A note on the equivalences between the averages and the K-functionals related to the Laplacian

Feng Daia,*,1, Kunyang Wangb,1

aDepartment of Mathematical and Statistical Sciences, CAB 632, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada

bDepartment of Mathematics, Beijing Normal University, Beijing, 100875, China

Received 29 October 2002; accepted in revised form 1 January 2004

Communicated by Vilmos Totik

Abstract

For \mathbb{R}^d or \mathbb{T}^d, a strong converse inequality of type A (in the terminology of Ditzian and Ivanov (J. Anal. Math. 61 (1993) 61)) is obtained for the high order averages on balls and the K-functionals generated by the high order Laplacian, which answers a problem raised by Ditzian and Runovskii (J. Approx. Theory 97 (1999) 113).

© 2004 Elsevier Inc. All rights reserved.

MSC: Primary 41A25; 41A50

Keywords: K-functionals; High order averages; Strong converse inequalities of type A

1. Introduction and main result

Given a function $f \in L(\mathbb{R}^d)$, its Fourier transform is defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x) e^{-i x \cdot \xi} \, dx, \quad \xi \in \mathbb{R}^d.$$
For a positive integer ℓ, the ℓth order Laplacian Δ^ℓ is defined, in a distributional sense, by

$$(\Delta^\ell f)(\xi) = (-1)^\ell |\xi|^{2\ell} \hat{f}(\xi).$$

Associated with the operator Δ^ℓ, there is a K-functional

$$K_{\Delta,\ell}(f, t^{2\ell})_p := \inf \{ \|f - g\|_p + t^{2\ell} \|\Delta^\ell g\|_p : g, \Delta^\ell g \in L^p(\mathbb{R}^d) \},$$

where $t > 0$, $1 \leq p \leq \infty$ and $\|\cdot\|_p$ denotes the usual L^p-norm on \mathbb{R}^d.

Let V_d denote the volume of the unit ball of \mathbb{R}^d. For $t > 0$ and a locally integrable function f, we define the average $B_t(f)$ by

$$B_t(f)(x) = \frac{1}{t^d V_d} \int_{\{u \in \mathbb{R}^d : |u| \leq t\}} f(x + u) \, du$$

and the ℓth order average $B_{\ell,t}(f)$ (for a given positive integer ℓ) by

$$B_{\ell,t}(f)(x) = -\frac{2}{(2\ell)} \sum_{j=1}^\ell (-1)^j \left(\frac{2\ell}{\ell - j} \right) B_{jt}(f)(x).$$

We remark that for $\ell > 1$ the operator $B_{\ell,t}$ was first introduced by Ditzian and Runovskii in [DR, p. 117, (2.6)].

For more background information we refer to [Di1,Di2,DR,Di-Iv,To].

Our main goal in this paper is to prove the following strong converse inequality of type A (in the terminology of [Di-Iv]), which was conjectured in [DR, p. 138].

Theorem 1. Let $\ell \in \mathbb{N}$, $1 \leq p \leq \infty$ and $f \in L^p(\mathbb{R}^d)$. Then

$$\|f - B_{\ell,t}(f)\|_p \approx K_{\Delta,\ell}(f, t^{2\ell})_p,$$

where $t > 0$ and

$$A(f, t) \approx B(f, t)$$

means that there is a $C > 0$, independent of f and t, such that

$$C^{-1} A(f, t) \leq B(f, t) \leq C A(f, t).$$

Theorem 1 for $\ell = 1$ was proved in [DR, p. 133, Theorem 6.1] and for $d = 1$, ℓ small, as it was indicated in [DR, p. 138], can be obtained by following the technique developed in [Di-Iv]. For $\ell \geq 2$ and $d \geq 2$, the following strong converse inequality of type B (in the terminology of [Di-Iv]) was obtained in [DR, p. 127, Theorem 4.8 and p. 131, Theorem 5.7]:

$$K_{\Delta,\ell}(f, t^{2\ell})_p \approx \|f - B_{\ell,1}(f)\|_p + \|f - B_{\ell,\rho}(f)\|_p, \quad 1 \leq p \leq \infty$$

for some $\rho > 1$. The proof of our Theorem 1 will be based on this equivalence.

We remark that with a slight modification of the proof below a similar result for the periodic case can also be obtained.
2. Basic lemmas

The following lemma can be easily obtained by a straightforward computation.

