A Novel Approach to Determination of A Transition Function with Repeated Eigenvalues

Constant Matrix

Kao-Shing Hwang Min-Cheng Tsai Feng-Cheng Chang
Electrical Engineering Department
National Chung Cheng University
Chia-Yi, Taiwan

Abstract
An analytical function of a matrix with repeated eigenvalues is expressed in terms of constituent matrices. Two approaches to computing the constituent matrices are then presented. For a special case of a companion matrix, the computation can be greatly simplified.

keywords: The generalized Vandermonde matrix; The partial fraction expansion; Constant matrix; Characteristic polynomial; Longhand division;

1.FORMULATION

For a given \(n \times n \) constant matrix \(A \), eigenvalues are determined by solving the characteristic polynomial of degree \(n \),

\[
\det(sI-A) = \sum_{p=0}^{n} a_p s^{n-p} = \prod_{k=1}^{m} (s - \lambda_k)^{r_k}, \quad \sum_{k=1}^{m} r_k = n
\]

That is, the matrix \(A \) has \(m \) eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_m \) with multiplicities \(r_1, r_2, \ldots, r_m \), respectively. Let \(f(s) \) be an analytical function of \(s \), than any analytical matrix function of \(A \), \(f(A) \) may be written as the expression of the \(n \)-term sum [1]:

\[
f(A) = \sum_{k=1}^{m} \sum_{h=0}^{r_k-1} \frac{f^{(h)}(\lambda_k)}{h!} Z_{kh},
\]

where matrices \(Z_{kh}, \ k=1, 2, \ldots, m, \ h=0,1,\ldots, r_k-1, \) are called constituent matrices [2]. The main objective of this article is to derive the most efficient technique to compute \(Z_{kh} \) from a given constant matrix \(A \). In general the computation is very much involved, especially for large value of \(n \) with high multiplicity.

In a usual approach [2], the evaluation of \(Z_{kh} \) may be made by successively
setting in (2) \(f(A) = A^\ell \), \(\ell = 0, 1, \ldots, n-1 \). The results are
\[
A^\ell = \sum_{k=1}^{m} \sum_{h=0}^{\gamma_k - 1} (V_k)_h Z_{kh}, \quad \ell = 0, 1, \ldots, n-1,
\]
(3)

Where coefficients
\[
(V_k)_j = \binom{j}{k} x_k^{-j}, \quad k = 1, 2, \ldots, m, \quad i = 0, 1, \ldots, n-1, \quad j = 0, 1, \ldots, \gamma_k - 1,
\]
(4)
are the elements of the generalized Vandermonde matrix \(V \). The matrices \(Z_{kh} \) are then obtained by solving the \(n \) simultaneous linear equations (3),
\[
Z_{kh} = \sum_{l=0}^{n-1} (V_k^{-1})_{hl} A^l, \quad k = 1, 2, \ldots, m, \quad h = 0, 1, \ldots, \gamma_k - 1,
\]
(5)
where \((V_k^{-1})_{ij} \), the elements of the inverse Vandermonde matrix \(V^{-1} \), can be found by successively setting \(i = \gamma_k - 1, \ldots, 1 \), into (3):
\[
(V_k^{-1})_{ij} = \frac{1}{(dk)_0}[(W_k)_{i-1, j} - \sum_{x=i+1}^{\gamma_k} (d_k)_{x-i} (V_k^{-1})_{ij}],
\]
(6)
with
\[
(W_k)_{ij} = \sum_{p=0}^{n-1-i-j} (n-1-j-p) a_p x_k^{n-1-i-j-p},
\]
(7)
and
\[
(d_k)_{ij} = \sum_{p=0}^{n-1-i-j} (a_p x_k^{n-1-i-j-p},
\]
(8)
and \((W_k)_{ij} \) are the elements of the modal matrix \(W \).

It is understood that the summation in (6) is zero if the lower limit is greater than the upper limit.

