Query Containment under Bag and Bag-Set Semantics

Foto Afrati, Matthew Damigos and Manolis Gergatsoulis

Information Processing Letters (IPL) 2010
Query Containment Problem

- \(Q_1, Q_2 \) over schema \(S \).
- \(\mathcal{D} \) is a database instance of \(S \).

For every database instance \(\mathcal{D} \):

- \(Q_2 \sqsubseteq Q_1 \)
- \(Q_1(\mathcal{D}) \)
- \(Q_2(\mathcal{D}) \)
Motivation - Previous Work

- Related problems:
 - Query rewriting using views.
 - Information integration.
 - Query optimization.
 - ...
- The query containment problem under set semantics has been extensively investigated
 - Most of the queries’ classes give decidable results.
- SQL semantics: manipulation of duplicate tuples.
- The query containment problem for conjunctive queries under both bag and bag-set semantics remains open for more than a decade.
 - Most of the super-classes give undecidable results.
Conjunctive queries

- **Conjunctive query (CQ, for short):**

 \[
 Q : \quad q(\overline{X}) :\leftarrow g_1(\overline{X}_1), \ldots, g_n(\overline{X}_n),
 \]

 Head \quad **Body**

 Subgoal \quad Subgoal

 - Select-Project-Join SQL queries with equality comparisons.
 - Distinguished variables: \(Vars(\overline{X}) \).
 - Safe CQ: every variable in \(Vars(\text{head}(Q)) \) appears in the body of \(Q \).

 - (True) valuation from \(Q \) to \(D \):
 1. every variable of \(Q \) is valuated by a constant appear in \(D \).
 2. If every valuated subgoal appears in database instance \(D \) then the valuated head is in the answer of \(Q (Q(D)) \).
Query Containment under Bag and Bag-Set Semantics

Foto Afrati, Matthew Damigos and Manolis Gergatsoulis

Semantics

Set-valued DB \mathcal{D}

<table>
<thead>
<tr>
<th>link</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Bag-valued DB \mathcal{D}

<table>
<thead>
<tr>
<th>link</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

VS.

Query:

$Q : q(X) : \neg \text{link}(X,Y), \text{link}(Y,Y)$
Semantics

Set-valued DB \mathcal{D}

<table>
<thead>
<tr>
<th>link</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Bag-valued DB \mathcal{D}

<table>
<thead>
<tr>
<th>link</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Query: $Q : q(X) : \neg \text{link}(X, Y), \text{link}(Y, Y)$

$Q(\mathcal{D})$:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

1. **Set semantics:** Relations are sets (using DISTINCT in SQL)
Query Containment under Bag and Bag-Set Semantics

Foto Afrati, Matthew Damigos and Manolis Gergatsoulis

Semantics

<table>
<thead>
<tr>
<th>Set-valued DB \mathcal{D}</th>
<th>Bag-valued DB \mathcal{D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>link</td>
<td>link</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

VS.

Query:

$$Q : \text{q}(X) : \neg \text{link}(X, Y), \text{link}(Y, Y)$$

Bag-operators: treat duplicates as distinct tuples

1. **Set semantics:** Relations are sets (using DISTINCT in SQL)
2. **Bag semantics:** Relations are bags (SQL semantics)

Bag-operators:

1. **Set operators**
2. **Bag operators**

Bag-operators:

1. Set semantics: Relations are sets (using DISTINCT in SQL)
2. Bag semantics: Relations are bags (SQL semantics)
Query Containment under Bag and Bag-Set Semantics

Foto Afrati, Matthew Damigos and Manolis Gergatsoulis

Set-valued DB \mathcal{D}

<table>
<thead>
<tr>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

Bag-valued DB \mathcal{D}

<table>
<thead>
<tr>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

VS.

Query:

$Q : q(X) : \neg \text{link}(X, Y), \text{link}(Y, Y)$

(1) set-operators

$Q(\mathcal{D})$

| a |
| b |
| c |

(2) bag-operators

$Q(\mathcal{D})$

| a |
| a |
| b |
| c |

(3) bag-operators

Bag-operators: treat duplicates as distinct tuples

(1): Set semantics: Relations are sets (using DISTINCT in SQL)

(2): Bag semantics: Relations are bags (SQL semantics)

(3): Bag-Set semantics: Relations are sets (normalized DB + SQL)
Bag-Set Semantics - Projection causes duplicate tuples

- Bag-set semantics: Set-valued database + Bag-operators
 - Each tuple is unique in a relation
Bag-Set Semantics - Projection causes duplicate tuples

- Bag-set semantics: Set-valued database + Bag-operators
 - Each tuple is unique in a relation
- Queries: Select, Join, Cartesian Product, Projection
- CQ \(Q \) without projection ⇔ the answer of \(Q \) is set.
 - Afrati, Damigos, Gergatsoulis IPL 2009

\[
\begin{align*}
Q_1(D) := & \quad q(X) : \neg \text{link}(X, Y), \text{link}(Y, Y) \\
Q_2(D) := & \quad q(X, Y) : \neg \text{link}(X, Y), \text{link}(Y, Y)
\end{align*}
\]
Query Containment under Bag and Bag-Set Semantics

Foto Afrati, Matthew Damigos and Manolis Gergatsoulis

Formal Definition

Definition

$Q_2 \subseteq Q_1$, if for every database instance \mathcal{D} of S, we have that $Q_2(\mathcal{D}) \subseteq Q_1(\mathcal{D})$.