Lemma 1. Let $\chi_{B(0,1)}(x)$ denote the characteristic function of the unit ball

$$B(0, 1) := \{x = (x_1, \ldots, x_d) \in \mathbb{R}^d : x_1^2 + \cdots + x_d^2 \leq 1\}.$$

V_d denote the volume of $B(0,1)$ and let $I(x) = \frac{1}{V_d} \chi_{B(0,1)}(x)$. Then

$$\hat{I}(x) = \frac{\gamma_d}{d} \int_0^1 \cos(u|x|)(1 - u^2)^{\frac{d-1}{2}} \, du$$

with

$$\gamma_d = \left(\int_0^1 (1 - u^2)^{\frac{d-1}{2}} \, du\right)^{-1}. \quad (4)$$

Lemma 2. Let $B_{\ell,t}$ be defined by (2) and $I(x)$ the same as in Lemma 1. Then for $f \in L(\mathbb{R}^d)$,

$$\widehat{B_{\ell,t}(f)}(x) = m_{\ell}(t|x|) \hat{f}(x), \quad (5)$$

where

$$m_{\ell}(|x|) = \frac{-2}{(2\ell)^{\ell}} \sum_{j=1}^{\ell} (-1)^j \binom{2\ell}{\ell - j} \hat{I}(jx)$$

$$= 1 - A_{\ell}(|x|), \quad (7)$$

$$A_{\ell}(|x|) = \gamma_d \frac{4\ell}{(2\ell)^{\ell}} \int_0^1 (1 - u^2)^{\frac{d-1}{2}} \left(\sin \frac{u|x|}{2}\right)^{2\ell} \, du \quad (8)$$

and γ_d is given by (5).

Proof. For $t > 0$, we write

$$I_t(x) = \frac{1}{t^d} I(\frac{x}{t}).$$

Then from definition (2), it follows that

$$B_{\ell,t}(f)(x) = \frac{-2}{(2\ell)^{\ell}} \sum_{j=1}^{\ell} (-1)^j \binom{2\ell}{\ell - j} (f \ast I_{jt})(x),$$

which implies (6) and (7). Substituting (4) into (7) yields

$$m_{\ell}(|x|) = \frac{-2\gamma_d}{(2\ell)^{\ell}} \sum_{j=1}^{\ell} (-1)^j \binom{2\ell}{\ell - j} \int_0^1 \cos(ju|x|)(1 - u^2)^{\frac{d-1}{2}} \, du \quad (9)$$

and

$$A_{\ell}(|x|) = \gamma_d \frac{4\ell}{(2\ell)^{\ell}} \int_0^1 (1 - u^2)^{\frac{d-1}{2}} \left(\sin \frac{u|x|}{2}\right)^{2\ell} \, du \quad (10)$$
which, together with the following identity
\[
\left(\sin \frac{x}{2} \right)^{2\ell} = \frac{2^{2\ell}}{4^{\ell}} + \frac{2}{4^{\ell}} \sum_{j=1}^{\ell} (-1)^j \left(\frac{2\ell}{\ell - j} \right) \cos jx,
\]
gives (8) and (9). This completes the proof. □

Lemma 3. Let \(m_\ell(u) \) be the same as in Lemma 2. Then for \(j \in \mathbb{Z}_+ \) and \(u \geq 0 \),
\[
\left| \left(\frac{d}{du} \right)^j m_\ell(u) \right| \leq C_{\ell,j} \left(\frac{1}{u + 1} \right)^{\frac{d+1}{2}},
\]
where \(C_{\ell,j} > 0 \) is independent of \(u \).

Proof. By identity (10), it suffices to show that for \(j \in \mathbb{Z}_+ \) and \(u \geq 0 \),
\[
\left| \left(\frac{d}{du} \right)^j \int_0^1 \cos(\nu v) (1 - v^2)^{\frac{d-1}{2}} \, dv \right| \leq C_j \left(\frac{1}{u + 1} \right)^{\frac{d+1}{2}}.
\]
(11)
We use formula (4.7.5) of [An-As-R, p. 204] to obtain that
\[
\int_0^1 \cos(\nu v) (1 - v^2)^{\frac{d-1}{2}} \, dv = 2^{\frac{d-2}{2}} \sqrt{\pi} I^\nu \left(\frac{d + 1}{2} \right) \frac{J_{\frac{d}{2}}(u)}{u^{\frac{d}{2}}},
\]
(12)
where \(J_{\alpha}(u) \) denotes the Bessel function of the first kind of order \(\alpha \). Now (11) is a consequence of (12) and the following well-known estimates on Bessel functions:
\[
\frac{d}{du} u^{-\alpha} J_{\alpha}(u) = -u^{-\alpha} J_{\alpha+1}(u), \quad [\text{An-As-R, (4.6.2), p. 202}],
\]
\[
J_{\alpha}(u) = O \left(\frac{1}{(u + 1)^2} \right) \text{ for } u \geq 0 \quad [\text{An-As-R, (4.8.5), p. 209}],
\]
\[
J_{\alpha}(u) = O(u^{-2}) \text{ as } u \to 0 \quad [\text{An-As-R, (4.7.6), p. 218}].
\]
This concludes the proof. □

