263] or [27]).

It is an immediate consequence that for any v ∈ L2(0, T ; V )∩Lp(0, T ; Lp(RN )) and any weak solution
u one has∫ T

0
〈ut, v〉Y dt +

∫ T

0
(a∇u,∇v)H dt +

∫ T

0

∫
RN

(
f (x, u), v

)
dx dt = 0, (10)

where 〈·, ·〉Y denotes pairing in the space Y . Since (10) implies (9), this is an equivalent definition of
weak solution.
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In fact, as in the case of bounded domains (see [15]), we shall prove that u(t, ·) is absolutely continuous
on [0, T ] with respect to the strong topology of the space H .

Lemma 3. Let ρ(x) : R
N → R be a smooth function such that ρ ∈ W 1,∞(RN ). If a function u belongs to

L2(0, T ; V ) ∩ Lp(0, T ; Lp(RN )), and its derivative ∂u/∂t belongs to L2(0, T ; V ′) + Lq(0, T ; Lq(RN )),
then u is almost everywhere equal to a continuous function from [0, T ] into H , ‖u(t)‖2 is absolutely
continuous on [0, T ] and

d
dt
‖u‖2 = 2

〈
du

dt
, u

〉
Y

, for a.a. t ∈ (0, T ), (11)

d
dt
‖ρu‖2 = 2

〈
du

dt
, ρ2u

〉
Y

, for a.a. t ∈ (0, T ). (12)

Sketch of the proof. Let

û(t) =
{

u(t), on [0, T ],
0, on R \ [0, T ].

By regularizing the function û : R →V ∩ Lp(RN ) we obtain a sequence of functions um ⊂ C1([0, T ],
V ∩ Lp(RN )) such that

um −→ u in L2
loc(0, T ; V ) ∩ Lp

loc

(
0, T ; Lp(

R
N))

, (13)

d
dt

um −→ d
dt

u in L2
loc

(
0, T ; V ′) + Lq

loc

(
0, T ; Lq(

R
N))

, (14)

as m → ∞. Since ρ ∈ W 1,∞, we have that

ρ2um −→ ρ2u in L2
loc(0, T ; V ) ∩ Lp

loc

(
0, T ; Lp(

R
N))

. (15)

Also, it is clear that

d
dt

∥∥um(t)
∥∥2 = 2

〈
d
dt

um(t), um(t)
〉

Y
= 2

(
d
dt

um(t), um(t)
)

H
, (16)

d
dt

∥∥ρum(t)
∥∥2 = 2

〈
d
dt

um(t), ρ2um(t)
〉

Y
= 2

(
d
dt

um(t), ρ2um(t)
)

H
. (17)

Passing to the limit in (16)–(17) in the distribution sense we have the equalities

d
dt
‖u‖2 = 2

〈
du

dt
, u

〉
Y

, (18)

d
dt
‖αu‖2 = 2

〈
du

dt
, ρ2u

〉
Y
. (19)

Since 〈 du
dt , u〉Y and 〈 du

dt , ρ2u〉Y belong to L1([0, T ]), (11)–(12) hold. The rest of the proof repeats the
same steps of [43, p. 262, Lemma 1.3], and we shall omit it. �
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We shall obtain now some a priori estimates.

Lemma 4. For any weak solution u of problem (1)–(2) we have:

‖u‖X � K1
(
‖u0‖, T

)
, (20)

‖ut‖U � K2
(
‖u0‖, T

)
, (21)

where Ki are increasing functions of ‖u0‖ and T , X = L2(0, T ; V )∩Lp(0, T ; Lp(RN ))∩C([0, T ], H),
and U = L2(0, T ; V ′) + Lq(0, T ; Lq(RN )).

Proof. Using Lemma 3 we have

1
2

d
dt
‖u‖2 = −(a∇u,∇u)H −

∫
RN

(
f (x, u), u

)
dx. (22)

Now, assumptions (H1) and (H3) give

1
2

d
dt
‖u‖2 + A‖∇u‖2 � −α‖u‖2 − β

d∑
i=1

∫
RN

∣∣ui
∣∣pi dx +

∫
RN

C0(x) dx +
∫

RN
C1(x) dx. (23)

Hence, using that Ci(x) ∈ L1(RN ) and integrating we obtain

∥∥u(t)
∥∥2 + 2A

∫ t

0
‖∇u‖2 ds + 2α

∫ t

0
‖u‖2 ds + 2β

d∑
i=1

∫ t

0

∥∥ui
∥∥pi

pi
ds � ‖u0‖2 + 2MT ,

for all t ∈ [0, T ], (24)

which implies (20).
It follows from (7), (8) and (20) that f0(x, u(t, x)) is bounded in L2(0, T ; H), and then in L2(0, T ; V ′),

and also that f1(x, u(t, x)) is bounded in Lq(0, T ; Lq(RN )). It is clear that the constants depend increas-
ingly on ‖u0‖ and T . On the other hand, since −∆ : V → V ′ is a linear and bounded operator, it follows
from (20) that

‖−∆u‖L2(0,T ;V ′) � K‖u‖L2(0,T ;V ) � KK1.