<table>
<thead>
<tr>
<th>Semantics</th>
<th>\sqsubseteq</th>
<th>\mathcal{D}</th>
<th>\subseteq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>\sqsubseteq_s</td>
<td>set-valued</td>
<td>\subseteq_s</td>
</tr>
<tr>
<td>Bag</td>
<td>\sqsubseteq_b</td>
<td>bag-valued</td>
<td>\subseteq_b</td>
</tr>
<tr>
<td>Bag-Set</td>
<td>\sqsubseteq_{bs}</td>
<td>set-valued</td>
<td>\subseteq_{bs}</td>
</tr>
</tbody>
</table>

- Q_2 **bag-contained** in Q_1 \Rightarrow Q_2 **bag-set-contained** in Q_1
- Q_2 **bag-set-contained** in Q_1 \Rightarrow Q_2 **set-contained** in Q_1
\[
\sqsubseteq_{bs} \not\supseteq \sqsubseteq_{b} \quad \text{and} \quad \sqsubseteq_{s} \not\supseteq \sqsubseteq_{bs}
\]

- Relation “path” stores paths of length 2.

Queries

\[
Q_1 : q(X) :- path(X, Y) \\
Q_2 : q(X) :- path(X, Y), path(Y, Z) \\
Q_3 : q(X) :- path(X, Y), path(Y, Y)
\]

Database \(D\)

Answers of Queries

- \(Q_1(D) = \{1, 2, 3, 3\}\)
- \(Q_2(D) = \{1, 1, 2, 3, 3\}\)
- \(Q_3(D) = \{1, 2, 3\}\)
\(\sqsubseteq_{bs} \not\Rightarrow \sqsubseteq_{b} \) and \(\sqsubseteq_{s} \not\Rightarrow \sqsubseteq_{bs} \)

- Relation “path” stores paths of length 2.

Queries

\begin{align*}
Q_1 : q(X) & :- \text{path}(X, Y) \\
Q_2 : q(X) & :- \text{path}(X, Y), \text{path}(Y, Z) \\
Q_3 : q(X) & :- \text{path}(X, Y), \text{path}(Y, Y)
\end{align*}

Database \(\mathcal{D} \)

Answers of Queries

\begin{enumerate}
 \item \(Q_1(\mathcal{D}) = \{1, 2, 3, 3, 2, 3, 4, 4\} \)
 \item \(Q_2(\mathcal{D}) = \{1, 1, 2, 3, 3, 1, 2, 2, 3, 3, 3, 3, 4, 4\} \)
 \item \(Q_3(\mathcal{D}) = \{1, 2, 3, 1, 2, 3, 3, 3, 3, 4, 4\} \)
\end{enumerate}
Query Containment under Bag and Bag-Set Semantics

Foto Afrati, Matthew Damigos and Manolis Gergatsoulis

Containment Mapping

- Containment mapping from Q_1 to Q_2: Every distinct tuple appears in $Q_2(D)$ also appears in $Q_1(D)$
- each valuation over $Q_2 \Rightarrow$ at least one valuation over Q_1

\[\mu_1 : Q_1 \rightarrow Q_2 \]

\[
Q_1 : \begin{align*}
q(a) & \leftarrow \text{blue}(a, b), \ \text{red}(b, c) \ \text{red}(b, c) \\
q(X) & :- \text{blue}(X, Y), \ \text{red}(Y, Z) \ \text{red}(W, Z)
\end{align*}
\]

\[
Q_2 : \begin{align*}
q(a) & \leftarrow \text{blue}(a, b), \ \text{red}(b, c) \ \text{red}(b, c) \\
q(A) & :- \text{blue}(A, B), \ \text{red}(B, C), \ \text{red}(B, D)
\end{align*}
\]
Containment Mapping

- Containment mapping from Q_1 to Q_2: Every **distinct** tuple appears in $Q_2(D)$ also appears in $Q_1(D)$
 - each valuation over $Q_2 \Rightarrow$ at least one valuation over Q_1

$$Q_1 : \ X \rightarrow Y \rightarrow W \rightarrow Z \quad \text{and} \quad Q_2 : \ A \rightarrow B \rightarrow C \rightarrow D$$