When the order \(n \) is large, the evaluation of the scalar coefficients \(a_p \) in (1) is generally very involved. Because the expansion of an \(nxn \) determinant \(\det(sI - A) \) into a polynomial (of degree \(n \)) is not an easy task. Frame and others[2] have proposed to compute \(a_p \) by the following recurrent formulas:
\[
a_p = -\frac{1}{p} tr(AB_{p-1}), \quad a_0 = 1,
\]
(9)
and
\[
B_p = AB_{p-1} + a_p I, \quad B_0 = I, \quad B_n = 0,
\]
(10)
where \(p = 1, 2, \ldots, n \). It is noted here that \(B_p \) are matrix coefficients of the adjoin
matrix

\[\text{adj}(sI - A) = \sum_{p=0}^{n-1} B_p s^{n-1-p}. \]

Let \(f(A) = e^{At} \) in (2),

\[e^{At} = \sum_{k=1}^{m} \sum_{h=0}^{r_k-1} e^{\lambda_k t} \frac{t^h}{h!} Z_{kh}. \]

(12)

Applying Laplace transform to both sides of (12) and noting

\[L[e^{At}] = [sI - A]^{-1} = \frac{\text{adj}(sI - A)}{\det(sI - A)} \]

yields

\[\sum_{p=0}^{n-1} B_p s^{n-1-p} = \sum_{k=1}^{m} \sum_{h=0}^{r_k-1} Z_{kh} (s - \lambda_k)^{h+1}, \]

(13)

Now letting

\[\frac{s^1}{\sum_{j=0}^{n} a_j s^{n-p}} = \sum_{k=1}^{m} \sum_{h=0}^{r_k-1} (W_k^{-1})_{hl} (s - \lambda_k)^{h+1}, \]

(14)

and comparing it with (13) leads to

\[Z_{kh} = \sum_{j=0}^{n} (W_k^{-1})_{hl} B_{n-1-I}, \quad k=1,2,\ldots,m, \quad h=0,1,\ldots,r_k-1 \]

(15)

where \((W_k^{-1})_{ij}\), the elements of the inverse modal matrix \(W^{-1}\), relating the coefficients of the numerator of a proper rational function to the coefficients of the partial fraction expansion of the function, can be found by successively setting \(i = r_k - 1, \ldots, 1, 0\), into [4]:

\[(W_k^{-1})_{ij} = \frac{1}{(d_k^i)_{j0}} [(V_k)_{j0} - \sum_{p=i+1}^{r_k-1} (d_k^i)_{j0}(W_k^{-1})_{pj}], \]

(16)

where the value of \((V_k)_{ij}\) and \((d_k^i)_{j0}\) are given by (4) and (8).

Obviously both matrices \(V^{-1}\) and \(W^{-1}\) are uniquely determined for a given characteristic polynomial of matrix \(A\), and are independent of any analytical function \(f(s)\). As comparable equal effort is needed to calculate either \((V_k)_{ij}\) or \((W_k^{-1})_{ij}\), the computation of \(Z_{kh}\) is certainly more efficient with the use of (15) than with the use of (5) for large \(n\), since with the use of (15), \(B_0, B_1, \ldots, B_{n-1}\) are obtained at the same
time when \(a_0, a_1, \ldots, a_n\) are computed, while with the use of (5), additional effort is needed to compute \(A^2, A^3, \ldots, A^{n-1}\). Furthermore, the entire elements of \(V, W, V^{-1}, W^{-1}\) and \(d\) may be easily computed by employing repeated synthetic divisions and longhand divisions[3]. The technique is especially useful for hand calculation.

For a special case, if the given matrix \(A\) is a companion matrix

\[
A = \begin{bmatrix}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
& & \cdots & \cdots \\
& & & -a_n - a_{n-1} \cdots - a_1
\end{bmatrix}
\] \tag{17}

then the characteristic polynomial may be simply given without any calculation

\[
det(sI - A) = s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n \tag{18}
\]

The constituent matrices can then be determined by either

\[
Z_{kh} = \begin{bmatrix}
(V_k)_0 & 0 \cdots & (V_k)_{n-1-k} \\
\vdots & \ddots & \vdots \\
(V_k)_{n-10} \cdots & (V_k)_{n-1-r_k-1-k}
\end{bmatrix}
\begin{bmatrix}
(V_k^{-1})_0 & 0 \cdots & (V_k^{-1})_{n-1} \\
\vdots & \ddots & \vdots \\
(V_k^{-1})_{n-1-1} \cdots & (V_k^{-1})_{n-1-r_k-1-k}
\end{bmatrix}
\] \tag{19}

or

\[
Z_{kh} = \begin{bmatrix}
(W_k)_0 & 0 \cdots & (W_k)_{n-1-k} \\
\vdots & \ddots & \vdots \\
(W_k)_{n-10} \cdots & (W_k)_{n-1-r_k-1-k}
\end{bmatrix}
\begin{bmatrix}
(W_k^{-1})_0 & 0 \cdots & (W_k^{-1})_{n-1} \\
\vdots & \ddots & \vdots \\
(W_k^{-1})_{n-1-1} \cdots & (W_k^{-1})_{n-1-r_k-1-k}
\end{bmatrix}
\] \tag{20}

\[k=1,2,\ldots,m, \quad h=0,1,\ldots,r_k-1,
\]

where the matrix elements are from either Vandermonde matrix or modal matrix with its respective inverse.