Finally, the equality ut = a∆u − f0(x, u) − f1(x, u) implies (21). �

In order to prove the existence of weak solutions we consider the Dirichlet problem in a bounded
domain

ut = a∆u − f (x, u) + h(x), x ∈ ΩR, t > 0, (25)

u|∂ΩR
= 0, t > 0, (26)

u(x, 0) = u0,R(x), x ∈ ΩR, (27)
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where ΩR = B(0, R) is the open ball of radius R � 1 centered at 0, u0,R(x) = u0(x)ψR(|x|), and ψR is
a smooth function verifying

ψR(ξ) =


1, if 0 � ξ � R − 1,
0 � ψR(ξ) � 1, if R − 1 � ξ � R,
0, if ξ > R.

It is well known [15, Theorem 2.1] that (25)–(27) has at least one weak solution for any u0,R(x) ∈
[L2(ΩR)]d (the definition of weak solution is the same as in Definition 2 but replacing R

N by ΩR). In
the sequel, we shall use the notation Hrj = [L2(Ωrj )]d, Vrj = [H1(Ωrj )]d and V ′

rj
= [H−1(Ωrj )]d.

Theorem 5. Let (H1)–(H4) hold. Then, problem (1)–(2) has a weak solution for any u0 ∈ H and
T > 0.

Proof. Let urj , rj → ∞, be a sequence of solutions of (25)–(27). We note that

‖u0 − u0,rj‖2 =
∫

RN

(
1 − ψrj

(
|x|

))2|u0|2 dx �
∫
|x|>rj−1

|u0|2 dx → 0, if rj → ∞. (28)

Repeating the same proof of Lemma 4 we have

∥∥urj (t)
∥∥2

Hrj
+ 2A

∫ t

0
‖∇urj‖2

Hrj
ds + 2α

∫ t

0
‖urj‖2

Hrj
ds + 2β

d∑
i=1

∫ t

0

∥∥ui
rj

∥∥pi

Lpi (Ωrj ) ds

� ‖u0,rj‖2 + 2T

(∫
RN

C0(x) dx +
∫

RN
C1(x) dx

)
, for all t ∈ [0, T ].

Hence, (28) implies

‖urj‖Xrj
� K1

(
‖u0,rj‖, T

)
� K̃1

(
‖u0‖, T

)
, (29)

where Xrj = L2(0, T ; Vrj ) ∩ Lp(0, T ; Lp(Ωrj )) ∩ C(0, T ; Hrj ).
Following [5, Theorem 1.3] we extend these solutions to be defined on R

N in the following way:

ûrj (x) =
{

urj (x)ψrj

(
|x|

)
, in B(0, rj),

0, otherwise.

Since urj are bounded in Xrj uniformly with respect to rj , ûrj is a bounded sequence in X . Hence,
there exists a subsequence of ûrj (denoted again by urj ) such that

urj → u∞ weakly in L2(0, T ; V ),
urj → u∞ weakly star in L∞(0, T ; H),
urj → u∞ weakly in Lp

(
0, T ; Lp

(
R

N
))

.
(30)

Next, we shall prove that u∞ is a weak solution of (1)–(2). Let rk fixed. From the convergence rj → ∞
we can assume that rk � rj − 1. We define the projections in B(0, rk) of urj and denote them by

ukj = Lkurj .



118 F. Morillas and J. Valero / Attractors for reaction–diffusion equations

It is clear from (29) that ukj is bounded in Xrk
. It follows that there exists a subsequence (denoted again

by urj ) such that ukj = Lkurj → uk∞ weakly in L2(0, T ; Vrk
) and Lp(0, T ; Lp(Ωrk

)) and weakly star
in L∞(0, T ; Hrk

).
Now, we shall check the equality Lku∞ = uk∞. Let v ∈ [C∞

0 ([0, T ]×Ωrk
)]d. The weak convergence

in L2(0, T ; Vrk
) gives

∫ T

0

∫
Ωrk

(Lkurj , v) dx dt →
∫ T

0

∫
Ωrk

(uk∞, v) dx dt.

On the other hand, using v(t, x) = 0, if x /∈ Ωrk
, and (30) we obtain

∫ T

0

∫
Ωrk

(Lkurj , v) dx dt =
∫ T

0

∫
RN

(urj , v) dx dt →
∫ T

0

∫
RN

(u∞, v) dx dt

and ∫ T

0

∫
RN

(u∞, v) dx dt =
∫ T

0

∫
Ωrk

(Lku∞, v) dx dt,

so that uk∞ = Lku∞.
Finally, we have to prove that Lku∞ is a weak solution in [0, T ] ×Ωrk

, and then, since rk is arbitrary
and for any v ∈ [C∞

0 ([0, T ]×R
N )]d we can find rk such that v ∈ [C∞

0 ([0, T ]×Ωrk
)]d, we can conclude

what u∞ is a weak solution of (1)–(2).
Let v ∈ [C∞

0 ([0, T ] × Ωrk
)]d. Since B(0, rk) ⊂ B(0, rj), it follows that v belongs to [C∞