$$q(a) \leftarrow blue(a, b), \ red(b, d) \quad red(b, d)$$

$$Q_1 : q(X) :- blue(X, Y), \ red(Y, Z) \quad red(W, Z)$$

$$Q_2 : q(A) :- blue(A, B), \ red(B, C), \ red(B, D)$$

$$q(a) \leftarrow blue(a, b), \ red(b, c) \quad red(b, c)$$

$$\mu_1 : Q_1 \rightarrow Q_2$$

$$\mu_2 : Q_1 \rightarrow Q_2$$
Containment Mapping

- Containment mapping from Q_1 to Q_2: Every **distinct** tuple appears in $Q_2(D)$ also appears in $Q_1(D)$
 - each valuation over $Q_2 \Rightarrow$ at least one valuation over Q_1
- What about multiplicity of each tuple (under bag(-set) semantics)?
 - Many valuations over $Q_2 \Rightarrow$ same valuation over Q_1

\[
q(a) \leftarrow \text{blue}(a, b), \quad \text{red}(b, d) \quad \text{red}(b, d)
\]

\[
Q_1 : q(X) :- \text{blue}(X, Y), \quad \text{red}(Y, Z) \quad \text{red}(W, Z)
\]

\[
Q_2 : q(A) :- \text{blue}(A, B), \quad \text{red}(B, C), \quad \text{red}(B, D)
\]

\[
q(a) \leftarrow \text{blue}(a, b), \quad \text{red}(b, c) \quad \text{red}(b, d)
\]

\[
q(a) \leftarrow \text{blue}(a, b), \quad \text{red}(b, d) \quad \text{red}(b, c)
\]
Containment Mapping

- Containment mapping from Q_1 to Q_2: Every **distinct** tuple appears in $Q_2(D)$ also appears in $Q_1(D)$
 - each valuation over $Q_2 \Rightarrow$ at least one valuation over Q_1
- What about multiplicity of each tuple (under bag(-set) semantics)?
 - Many valuations over $Q_2 \Rightarrow$ same valuation over Q_1
 - $\Rightarrow Q_2 \not\sqsubseteq_{bs} Q_1 \Rightarrow Q_2 \not\sqsubseteq_{b} Q_1$

$q(a) \leftarrow \text{blue}(a, b), \ \text{red}(b, d) \ \text{red}(b, d)$
$q(a) \leftarrow \text{blue}(a, b), \ \text{red}(b, c) \ \text{red}(b, c)$

$Q_1 : q(X) :- \text{blue}(X, Y), \ \text{red}(Y, Z) \ \text{red}(W, Z)$

$Q_2 : q(A) :- \text{blue}(A, B), \ \text{red}(B, C), \ \text{red}(B, D)$
$q(a) \leftarrow \text{blue}(a, b), \ \text{red}(b, c) \ \text{red}(b, d)$
$q(a) \leftarrow \text{blue}(a, b), \ \text{red}(b, d) \ \text{red}(b, c)$
$q(a) \leftarrow \text{blue}(a, b), \ \text{red}(b, c) \ \text{red}(b, c)$
$q(a) \leftarrow \text{blue}(a, b), \ \text{red}(b, d) \ \text{red}(b, d)$
Query containment and Containment mapping

$Q_1: q(X) :- edge(X, Y), edge(Y, Z), edge(Y, W)$
$Q_2: q(A) :- edge(A, B), edge(B, B), edge(B, C)$

$Q_1 : \begin{array}{c}
\xrightarrow{X} \xrightarrow{Y} \xrightarrow{Z} \xrightarrow{W}
\end{array}$

$Q_2 : \begin{array}{c}
\xrightarrow{A} \xrightarrow{B} \xrightarrow{C}
\end{array}$
Query containment and Containment mapping

\[Q_1 : q(X) :- \text{edge}(X, Y), \text{edge}(Y, Z), \text{edge}(Y, W) \]
\[Q_2 : q(A) :- \text{edge}(A, B), \text{edge}(B, B), \text{edge}(B, C) \]

- \(\mu_1 : Q_1 \rightarrow Q_2 \)

\(\mu_1 \): containment mapping from \(Q_1 \) to \(Q_2 \).

- \(Q_2 \sqsubseteq_s Q_1 \iff \text{containment mapping from } Q_1 \text{ to } Q_2 \).
 (Chandra-Merlin, STOC 1977)
Query containment and Containment mapping

\[Q_1 : q(X) :- \text{edge}(X, Y), \text{edge}(Y, Z), \text{edge}(Y, W) \]
\[Q_2 : q(A) :- \text{edge}(A, B), \text{edge}(B, B), \text{edge}(B, C) \]

- \(\mu_1 \): containment mapping from \(Q_1 \) to \(Q_2 \).
 - \(Q_2 \sqsubseteq_s Q_1 \Leftrightarrow \) containment mapping from \(Q_1 \) to \(Q_2 \).
 (Chandra-Merlin, STOC 1977)
- \(\mu_2 \): variables-onto containment mapping from \(Q_1 \) to \(Q_2 \).
 - variables-onto containment mapping from \(Q_1 \) to \(Q_2 \) \(\Rightarrow \)
 \(Q_2 \sqsubseteq_{bs} Q_1 \).
 (Chaudhuri-Vardi, PODS 1993)
Query containment and Containment mapping

\[Q_1 : q(X) :- \text{edge}(X, Y), \text{edge}(Y, Z), \text{edge}(Y, W) \]
\[Q_2 : q(A) :- \text{edge}(A, B), \text{edge}(B, B), \text{edge}(B, C) \]

\[\begin{align*}
Q_1 : & \quad X \rightarrow Y \rightarrow Z \rightarrow W \\
Q_2 : & \quad A \rightarrow B \rightarrow B \rightarrow C
\end{align*} \]