2.EXAMPLE

Evaluate a transition matrix \(\exp(At)\), if a given constant matrix is given by

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
24 & -44 & -30 & -9
\end{bmatrix}
\]

The given matrix \(A\) is a companion matrix, however, we would assume it is an
arbitrary constant matrix. Therefore applying the recurrent formulas (9) and (10) the scalars \(a_0, a_1, \ldots \) and the matrices \(B_0, B_1, \ldots \) can be successively determined:

Also the integer power of \(A \) are computed for later use:

\[
A^2 = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-24 & -44 & 30 & -9 \\
216 & 372 & 226 & 51
\end{bmatrix},
\]

\[
a_1 = 9, \quad 0B_1 = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
-24 & -44 & 30 & -9 \\
216 & 372 & 226 & 51
\end{bmatrix}
\]

\[
A^3 = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-24 & -44 & 30 & -9 \\
216 & 372 & 226 & 51
\end{bmatrix},
\]

\[
a_2 = 9, \quad B_2 = \begin{bmatrix}
0 & 0 & 0 & 9 \\
-24 & -44 & 30 & 0 \\
0 & 0 & 0 & 0 \\
44 & 30 & 9 & 1
\end{bmatrix}
\]

\[
a_3 = 44, \quad B_3 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
-24 & 0 & 0 & 0 \\
0 & -24 & 0 & 0 \\
0 & 0 & -24 & 0
\end{bmatrix}
\]

\[
a_4 = 24, \quad B_4 = 0
\]

The characteristic polynomial of \(A \) is thus

\[
det(sI - A) = s^4 + 9s^3 + 30s^2 + 44s + 24 = (s + 2)^3 (s + 3)
\]

from which eigenvalues and multiplicity are found:

\[
\lambda_1 = -2, \quad \gamma_1 = 3
\]

\[
\lambda_2 = -3, \quad \gamma_2 = 1
\]

From the fundamental formula (12) we may express the transition matrix as

\[
\exp(At) = e^{-2t}(Z_{00} + tZ_{01} + \frac{1}{2} t^2 Z_{02}) + e^{-3t}Z_{10}
\]

where the constituent matrix \(Z_{00}, Z_{01}, Z_{02} \) and \(Z_{10} \) are to be determined by either (5) or (15), whenever the inverse matrices \(V^{-1} \) or \(W^{-1} \) is evaluated.

The matrices \(V, W \) and \(d \) can be obtained simply by the procedural of the
repeated synthetic divisions depicted in Appendix (a).

So, by means of the procedural, the V, W and d can be evaluated as:

$$
V = \begin{bmatrix}
1 & 0 & 0 & | & 1 \\
-2 & 1 & 0 & | & -3 \\
4 & -4 & 1 & | & 9 \\
-8 & 12 & -6 & | & -27
\end{bmatrix}, \quad W = \begin{bmatrix}
12 & 6 & 3 & | & 8 \\
16 & 5 & 1 & | & 12 \\
7 & 1 & 0 & | & 6 \\
1 & 0 & 0 & | & 1
\end{bmatrix}, \quad d = \begin{bmatrix}
1 & 1 & 0 & | & -1
\end{bmatrix}
$$

The inverse matrices V^{-1} and W^{-1} are then obtained from the longhand division procedural, where is also described in Appendix (b).

Once the V^{-1} and W^{-1} are obtain as:

$$
V^{-1} = \begin{bmatrix}
9 & 12 & 6 & 1 \\
-6 & -11 & -6 & -1 \\
12 & 16 & 7 & 1 \\
-8 & -12 & -6 & -1
\end{bmatrix}, \quad W^{-1} = \begin{bmatrix}
1 & -3 & 9 & -26 \\
-1 & 3 & -8 & 20 \\
1 & -2 & 4 & -8 \\
-1 & 3 & -9 & 27
\end{bmatrix}
$$