0 ([0, T ] ×
Ωrj )]d, and using that urj is a weak solution in Ωrj we have

∫ T

0

∫
Ωrk

(
−(Lkurj , vt) − (aLkurj , ∆v) +

(
f (x, Lkurj ), v

))
dx dt

=
∫ T

0

∫
Ωrj

(
−(urj , vt) − (aurj , ∆v) +

(
f (x, urjk

), v
))

dx dt = 0. (31)

Let us prove that f0(x, Lkurj ) → f0(x, Lku∞) weakly in L2(0, T ; Hrj ) and also that f1(x, Lkurj ) →
f1(x, Lku∞) weakly in Lq(0, T ; Lq(Ωrk

)). We already know that Lkurj → uk∞ weakly in the spaces
L2(0, T ; Vrk

) and Lp(0, T ; Lp(Ωrk
)). Arguing as in Lemma 4 we obtain (up to a subsequence) that

f0(x, Lkurj ) → χ0 weakly in L2(0, T ; Hrk
), (32)

f1(x, Lkurj ) → χ1 weakly in Lq(0, T ; Lq(Ωrk
)
)
, (33)

Lk
∂urj

∂t
=

∂Lkurj

∂t
→ ∂uk∞

∂t
weakly in L2(0, T ; V ′

rk

)
+ Lq(0, T ; Lq(Ωrk

)
)
. (34)

We have to prove that χi = fi(x, uk∞). Put si = max{1, N ( 1
qi

− 1
2 )}. Then the Sobolev imbed-

ding theorems imply that Lqi(Ωrk
) ⊂ H−si(Ωrk

) with continuous injection. Hence,
∂Lkurj

∂t → ∂uk∞
∂t
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weakly in Lq(0, T ; H−s(Ωrk
)), where s = (s1, . . . , sd), H−s(Ωrk

) = H−s1(Ωrk
) × · · · × H−sd(Ωrk

),
Lq(0, T ; H−s(Ωrk

)) = Lq1 (0, T ; H−s1 (Ωrk
)) × · · · × Lqd(0, T ; H−sd(Ωrk

)). Since the injection
H1

0 (Ωrk
) ⊂ L2(Ωrk

) is compact and the injection L2(Ωrk
) ⊂ H−si(Ωrk

) continuous, we can apply
the compacity theorem (see [38] or [26]) to get the existence of a subsequence strongly convergent in
L2(0, T ; Hrk

) to uk∞, that is,

Lkurj → uk∞ strongly in L2(0, T ; Hrk
),

and then

Lkurj → uk∞ a.e. in [0, T ] × Ωrk
.

Since fi are continuous functions, we have

fi(x, Lkurj ) → fi(x, uk∞) a.e. in [0, T ] × Ωrk
.

Lemma 8.3 in [38] (see also [26]) implies f0(x, Lkurj ) → f0(x, uk∞), f1(x, Lkurj ) → f1(x, uk∞)
weakly in L2(0, T ; Hrk

) and Lq(0, T ; Lq(Ωrk
)), respectively.

Finally, passing to the limit in (31) we obtain that

∫ T

0

∫
Ωrk

(
−(Lku∞, vt) − (aLku∞, ∆v) +

(
f (x, Lku∞), v

))
dx dt = 0,

so that u∞ is a weak solution. �

We note that, although the theorem of existence of solutions is proved on a finite interval [0, T ], since
the concatenation of solutions is a solution (see the proof of Lemma 7 below), each solution can be
extended to a global one defined for t ∈ [0, +∞). Let us denote the set of all global solutions cor-
responding to the initial condition u0 by D(u0). It is clear that any u ∈ D(u0) belongs to the space
L2

loc(0, +∞; V ) ∩ Lp
loc(0, +∞; Lp(RN )) ∩ C([0, +∞), H). To conclude this section we obtain an expo-

nential bound of the solutions, proving that in fact u ∈ L∞(0, +∞; H) for all u ∈ D(u0).

Lemma 6. If u is a weak solution of the problem (1)–(2), then

∥∥u(t)
∥∥2 + 2A

∫ t

0
e−α(t−s)‖∇u‖2 ds �

∥∥u(0)
∥∥2

e−2αt + D, for all t � 0, (35)

where D = (‖C0‖L1(RN ) + ‖C1‖L1(RN ))/α.

Proof. The proof follows directly from (23) and Gronwall lemma. �
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3. Definition of the multivalued semiflow

In this section we shall define a multivalued semiflow G associated with the solutions of (1)–(2) and
prove that its graph is weakly closed.

Let u0 ∈ H and denote by P (H) the set of all nonempty subsets of H . We define the (in general
multivalued) map G : R

+ × H → P (H) by

G(t, u0) =
{
z ∈ H: ∃u ∈ D(u0) such that u(0) = u0 and u(t) = z

}
.

Lemma 7. G(t, G(s, x)) = G(t+s, x), for all x ∈ H , s, t ∈ R
+, i.e., G is a strict multivalued semiflow.