- \(\mu_1 \): containment mapping from \(Q_1 \) to \(Q_2 \).
 - \(Q_2 \sqsubseteq_s Q_1 \iff \text{containment mapping from } Q_1 \text{ to } Q_2 \).
 (Chandra-Merlin, STOC 1977)
- \(\mu_2 \): \textbf{variables-onto} containment mapping from \(Q_1 \) to \(Q_2 \).
 - \text{variables-onto containment mapping from } Q_1 \text{ to } Q_2 \Rightarrow \n Q_2 \sqsubseteq_{bs} Q_1 . \) (Chaudhuri-Vardi, PODS 1993)
- \(\mu_3 \): \textbf{subgoals-onto} containment mapping from \(Q_1 \) to \(Q_2 \).
 - \text{subgoals-onto containment mapping from } Q_1 \text{ to } Q_2 \Rightarrow \n Q_2 \sqsubseteq b Q_1 . \) (Chaudhuri-Vardi, PODS 1993)
Necessary Conditions for CQ Containment

- $Q_2 \subseteq_{bs} Q_1 \Rightarrow$ Every variable of Q_2 must be mapped using a containment mapping from Q_1 (Chaudhuri-Vardi, PODS 1993)
 - otherwise, there is a subgoal of Q_2 that is not mapped by Q_1
- $Q_2 \subseteq_b Q_1 \Rightarrow$ Every subgoal of Q_2 must be mapped using a containment mapping from Q_1 (Chaudhuri-Vardi, PODS 1993)

Example

$Q_1 : q(X) :- link(X, Y), link(X, Z)$

$Q_2 : q(A) :- link(A, C), link(C, D)$

$Q_2 \not\subseteq_{bs} Q_1$

$q(a) \leftarrow link(a, b), link(a, b)$

$Q_2 : q(A) :- link(A, C), link(C, D)$

$q(a) \leftarrow link(a, b), link(a, c_1)$

\vdots

$\text{link}(a, c_\ell)$
Necessary Conditions for CQ Containment

- $Q_2 \sqsubseteq_{bs} Q_1 \Rightarrow$ Every variable of Q_2 must be mapped using a containment mapping from Q_1 (Chaudhuri-Vardi, PODS 1993)
 - otherwise, there is a subgoal of Q_2 that is not mapped by Q_1
- $Q_2 \sqsubseteq_{b} Q_1 \Rightarrow$ Every subgoal of Q_2 must be mapped using a containment mapping from Q_1 (Chaudhuri-Vardi, PODS 1993)

Example

$Q_1 : q(X) :- \text{link}(X, Y), \text{link}(X, Z)$

$q(a) \leftarrow \text{link}(a, b), \text{link}(a, b)$

$Q_2 : q(A) :- \text{link}(A, C), \text{link}(C, C)$

$q(a) \leftarrow \text{link}(a, b), \text{link}(a, a)$

\vdots

$\text{link}(a, a)$
CQs without projections

- \(Q_1 \) is CQ, \(Q_2 \) is CQ without projections:
 \[Q_2 \sqsubseteq_{bs} Q_1 \iff Q_2 \sqsubseteq_s Q_1 \]
- i.e. searching for a containment mapping from \(Q_1 \) to \(Q_2 \) (in NP)
- What about bag-containment? i.e. \(Q_2 \sqsubseteq_b Q_1 ?? Q_2 \sqsubseteq_{bs} Q_1 \)

Example

\[
\begin{align*}
Q_1 &: q(X, Y) :- \text{link}(X, Y) \\
Q_2 &: q(X, Y) :- \text{link}(X, Y), \text{link}(Y, Y)
\end{align*}
\]

\(Q_2 \sqsubseteq_{bs} Q_1 \)

\[
\begin{array}{|c|c|}
\hline
\text{link} & a \\
\hline
a & a \\
\hline
a & a \\
\hline
a & a \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{link} & a \\
\hline
a & a \\
\hline
a & a \\
\hline
a & a \\
\hline
\end{array}
\]
CQs without projections - Cont.

• Q_1, Q_2 both CQs without projections:

 - $Q_2 \sqsubseteq_b Q_1 \iff$ subgoals-onto containment mapping from Q_1 to Q_2

 - Check whether or not the mapping of distinguished vars is also a subgoals-onto (resp. variables-onto): $O(n^2 \log(n))$

 - Why Q_1 without projection?

Example

$Q_1 : q(X, Y) :- e(X, Y), e(W, U), e(W, V)$

$Q_2 : q(X, Y) :- e(X, Y), e(X, X), e(Y, Y)$
CQs without projections - Cont.