The desired constituent matrices are therefore computed either by (5):

\[
\begin{align*}
Z_{00} &= 9I + 12A + 6A^2 + A^3 \\
Z_{01} &= -6I - 11A - 6A^2 - A^3 \\
Z_{02} &= 12I + 16A + 7A^2 + A^3 \\
Z_{10} &= -8I - 12A - 6A^2 - A^3
\end{align*}
\]

or alternatively by (15),

\[
\begin{align*}
Z_{00} &= B_3 - 3B_2 + 9B_1 - 26B_0 \\
Z_{01} &= -B_3 + 3B_2 - 8B_1 + 20B_0 \\
Z_{02} &= B_3 - 2B_2 + 4B_1 - 8B_0 \\
Z_{10} &= -B_3 + 3B_2 - 9B_1 + 27B_0
\end{align*}
\]

Since the given matrix A is a form of companion matrix, the constituent matrices may also be easily obtained either by (19),
No matter what approaches we use, the calculated results are the

\[
Z_{00} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 4 & -4 & 1 & 0 \\ -8 & 12 & -6 & 0 \end{bmatrix} \quad Z_{01} = \begin{bmatrix} -6 & -11 & -6 & -1 \\ 9 & 12 & 6 & 1 \\ -6 & -11 & -6 & -1 \\ 12 & 16 & 7 & 1 \end{bmatrix} \quad Z_{02} = \begin{bmatrix} 1 \\ -2 \\ 4 \\ -8 \end{bmatrix}
\]

\[
Z_{10} = \begin{bmatrix} -8 & -12 & -6 & -1 \\ -2 & 1 & 0 & 0 \\ 4 & -4 & 1 & 0 \\ -8 & 12 & -6 & 0 \end{bmatrix} \quad Z_{10} = \begin{bmatrix} 1 \\ -3 \\ 9 \\ -27 \end{bmatrix}
\]

or by (20),

\[
Z_{00}^\tau = \begin{bmatrix} 12 & 6 & 3 \\ 16 & 5 & 1 \\ 7 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad Z_{02}^\tau = \begin{bmatrix} 12 \\ 16 \\ 7 \\ 1 \end{bmatrix}
\]

\[
Z_{01}^\tau = \begin{bmatrix} 12 & 6 \\ 16 & 5 \\ 7 & 1 \\ 1 & 0 \end{bmatrix} \quad Z_{10}^\tau = \begin{bmatrix} 8 \\ 12 \\ 6 \\ 1 \end{bmatrix}
\]

This concludes the determination of the transition matrix of a given matrix.
CONCLUSIONS

A transition matrix with multiple roots is always observed in physical systems. On the other hand, an analytic matrix function of an $n \times n$ arbitrary matrix with repeated eigenvalue can be expressed in terms of constituent idempotent matrices. However, the calculation of constituent matrices is generally very involved, especially for a large n. The proposed approaches can be easily programmed in computer computation with less computational complexity than conventional approaches.

REFERENCES

APPENDIX

(a) Algorithm of repeated synthetic divisions for W and d
/* matrix index, (row, column), starting from (0,0) */
/* n = the order of B(s) */
/* r[j] = the order of the j-th factor of B(s) */
/* s[j] = the j-th root of B(s) */
/* m = the number of factor of B(s) */
/* b[n] = the parameters of B[s] */

PROCEDURE SYNdivision(VAR m, n: INTEGER; VAR b, d, r, s: VECTOR; VAR W: MATRIX)
VAR i, j, index, step, column, row: INTEGER;
VAR b_d: VECTOR;
BEGIN
 column := 1;
 FOR j := 1 TO m BY +1 DO
 FOR i := 1 TO n BY +1 DO
 b_d[i] := b[i];
 END;
 step := n;
 FOR order := 1 TO r[j] BY +1 DO
 row := order + 1;
 FOR index := 1 TO step BY +1 DO
 b_d[index + 1] := s[j] * b_d[index] + b_d[index + 1];
 END;
 column++;
 step--;
 END;
 d[column] := b_d[index];
 column++;
 END;
END SYNdivision;

(b) Algorithm of longhand division for V_1:

PROCEDURE LNGdivision(VAR r, d: VECTOR; VAR W: MATRIX)
VAR i, column, row, order, index, level, step: INTEGER;
VAR W: MATRIX;
BEGIN
 column := 1;
 FOR i := 1 TO m BY +1 DO
 FOR index := 1 TO r[i] BY +1 DO
 W[r[i] - order - 1][index] := W[index][column + order] / d[column];
 FOR level := order TO r[i] BY +1 DO
 W[index][column + level] := W[index][column + level - 1] - W[index - order - 1][index] * d[column + level - index];
 END;
 step--;
 END;
 END;
 column := r[i] + column;
END LNGdivision;