Proof. First, we shall prove that G(t + s, x) ⊂ G(t, G(s, x)). Let y ∈ G(t + s, x). Then there exists
u(·) ∈ D(x) verifying u(0) = x and u(t + s) = y. It is clear that u(s) ∈ G(s, x) and the result follows if
we prove y ∈ G(t, u(s)). Let ū(·) = u(· + s). It is straightforward to prove by a change of variable that
ū is a weak solution and ū(t) = u(t + s) = y, ū(0) = u(s). Then y ∈ G(t, u(s)) ⊂ G(t, G(s, x)).

Now we shall prove that G(t, G(s, x)) ⊂ G(t + s, x). Let y ∈ G(t, G(s, x)), then there exist z1,
u1(·) ∈ D(x), and u2(·) ∈ D(z1), verifying

u1(0) = x, u1(s) = z1,

u2(0) = z1, u2(t) = y.

Further, we shall check that there is u(·) ∈ D(u0) verifying u(0) = x, u(t + s) = y. Define u as

u(r) =
{

u1(r), if 0 � r � s,
u2(r − s), if s � r.

If we prove that u is a weak solution, then it is evident that y ∈ G(t+ s, x). For any v ∈ [C∞
0 ([0, T ]×

R
N )]d, using the change of variable τ = r − s, and the definition of u1 and u2, we have

∫ T

0

〈
∂

∂r
u, v

〉
Y

dr +
∫ T

0

[
(a∇u,∇v)H +

∫
RN

(
f (x, u), v

)
dx

]
dr

=
∫ s

0

〈
∂

∂r
u1, v

〉
Y

dr +
∫ s

0

[
(a∇u1,∇v)H +

∫
RN

(
f (x, u), v

)
dx

]
dr

+
∫ T

s

〈
∂

∂r
u2(r − s), v

〉
Y

dr +
∫ T

s

[(
a∇u2(r − s),∇v

)
H +

∫
RN

(
f
(
x, u2(r − s)

)
, v

)
dx

]
dr

=
∫ s

0

〈
∂

∂r
u1, v

〉
Y

dr +
∫ s

0

[
(a∇u1,∇v)H +

∫
RN

(
f (x, u1), v

)
dx

]
dr

+
∫ T−s

0

〈
∂

∂r
u2, v

〉
Y

dr +
∫ T−s

0

[
(a∇u2,∇v)H +

∫
RN

(
f (x, u2), v

)]
dr.

Since u1, u2 are weak solutions, (10) implies that the two last integrals are equal to zero. Hence, u is a
weak solution. �
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We are now in a position to establish that the graph of the multivalued map G(t, ·) is weakly closed for
each t � 0. This result will be necessary for the proof of the asymptotic compactness in the next section.

Lemma 8. The graph of G(t, ·) is weakly closed, i.e., if ξn → ξ∞, βn → β∞ weakly in H , where
ξn ∈ G(t, βn), then ξ∞ ∈ G(t, β∞).

Proof. We have to prove the existence of a weak solution u(·) verifying

u(0) = β∞, u(t) = ξ∞.

From ξn ∈ G(t, βn) we have that there exists a sequence un of weak solutions verifying un(0) = βn and
un(t) = ξn. Let T � t. Since un(0) is bounded, Lemma 4 implies that

un is bounded in L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ Lp(0, T ; Lp),

∂un

∂t
is bounded in L2(0, T ; V ′) + Lq(0, T ; Lq),

so that there exists a subsequence of un verifying

un → u∞ weakly in L2(0, T ; V ),

un → u∞ weakly in Lp(0, T ; Lp),

∂un

∂t
→ ∂u∞

∂t
weakly in L2(0, T ; V ′) + Lq(0, T ; Lq),

un → u∞ weakly star in L∞(0, T ; H). (36)

We shall show that u∞ is a weak solution, i.e., we shall check the equality (9). First, we note that un

verifies (9), and then the restriction of un to the ball Ωk = B(0, k), denoted as before by Lkun, verifies
for any v ∈ [C∞

0 ([0, T ] × Ωk)]d the same equality on (0, T ) × Ωk, i.e.,

−
∫ T

0

∫
Ωk

(Lkun, vt) dx dt −
∫ T

0

∫
Ωk

(aLkun, ∆v) dx dt +
∫ T

0

∫
Ωk

(
f (x, Lkun), v

)
dx dt = 0. (37)

It is obvious that Lkun converges to some uk∞ in the same sense as in (36) (but changing R
N by Ωk) in

the respective spaces. On the other hand, since Lq(0, T ; Lq(Ωk)) + L2(0, T ; V ′
rk

) ⊂ Lq(0, T ; H−s(Ωk))

for s = (s1, . . . , sd), si = max{1, N ( 1
qi

− 1
2 )}, we have Lk

∂un
∂t = ∂Lkun

∂t → ∂uk∞
∂t weakly

in Lq(0, T ; H−s(Ωk)). As in the proof of Theorem 5 we can check that uk∞ = Lku∞ and also
that f0(x, Lkun) → f0(x, Lku∞) weakly in L2(0, T ; Hrk

), f1(x, Lkun) → f1(x, Lku∞) weakly in
Lq(0, T ; Lq(Ωk)). Finally, passing to the limit in (37) we obtain that

∫ T

0

∫
Ωk

[
(−Lku∞, vt) − (aLku∞, ∆v) +

(
f (x, Lku∞), v

)]
dx dt = 0.