- Q_1, Q_2 both CQs without projections:
 - $Q_2 \sqsubseteq_b Q_1 \iff$ subgoals-onto containment mapping from Q_1 to Q_2
 - $Q_2 \sqsubseteq_{bs} Q_1 \iff$ containment mapping from Q_1 to Q_2
 - Check whether or not the mapping of distinguished vars is also a subgoals-onto (resp. variables-onto): $O(n^2 \log(n))$
 - Why Q_1 without projection?

Example

\[
\begin{align*}
Q_1: & \text{ } q(X, Y) \leftarrow e(X, Y), e(W, U), e(W, V) \\
Q_2: & \text{ } q(X, Y) \leftarrow e(X, Y), e(X, X), e(Y, Y) \\
& \text{ } q(a, b) \leftarrow e(a, b), e(a, a), e(b, b)
\end{align*}
\]
CQs without self-joins

- Q_1 is a CQ, Q_2 is CQ without self-joins:
 - i.e. every relation-name appears at most once
 - every subgoal of Q_1 can map at most one subgoal of Q_2
- $Q_2 \sqsubseteq_b Q_1$ (resp. $Q_2 \sqsubseteq_{bs} Q_1$) \iff subgoals-onto (resp. variables-onto) containment mapping from Q_1 to Q_2
- Complexity: $O(n \log(n))$
 1. Sort w.r.t. relation-names
 2. Check whether or not each subgoal of Q_1 maps the unique subgoal of Q_2, with the same relation name
 3. Check whether or not there is a subgoals-onto (resp. variables-onto) containment mapping from Q_1 to Q_2

Example

$Q_1 : q(X) :- blue(X,Y), \ blue(X,Z)$

$Q_2 : q(X) :- blue(X,Y), \ green(Y,Y), \ red(Y,Z)$,
CQs without self-joins

- Q_1 is a CQ, Q_2 is CQ without self-joins:
 - i.e. every relation-name appears at most once
 - every subgoal of Q_1 can map at most one subgoal of Q_2

\[Q_2 \sqsubseteq_b Q_1 \text{ (resp. } Q_2 \sqsubseteq_{bs} Q_1) \iff \text{ subgoals-onto (resp. variables-onto) containment mapping from } Q_1 \text{ to } Q_2 \]

- Complexity: $O(n \log(n))$
 1. Sort w.r.t. relation-names
 2. Check whether or not each subgoal of Q_1 maps the unique subgoal of Q_2, with the same relation name
 3. Check whether or not there is a subgoals-onto (resp. variables-onto) containment mapping from Q_1 to Q_2

Example

\[Q_1 : q(X) :- \text{blue}(X, Y), \text{blue}(X, Z) \]
\[Q_2 : q(X) :- \text{blue}(X, Y), \text{green}(Y, Y), \text{red}(Y, Z), \text{q}(a) \leftarrow \text{blue}(a, b), \text{green}(a, a), \text{red}(a, c), \text{red}(a, d) \]
\[Q_2 \not\sqsubseteq_{bs} Q_1 \]
Generalized-Star Queries

- **Labeled path**: $r_1(W_0, W_1), r_2(W_1, W_2), \ldots, r_k(W_{k-1}, W_k), k \geq 1$
 - r_1, r_2, \ldots, r_k are not necessarily distinct relation names, and
 - W_0, W_1, \ldots, W_k are distinct variables.

- **Star** $S(X)$: collection of labeled paths starting from the same variable X (root).

- **Generalized-star query of arity** n:
 \[Q : q(X_1, \ldots, X_n) : -S_1(X_1), \ldots, S_n(X_n), N_1(Y_1), \ldots, N_m(Y_m) \]
 - $m = 0 \Rightarrow Q$ is a star query
 - **Simple** generalized-star query: the length of each labeled path is 1 (i.e. it is of the form: $r(W_0, W_1)$)
Star Queries

• Q_1, Q_2 are star queries of arity n:
 • $Q_2 \subseteq b Q_1$ (resp. $Q_2 \subseteq bs Q_1$) \iff subgoals-onto (resp. variables-onto) containment mapping from Q_1 to Q_2

 - Variables-onto (resp. Subgoals-onto) containment mapping $\Rightarrow Q_2 \subseteq bs Q_1$ (resp. $Q_2 \subseteq b Q_1$)
 - Existence of a containment mapping from Q_1 to Q_2
 - Every variable (resp. subgoal) of Q_2 is mapped by Q_1
Query Containment under Bag and Bag-Set Semantics

Foto Afrati, Matthew Damigos and Manolis Gergatsoulis

Star Queries

- Q_1, Q_2 are star queries of arity n:
 - $Q_2 \sqsubseteq_b Q_1$ (resp. $Q_2 \sqsubseteq_{bs} Q_1$) \iff subgoals-onto (resp. variables-onto) containment mapping from Q_1 to Q_2

![Diagram of star queries]

- Variables-onto (resp. Subgoals-onto) containment mapping $\Rightarrow Q_2 \sqsubseteq_{bs} Q_1$ (resp. $Q_2 \sqsubseteq_b Q_1$)

- Existence of a containment mapping from Q_1 to Q_2

- Every variable (resp. subgoal) of Q_2 is mapped by Q_1
Star Queries

• \(Q_1, Q_2 \) are star queries of arity \(n \):

 • \(Q_2 \sqsubseteq_b Q_1 \) (resp. \(Q_2 \sqsubseteq_{bs} Q_1 \)) \iff \text{subgoals-onto (resp. variables-onto) containment mapping from} \ Q_1 \ \text{to} \ Q_2

• Variables-onto (resp. Subgoals-onto) containment mapping \(\Rightarrow Q_2 \sqsubseteq_{bs} Q_1 \) (resp. \(Q_2 \sqsubseteq_b Q_1 \))

• Existence of a containment mapping from \(Q_1 \) to \(Q_2 \)

• Every variable (resp. subgoal) of \(Q_2 \) is mapped by \(Q_1 \)

\[
\begin{align*}
Q_1 & : \\
X_1 & \quad X_2 \quad \ldots \quad X_N \\
& | \quad | \quad | \\
P_{11} & \quad P_{21} & \quad P_{N1} & \quad P_{NK_N} \\
W_{11} & \quad W_{21} & \quad W_{N1} & \quad W_{NK_N} \\
\end{align*}
\]

\[
\begin{align*}
Q_2 & : \\
Y_1 & \quad Y_2 \quad \ldots \quad Y_N \\
& | \quad | \quad | \\
P'_{11} & \quad P'_{21} & \quad P'_{N1} & \quad P'_{NK_N} \\
Z_{11} & \quad Z_{21} & \quad Z_{N1} & \quad Z_{NK_N} \\
\end{align*}
\]
Query Containment under Bag and Bag-Set Semantics

Star Queries

- Q_1, Q_2 are star queries of arity n:
 - $Q_2 \sqsubseteq_b Q_1$ (resp. $Q_2 \sqsubseteq_{bs} Q_1$) \iff subgoals-onto (resp. variables-onto) containment mapping from Q_1 to Q_2

- Variables-onto (resp. Subgoals-onto) containment mapping $\Rightarrow Q_2 \sqsubseteq_{bs} Q_1$ (resp. $Q_2 \sqsubseteq_b Q_1$)

- Existence of a containment mapping from Q_1 to Q_2

- Every variable (resp. subgoal) of Q_2 is mapped by Q_1
Star Queries

- Q_1, Q_2 are star queries of arity n:
 - $Q_2 \subseteq_b Q_1$ (resp. $Q_2 \subseteq_{bs} Q_1$) \iff subgoals-onto (resp. variables-onto) containment mapping from Q_1 to Q_2

- Variables-onto (resp. Subgoals-onto) containment mapping $\Rightarrow Q_2 \subseteq_{bs} Q_1$ (resp. $Q_2 \subseteq_b Q_1$)

- Existence of a containment mapping from Q_1 to Q_2

- Every variable (resp. subgoal) of Q_2 is mapped by Q_1

- Check whether or not for each distinct labeled path P:
 - number of $P(Y_i)$ in $Q_2 \leq$ number of $P(X_i)$ in Q_1
 - $O(n^2 \log n)$
No existence of variables-onto containment mapping

Suppose the following two queries:

\[Q_1 : q(X, Y) :- r(X, X'), r(Z, U), r(Z, W), r(Y, Y') \]
\[Q_2 : q(X, Y) :- r(X, X'), r(X, U), r(Y, W), r(Y, Y') \]

- Neither subgoal-onto nor variables-onto containment mapping from \(Q_1 \) to \(Q_2 \).
- Each variable and each subgoal of \(Q_2 \) are mapped by \(Q_1 \).
- For each distinct set of tuples:
 \(\text{number of valuations over } Q_2 \leq \text{number of valuations over } Q_1 \)
No existence of variables-onto containment mapping

Suppose the following two queries:

\[Q_1 : q(X, Y) := r(X, X'), r(Z, U), r(Z, W), r(Y, Y') \]
\[Q_2 : q(X, Y) := r(X, X'), r(X, U), r(Y, W), r(Y, Y') \]

- Neither subgoal-onto nor variables-onto containment mapping from \(Q_1 \) to \(Q_2 \).
- Each variable and each subgoal of \(Q_2 \) are mapped by \(Q_1 \).
- For each distinct set of tuples:
 number of valuations over \(Q_2 \) \(\leq \) number of valuations over \(Q_1 \).
No existence of variables-onto containment mapping

Suppose the following two queries:

\[Q_1 : q(X, Y) :\neg r(X, X') , r(Z, U) , r(Z, W) , r(Y, Y') \]
\[Q_2 : q(X, Y) :\neg r(X, X') , r(X, U) , r(Y, W) , r(Y, Y') \]