Since k is arbitrary, u∞ is a weak solution.
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Finally, we shall show that

u∞(0) = β∞, (38)

u∞(t) = ξ∞. (39)

For this aim we shall deduce first that Lkun(r) → Lku∞(r), for all r ∈ [0, T ], weakly in Hrk
. First,

we note that ∂Lkun

∂t is a bounded sequence of the space Lq(0, T ; H−s(Ωk)), so that Lkun(t) : [0, T ] →
H−s(Ωk) is an equicontinuous family of functions. For each fixed r ∈ [0, T ] from (24) we obtain
that the sequence Lkun(r) is bounded in Hrk

, and then it is precompact in H−s(Ωk). Applying the
Ascoli–Arzelà theorem we deduce that {Lkun(t)} is a precompact sequence in C([0, T ], H−s(Ωk)).
Hence, since Lkun → Lku∞ weakly in L2(0, T ; H−s(Ωk)), passing to a subsequence we have Lkun →
Lku∞ in C([0, T ], H−s(Ωk)). The boundedness of Lkun(r) in Hrk

implies by a standard argument that
Lkun(r) → Lku∞(r) weakly in Hrk

for all r.
In particular, we have Lkun(0) → Lku∞(0), so that Lku∞(0) = Lkβ∞. Since k is arbitrary, we get

(38). A similar argument gives (39). �

4. Asymptotic compactness and the global attractor: the method of the energy equation

As before for a given k > 0 we denote by Ωk = {x ∈ R
N : |x| < k} a ball of radius k centered at 0.

Lemma 9. For any weak solution u ∈ D(u0), where u0 ∈ B, a bounded subset of H , and any ε > 0,
there exist T (ε, B), K(ε, B) verifying∫

|x|�
√

2k

∣∣u(t, x)
∣∣2

dx � ε, ∀t � T , k � K.

Proof. Let s ∈ R
+. We define a smooth function verifying

θ(s) =


0, 0 � s � 1,
0 � θ(s) � 1, 1 � s � 2,
1, s � 2,

which obviously satisfies |θ′(s)| � C, for all s ∈ R
+. Moreover, we assume that

√
θ is also smooth.

We can apply Lemma 3 with ρ(x) =
√

θ( |x|
2

k2 ). It follows from the definition of weak solution that the
equality (1) is satisfied for a.a. t ∈ (0, T ) in the sense of the space Y . Hence,

1
2

d
dt

∫
RN

θ

( |x|2
k2

)
|u|2 dx =

〈
ut, ρ

2u
〉
Y =

〈
a∆u, ρ2u

〉
Y −

∫
RN

θ

( |x|2
k2

)(
f (x, u), u

)
dx, (40)

for a.a. t.
Now, we shall obtain an estimate of the first term in the last expression:

〈
a∆u, ρ2u

〉
Y = −

d∑
i=1

[
2
k2

∫
RN

((
∇(au)i, x

)
θ′

( |x|2
k2

)
ui

)
dx

]
−

(
ρ2a∇u,∇u

)
H . (41)
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Using that |θ′(s)| � C, θ′( |x|
2

k2 ) = 0, for |x| < k and |x| >
√

2k, Lemma 6 and (H1) we obtain

〈
a∆u, ρ2u

〉
Y � C̃

k

∫
K�|x|�

√
2K

|∇u||u| dx − A

∫
RN

θ|∇u|2 dx

� Ĉ

k

(
1 + ‖∇u‖2) � ε′

(
1 + ‖∇u‖2),

for any k � K1(ε′), where ε′ is arbitrary small.
For the second term in (40) condition (H3) implies

−
∫

RN
θ

( |x|2
k2

)(
f (x, u), u

)
dx � −α

∫
RN

θ

( |x|2
k2

)
|u|2 dx +

∫
RN

θ

( |x|2
k2

)
C0(x) dx

− β
d∑

i=1

∫
RN

θ

( |x|2
k2

)
|ui|pi dx +

∫
RN

θ

( |x|2
k2

)
C1(x) dx

� −α

∫
RN

θ

( |x|2
k2

)
|u|2 dx + 2ε′, (42)

if k � K2(ε′). Denoting Y (t) =
∫

RN θ( |x|
2

k2 )|u|2 dx and using (40)–(42) we get

1
2

d
dt

Y (t) + αY (t) � 3ε′ + ε′‖∇u‖2,

if k � K = max{K1, K2}. Applying Gronwall’s lemma and using Lemma 6 we obtain

Y (t) � Y (0) e−2αt +
3
α

ε′ + ε′
∫ t

0
e−2α(t−s)‖∇u‖2 ds

� Y (0) e−2αt +
3
α

ε′ +
ε′

2A

(
‖u0‖2 + D

)
.