• Neither subgoal-onto nor variables-onto containment mapping from \(Q_1 \) to \(Q_2 \).
• Each variable and each subgoal of \(Q_2 \) are mapped by \(Q_1 \).
• For each distinct set of tuples:
 number of valuations over \(Q_2 \) \(\leq \) number of valuations over \(Q_1 \).
No existence of variables-onto containment mapping

Suppose the following two queries:

\[Q_1 : q(X, Y) \leftarrow r(X, X'), r(Z, U), r(Z, W), r(Y, Y') \]
\[Q_2 : q(X, Y) \leftarrow r(X, X'), r(X, U), r(Y, W), r(Y, Y') \]

- Neither subgoal-onto nor variables-onto containment mapping from \(Q_1 \) to \(Q_2 \).
- Each variable and each subgoal of \(Q_2 \) are mapped by \(Q_1 \).
- For each distinct set of tuples:
 \[
 \text{number of valuations over } Q_2 \leq \text{number of valuations over } Q_1
 \]
Query Containment under Bag and Bag-Set Semantics

No existence of variables-onto containment mapping

Suppose the following two queries:

\[Q_1 : q(X, Y) :- r(X, X'), r(Z, U), r(Z, W), r(Y, Y') \]
\[Q_2 : q(X, Y) :- r(X, X'), r(X, U), r(Y, W), r(Y, Y') \]

- Neither subgoal-onto nor variables-onto containment mapping from \(Q_1 \) to \(Q_2 \).
- Each variable and each subgoal of \(Q_2 \) are mapped by \(Q_1 \).
- For each distinct set of tuples:
 number of valuations over \(Q_2 \) ≤ number of valuations over \(Q_1 \).
Simple Generalized-Star Queries

- Q_1 is simple generalized-star query of arity n
- Q_2 is a star query of arity n
- Schema contains a single binary relation

\[
\begin{align*}
Q_1 : & \quad X_1 \quad N_j \quad X_2 \quad \ldots \\
& \quad W_{11} \quad \ldots \quad W_{1K_1} \quad W_{1} \quad \ldots \quad W_{K} \quad W_{21} \quad \ldots \quad W_{2K_2} \\
Q_2 : & \quad Y_1 \quad \quad Y_2 \quad \quad \ldots \\
& \quad Z_{11} \quad \ldots \quad Z_{1K_1} \quad Z_{21} \quad \ldots \quad Z_{2K_2}
\end{align*}
\]
Simple Generalized-Star Queries

- Q_1 is a simple generalized-star query of arity n
- Q_2 is a star query of arity n
- Schema contains a single binary relation

For each d-star S of Q_1 and the corresponding d-star S' of Q_2, calculate:

$$|\text{subgoals}(S')| - |\text{subgoals}(S)|$$

Calculate the sum s of all negative differences.

Calculate the number s_N of the subgoals of n-stars of Q_1.

Check whether or not $s + s_N \geq 0$.

Linear time.
Simple Generalized-Star Queries

- Q_1 is simple generalized-star query of arity n
- Q_2 is a star query of arity n
- Schema contains a single binary relation
Simple Generalized-Star Queries

- Q_1 is a simple generalized-star query of arity n
- Q_2 is a star query of arity n
- Schema contains a single binary relation

\[
Q_1: X_1 \rightarrow W_{11} \cdots W_{1K_1} \rightarrow Y_1 \rightarrow Z_{11} \cdots Z_{1K_1}
\]

\[
Q_2: X_2 \rightarrow W_1 \cdots W_K \rightarrow Y_2 \rightarrow Z_1 \cdots Z_{K_2}
\]
Simple Generalized-Star Queries

- Q_1 is a simple generalized-star query of arity n
- Q_2 is a star query of arity n
- Schema contains a single binary relation

$Q_2 \subseteq_b Q_1$ (resp. $Q_2 \subseteq_{bs} Q_1$) \iff for every subgset of d-stars S of Q_1 and the set of corresponding d-stars S' of Q_2:

$$\sum_{S' \in S} |\text{subgoals}(S')| \leq \sum_{S \in S} |\text{subgoals}(S)| + \sum_{j=1}^{m} |\text{subgoals}(N_j)|$$

Diagram:

Q_1:
- X_1 connected by W_{11} to Z_{11}, and so on...
- N_j connected by W_1 to X_1, and so on...

Q_2:
- X_2 connected by W_{21} to Z_{21}, and so on...
- Y_2 connected by W_1 to X_2, and so on...