Choosing ε′, T (ε, B) such that 3
αε′ + ε′

2A (‖u0‖2 + D) � ε/2, Y (0) e−2αt � ε/2, for all u0 ∈ B, t � T ,
we obtain Y (t) � ε, and then

∫
|x|�

√
2k
|u|2 dx �

∫
RN

θ

( |x|2
k2

)
|u|2 dx � ε. �

Remark 10. In [46] it is used an estimate of the norm ‖u(t)‖V . We are not able to get such an estimate
in our case but, instead, it is sufficient to have a bound of

∫ t
0 e−2α(t−s)‖∇u‖2 ds.

For a bounded set B ⊂ H denote γ+
T (B) =

⋃
t�T G(t, B). We recall that the multivalued semiflow

G is asymptotically compact if any sequence ξn ∈ G(tn, un), where tn → +∞, un ∈ B, which is a
bounded subset satisfying that γ+

T (B) is bounded for some T (B) � 0, is precompact in H . Now we are
ready to prove the following:
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Proposition 11. The multivalued semiflow G is asymptotically compact.

Proof. Let ξn ∈ G(tn, vn), vn ∈ B, a bounded set in H . Since γ+
T (B)(B) is bounded and ξn ∈

G(tn, vn) ⊂ γ+
T (B)(B), for n � n0, there exists a subsequence (again denoted by ξn) weakly conver-

gent in H to some ξ.
Let T0 > 0 be an arbitrary number. Using Lemma 7 we have that ξn ∈ G(tn, vn) =

G(T0, G(tn − T0, vn)), and then there must be βn ∈ G(tn − T0, vn) satisfying ξn ∈ G(T0, βn). We
can choose N (B, T0) such that tn−T0 � T (B) for all n � N (B, T0), so that G(tn−T0, vn) ⊂ γ+

T (B)(B)
is bounded and βn → ξT0 weakly in H . From Lemma 8 the graph of G(T0, ·) is weakly closed, so that
ξ ∈ G(T0, ξT0 ) and

lim inf
n→∞

‖ξn‖ � ‖ξ‖. (43)

If we prove that lim supn→∞ ‖ξn‖ � ‖ξ‖, then ξn → ξ strongly in H , as we need.
From (22) and (H1) any weak solution satisfies

1
2

d
dt
‖u‖2 +

1
2
‖u‖2 + ‖∇cu‖2 = −

∫
RN

(
f (x, u), u

)
dx +

1
2
‖u‖2, a.e. on [0, T ], (44)

where c is a real matrix such that a+at

2 = ctc.
By Gronwall’s lemma we have

‖u(T0)‖2 = e−T0
∥∥u(0)

∥∥2 − 2
∫ T0

0
e−(T0−s)‖∇cu‖2 ds

− 2
∫ T0

0

∫
RN

e−(T0−s)(f (x, u), u
)

dx ds +
∫ T0

0
e−(T0−s)‖u‖2 ds. (45)

Let un(·) be a sequence of weak solutions verifying un(T0) = ξn and un(0) = βn. Obviously, un satisfy
(45), so that

‖ξn‖2 = e−T0‖βn‖2 − 2
∫ T0

0
e−(T0−s)‖∇cun‖2 ds

− 2
∫ T0

0

∫
RN

e−(T0−s)(f (x, un), un
)

dx ds +
∫ T0

0
e−(T0−s)‖un‖2 ds. (46)

We know from Lemma 8 that un converges to some weak solution u in the sense of (36) and u(0) = ξT0 ,
u(T0) = ξ.

We need to handle each term in (46) separately for the sequence un. First, since βn is bounded, it is
clear that

e−T0‖βn‖2 � e−T0M , for all n. (47)

Further we have

lim sup
n→∞

(
−2

∫ T0

0
e−(T0−s)‖∇cun‖2 ds

)
= − lim inf

n→∞
2

∫ T0

0
e−(T0−s)‖∇cun‖2 ds

� −2
∫ T0

0
e−(T0−s)‖∇cu‖2 ds. (48)
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On the other hand, we consider the splitting

∫ T0

0
e−(T0−s)‖un‖2 ds =

∫ T0

0

∫
Ωk

e−(T0−s)|un|2 dx ds +
∫ T0

0
e−(T0−s)

∫
|x|�k

|un|2 dx ds.

We note that Lemma 7 implies un(s) ∈ G(s, G(tn −T0, vn)) = G(s+ tn −T0, vn). By Lemma 9 for any
ε > 0 there exist T (ε, B), K1(ε, B) > 0 such that

∫
|x|�k |un(s)|2 dx � ε, if k � K1, tn − T0 � T . As in

the proof of Theorem 5 we can check that (up to a subsequence) Lkun → Lku strongly in L2(0, T ; Hk),
so that

lim sup
n→∞

∫ T0

0
e−(T0−s)‖un‖2 ds

�
∫ T0

0

∫
Ωk

e−(T0−s)|u|2 dx ds + ε

∫ T0

0
e−(T0−s) ds �

∫ T0

0
e−(T0−s)‖u‖2 dx ds + ε. (49)

Finally, we have to handle the nonlinear term. We note first that (H3) implies

−2
∫ T0

0

∫
|x|�k

e−(T0−s)(f (x, un), un
)

dx ds

� 2
∫ T0

0
e−(T0−s)

∫
|x|�k

C1(x) dx ds − 2β

∫ T0

0
e−(T0−s)

∫
|x|�k

|u|p dx ds

+ 2
∫ T0

0
e−(T0−s)

∫
|x|�k

C0(x) dx ds − 2α

∫ T0

0
e−(T0−s)

∫
|x|�k

|u|2 dx ds

� 4ε

∫ T0

0
e−(T0−s) ds � 4ε,

if k � K2(ε). We have seen that un → u strongly in L2(0, T ; Hk), so that un(t, x) → u(t, x) for a.a.
(t, x) ∈ (0, T0) × Ωk. Since f (x, u) is continuous on u, we have that f (x, un(t, x)) → f (x, u(t, x)) a.e.
Then Lebesgue–Fatou’s lemma (see [47]) and the inequality (f (un(t, x)), un(t, x)) � −(C0(x)+C1(x)),
for a.a. (t, x), imply

lim sup
n→∞

(
−2

∫ T0

0

∫
Ωk

e−(T0−s)(f (x, un), un
)

dx ds

)

� −2
∫ T0

0

∫
Ωk

e−(T0−s) lim inf
n→∞

(
f (x, un), un

)
dx ds = −2

∫ T0

0

∫
Ωk

e−(T0−s)(f (x, u), u
)

dx ds.

Therefore, the splitting of the integral gives

lim sup
n→∞

(
−2

∫ T0

0

∫
RN

e−(T0−s)(f (x, un), un

)
dx ds

)

� −2
∫ T0

0

∫
Ωk

e−(T0−s)(f (x, u), u
)

dx ds + 4ε. (50)
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We use now the equality (46) for un. Passing to the limit as k → ∞ in (50) and using (45) and
(47)–(50) we find that

lim sup
n→∞

‖ξn‖2 � e−T0M − 2
∫ T0

0

∫
RN

e−(T0−s)|∇cu|2 dx ds

+
∫ T0

0

∫
RN

e−(T0−s)|u|2 dx ds − 2
∫ T0

0

∫
RN

e−(T0−s)(f (x, u), u
)

dx ds + 5ε

= ‖ξ‖2 + e−T0M − e−T0‖ξT0‖2 + 5ε. (51)

Taking the limit as T0 → +∞, and then letting ε → 0 we get the inequality

lim sup
n→∞

‖ξn‖2 � ‖ξ‖2,

and, thus, the proof is complete. �

Finally, we shall prove a continuity property of the semiflow G. We recall that the multivalued map
G(t, ·) : H → P (H), where t is fixed, is upper semicontinuous if for any x0 ∈ H and any neighborhood
O of G(t, x0) there exists δ > 0 such that G(t, x) ⊂ O(G(t, x0)), as soon as ‖x − x0‖ < δ. We say that
the multivalued map G(t, ·) has compact values if the set G(t, x0) is compact for all t � 0.

Lemma 12. The map G(t, ·) is upper semicontinuous and has compact values for any t � 0.

Proof. Let ξn ∈ G(t, xn) and xn → x0. We claim that the sequence ξn is precompact in H . In view
of Lemma 6 the sequence ξn is bounded, so that up to a subsequence it is weakly convergent to some
ξ. Arguing in a similar way as in the proof of Proposition 11 there exist weak solutions un(·), u(·) such
that un(t) = ξn, un(0) = xn, u(t) = ξ, u(0) = x0 and un converges to u in the sense of (36). Moreover,
they satisfy the equality

∥∥u(t)
∥∥2 =

∥∥u(0)
∥∥2 − 2

∫ t

0
‖∇cu‖2 ds − 2

∫ t

0

∫
RN

(
f (x, u), u

)
dx ds. (52)

Repeating the same arguments of Proposition 11 we obtain

lim sup
n→∞

‖ξn‖2 � lim
n→∞

‖xn‖2 − 2
∫ t

0

∫
RN

|∇cu|2 dx ds − 2
∫ t

0

∫
RN

(
f (x, u), u

)
dx ds + 4ε

= ‖ξ‖2 + 4ε →
ε→0

‖ξ‖2.

Hence, ξn → ξ strongly in H . An immediate consequence of this property is that G(t, x0) is precompact
for any x0. Lemma 8 implies that G(t, x0) is weakly closed, hence closed, so that G(t, x0) is a compact
set.