Test:
- For each d-star S of Q_1 and the corresponding d-star S' of Q_2, calculate:
 $$|\text{subgoals}(S')| - |\text{subgoals}(S)|$$
- Calculate the sum s of all negative differences.
- Calculate the number s of the subgoals of n-stars of Q_1.
- Check whether or not $s + s_N \geq 0$.
- Linear time.
Simple Generalized-Star Queries

- Q_1 is a simple generalized-star query of arity n
- Q_2 is a star query of arity n
- Schema contains a single binary relation

- $Q_2 \subseteq_b Q_1$ (resp. $Q_2 \subseteq_{bs} Q_1$) if for every subgset of d-stars S of Q_1 and the set of corresponding d-stars S' of Q_2:

$$\sum_{S' \in S} |\text{subgoals}(S')| \leq \sum_{S \in S} |\text{subgoals}(S)| + \sum_{j=1}^{m} |\text{subgoals}(N_j)|$$

Test:

- For each d-star S of Q_1 and the corresponding d-star S' of Q_2, calculate: $|\text{subgoals}(S')| - |\text{subgoals}(S)|$.
- Calculate the sum s of all negative differences.
- Calculate the number s_N of the subgoals of n-stars of Q_1.
- Check whether or not $s + s_N \geq 0$.
- Linear time.
Variables Property and CQ-Enhanced

- Q_1, Q_2 are CQs
- $Q_2 \sqsubseteq_{bs} Q_1 \Rightarrow$ for each finite set of tuples:
 number of valuations over $Q_2 \leq$ number of valuations over Q_1
Variables Property and CQ-Enhanced

- Q_1, Q_2 are CQs
- $Q_2 \sqsubseteq_{bs} Q_1 \Rightarrow$ for each finite set of tuples:
 number of valuations over $Q_2 \leq$ number of valuations over Q_1

- Each relation of arity n is the n-th Cartesian Product of the set of constants
Variables Property and CQ-Enhanced

• Q_1, Q_2 are CQs

• $Q_2 \sqsubseteq_{bs} Q_1 \Rightarrow$ for each finite set of tuples:
 number of valuations over $Q_2 \leq$ number of valuations over Q_1

• Each relation of arity n is the n-th Cartesian Product of the set of constants

• Each variable of each query can be valued by any constant
Variables Property and CQ-Enhanced

- Q_1, Q_2 are CQs
- $Q_2 \sqsubseteq_{bs} Q_1 \Rightarrow$ for each finite set of tuples:
 number of valuations over $Q_2 \leq$ number of valuations over Q_1

Each relation of arity n is the n-th Cartesian Product of the set of constants
- Each variable of each query can be valuated by any constant
- If $|\text{Variables}(Q_2)| \leq |\text{Variables}(Q_1)|$ then $Q_2 \not\sqsubseteq_{bs} Q_1$
Variables Property and CQ-Enhanced

- Q_1, Q_2 are CQs
- $Q_2 \sqsubseteq_{bs} Q_1 \Rightarrow$ for each finite set of tuples: number of valuations over $Q_2 \leq$ number of valuations over Q_1
- $Q_2 \sqsubseteq_{bs} Q_1 \Rightarrow |\text{Variables}(Q_2)| \leq |\text{Variables}(Q_1)|$.
Variables Property and CQ-Enhanced

- Q_1, Q_2 are CQs
- $Q_2 \sqsubseteq_{bs} Q_1 \implies$ for each finite set of tuples:
 number of valuations over $Q_2 \leq$ number of valuations over Q_1
- $Q_2 \sqsubseteq_{bs} Q_1 \implies |\text{Variables}(Q_2)| \leq |\text{Variables}(Q_1)|$.
- Suppose Q_2 is Q_1-enhanced: obtained by adding a sequence of subgoals to Q_1:
 - $Q_2 \sqsubseteq_{bs} Q_1 \iff$ variables-onto containment mapping from Q_1 to Q_2
 - Test: check whether any variable appearing in the additional subgoals also appears in Q_1’s body.
 - Linear time
Complexity results for the Bag and Bag-Set CQ containment problem

<table>
<thead>
<tr>
<th>Containing Query ((Q_1))</th>
<th>Contained Query ((Q_2))</th>
<th>Complexity Bag-Set Semantics</th>
<th>Complexity Bag Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>CQ</td>
<td>(\Pi_2^P - \text{hard}: \text{ChaudVardiPODS93})</td>
<td>open</td>
</tr>
<tr>
<td>CQ</td>
<td>CQ without projections</td>
<td>NP: \text{AfrDamGerIPL09}</td>
<td>open</td>
</tr>
<tr>
<td>CQ without projections</td>
<td>CQ without projections</td>
<td>(O(n^2 \log(n))): \text{AfrDamGerIPL09}</td>
<td></td>
</tr>
<tr>
<td>CQ</td>
<td>CQ without self-joins</td>
<td>(O(n \log(n))): \text{AfrDamGerIPL09}</td>
<td>(O(n \log(n))): \text{IoanRamTODS95, AfrDamGerIPL09}</td>
</tr>
<tr>
<td>Star Query</td>
<td>Star Query</td>
<td>(O(n^2 \log(n))): \text{AfrDamGerIPL09}</td>
<td></td>
</tr>
<tr>
<td>Simple Gener.- Star Query</td>
<td>Simple Star Query</td>
<td>Linear: \text{AfrDamGerIPL09}</td>
<td></td>
</tr>
<tr>
<td>CQ</td>
<td>Enhanced (Q_1)</td>
<td>Linear: \text{AfrDamGerIPL09}</td>
<td>open</td>
</tr>
</tbody>
</table>
Thank You