Now, if G(t, ·) is not upper semicontinuous, then there exists a point x0, a neighborhood O of G(t, x0)
and a sequence ξn ∈ G(t, xn) with ‖xn − x0‖ → 0 such that ξn �∈ O. Passing to a subsequence we have
ξnk

→ ξ, xnk
→ x0, strongly in H . Lemma 8 implies that ξ ∈ G(t, x0), which is a contradiction. �
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We conclude this section by proving Theorem 1, the main result of the paper. Summarizing the results
obtained so far we have:

1. Lemma 6 implies that γ+
0 (B) is bounded for any bounded set B and that a bounded absorbing set

B0 exists, i.e., a set satisfying that for any bounded set B there exists T (B) such that

G(t, B) ⊂ B0, for any t � T.

2. Lemma 11 implies that G is asymptotically compact.
3. Lemma 12 implies that G(t, ·) is upper-semicontinuous and has compact values for all t � 0.

A global attractor A for the multivalued semiflow G is a set satisfying the following two properties:

1. It is attracting, i.e.,

dist
(
G(t, B),A

)
→ 0, as t → +∞,

for any bounded set B, where dist(C, A) = supc∈C infa∈A ‖c − a‖.
2. It is negatively semi-invariant, i.e.,

A ⊂ G(t, A), for all t � 0.

The global attractor is said to be invariant if A = G(t, A), for all t � 0. The given properties and the
equality G(t, G(s, x)) = G(t + s, x) (see Lemma 7) imply the existence of a global compact invariant
attractor (see [31, Theorem 3 and Remark 8]), which is the minimal closed attracting set (that is, for any
closed attracting set C we have A ⊂ C). Hence, Theorem 1 is proved.

Consider now the Fitz–Hugh–Nagumo system (see [44,41]):

{
ut − d1uxx + g(x, u) + v = h1(x),
vt − d2vxx − δu + ξv = h2(x),

where di, ξ, δ > 0, hi ∈ L2(RN ) and g(x, u) is a Caratheodory function. Usually, g is a cubic polynomial
with respect to u. For example, we can take g(x, u) = u3 + ω(x)u2 + σu, where ω ∈ L4(RN ), σ > 0.
We assume also that σξ > (1 − δ)2/2.

Denote z = (u, v), a =
( d1 0

0 d2

)
and

f0(x, z) =
(

σu + v + h1(x)
−δu + µξv + h2(x)

)
,

(1 − δ)2

2σξ
< µ < 1,

f1(x, z) =
(

u3 + ω(x)u2

(1 − µ)ξv

)
.

It is easy to check that conditions (H1)–(H4) are satisfied with p = (4, 2). Hence, the statement of
Theorem 1 holds.
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5. Asymptotic compactness: the method of monotonicity

As we have pointed out in the introduction there exists another approach for proving that the semi-
flow is asymptotically compact, which has been used already in [23] for reaction–diffusion equations
in bounded domains and in [22,24] for phase-field equations. Now we shall show that this method also
works in our case.

The first part of the proof is the same as in Proposition 11. The difference appears in the proof of the
inequality lim supn→∞ ‖ξn‖ � ‖ξ‖. From (44) and condition (H3) we obtain

d
dt
‖u‖2 + 2A‖∇u‖2 + 2α‖u‖2 + 2β

d∑
i=1

∥∥ui
∥∥pi

pi
� 2‖C0‖L1(RN ) + 2‖C1‖L1(RN )

� C a.e. on [0, T ],

for any weak solution, so that the functions Jn(t) = ‖un(t)‖2 − Ct, J(t) = ‖u(t)‖2 − Ct, where
un, u are the same solutions defined in the proof of Proposition 11, are non-increasing. We shall show
that lim supn→∞ Jn(T0) � J(T0), from which the result follows. We know from Proposition 11 that
(up to a subsequence) Lkun → Lku strongly in L2(0, T ; Hk), and also that for any ε > 0 there exist
T (ε, B), K1(ε, B) > 0 such that

∫
|x|�k |un|2 dx � ε, for any s ∈ [0, T0], if k � K1, tn − T0 � T . It

follows also that∫
Ωk

∣∣un(s, x)
∣∣2

dx →
∫

Ωk

∣∣u(s, x)
∣∣2

dx, for a.a. s ∈ (0, T0).

Let tm be a sequence such that tm < T0, tm → T0, as m → ∞, and
∫
Ωk

|un(tm, x)|2 dx →∫
Ωk

|u(tm, x)|2 dx, as n → ∞, for any fixed m. Hence, using the continuity of J and the monotonicity
of Jn, J we have that for any ε > 0 there exist m, N (m), T and K1 such that

Jn(T0) − J(T0) = Jn(T0) − Jn(tm) + Jn(tm) − J(tm) + J(tm) − J(T0)

�
∣∣Jn(tm) − J(tm)

∣∣ +
∣∣J(tm) − J(T0)

∣∣
�

∣∣∣∣∫
Ωk

∣∣un(tm, x)
∣∣2

dx −
∫

Ωk

∣∣u(tm, x)
∣∣2

dx

∣∣∣∣
+

∫
|x|�k

∣∣un(tm, x)
∣∣2

dx +
∫
|x|�k

∣∣u(tm, x)
∣∣2

dx + ε � 5ε.

Thus, the proof is complete.
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