Lemma 4. Suppose that \(a \) is a \(C^\infty \)-function defined on \([0, \infty)\) with the property that for \(u \geq 0 \) and \(0 \leq j \leq d + 1 \),
\[
\left| \left(\frac{d}{du} \right)^j a(u) \right| \leq C(a) \left(\frac{1}{1 + u} \right)^{\frac{d+1}{2}}.
\]
(13)
For \(t > 0 \), define the operator \(T_t \), in a distributional sense, by
\[
(T_t(f))^\wedge (\xi) = a(t|\xi|) \hat{f}(\xi), \quad \xi \in \mathbb{R}^d.
\]
Then for \(1 \leq p \leq \infty \) and \(f \in L^p(\mathbb{R}^d) \),
\[
\sup_{t > 0} \| T_t(f) \|_p \leq C_{p,a} \| f \|_p.
\]
This lemma is well known (see [St]), but for the sake of completeness, we give its proof here.

Proof. Let

$$K(x) = \int_{\mathbb{R}^d} e^{ix\xi} a(|\xi|) \, d\xi.$$ \hfill (14)

Since

$$T_t(f)(x) = f \ast K_t(x),$$

with

$$K_t(x) = \frac{1}{t^d} K\left(\frac{x}{t}\right),$$

it is sufficient to prove

$$\|K\|_{L^1(\mathbb{R}^d)} < \infty. \hfill (15)$$

By (14), we get for \(\gamma = (\gamma_1, \ldots, \gamma_d) \in \mathbb{Z}_+^d\),

$$(-x)^\gamma K(x) = \int_{\mathbb{R}^d} e^{ix\xi} \left(\frac{\partial}{\partial \xi}\right)^\gamma a(|\xi|) \, d\xi,$$

which, by (13), implies

$$|x^\gamma K(x)| \leq C \int_{\mathbb{R}^d} \frac{d\xi}{(1 + |\xi|)^{d+1}} < \infty,$$

with \(|\gamma| = \gamma_1 + \cdots + \gamma_d \leq d + 1\). Now taking the supremum over all \(\gamma\) with \(|\gamma| = d + 1\) yields

$$|K(x)| \leq \frac{C}{|x|^{d+1}},$$

which, together with the fact that \(K \in C(\mathbb{R}^d)\), implies (15) and so completes the proof. \(\Box\)

3. **Proof of Theorem 1**

The upper estimate

$$\|f - B_{\ell, t}(f)\|_p \leq C_{\ell, p} K_{\Delta, \ell}(f, t^{2\ell})_p$$

follows directly from (3), which, as indicated in Section 1, was proved in [DR]. Hence it remains to prove the lower estimate

$$\|f - B_{\ell, t}(f)\|_p \geq C_{\ell, p} K_{\Delta, \ell}(f, t^{2\ell})_p.$$
Lemma 3 implies that there is a number $\mu = \mu(\ell, d) > 1$ such that for $u > \mu$,

$$|m_\ell(u)| \leq \frac{1}{2}. \quad (16)$$

We will keep this special number μ throughout the proof.

Let η be a C^∞-function on $[0, \infty)$ with the properties that $\eta(x) = 0$ for $x > 2$, $\eta(x) = 1$ for $0 \leq x \leq 1$, and $0 \leq \eta(x) \leq 1$ for all $x \in [0, \infty)$. For $t > 0$, we define the operator V_t by

$$(V_t(f))(\xi) = \eta(t|\xi|) \hat{f}(\xi), \quad (17)$$

where $f \in L^p(\mathbb{R}^d)$ and $\xi \in \mathbb{R}^d$.

According to definition (1), the estimates

$$\|f - V_t/2\mu(f)\|_p \leq C_{\ell, p}\|f - B_{\ell, t}(f)\|_p \quad (18)$$

and

$$t^{2\ell}\|\Delta^{\ell}V_t/2\mu(f)\|_p \leq C_{\ell, p}\|f - B_{\ell, t}(f)\|_p \quad (19)$$

will prove

$$K_{\Delta, \ell}(f, t^{2\ell}) \leq \|f - V_t/2\mu(f)\|_p + t^{2\ell}\|\Delta^{\ell}V_t/2\mu(f)\|_p \leq C_{\ell, p}\|f - B_{\ell, t}(f)\|_p$$

and so complete the proof of Theorem 1. Thus, it has remained to prove (18) and (19).

Let

$$\phi(u) = \left(1 - \eta\left(\frac{u}{2\mu}\right)\right) \frac{(m_\ell(u))^3}{1 - m_\ell(u)} \quad (20)$$

and

$$\psi(u) = \frac{u^{2\ell}\eta\left(\frac{u}{2\mu}\right)}{A_\ell(u)}, \quad (21)$$

with $A_\ell(u)$ and $m_\ell(u)$ the same as in Lemma 2. For $t > 0$, we define two operators Φ_t and Ψ_t as follows:

$$\left(\Phi_t(f)\right)(\xi) = \phi(t|\xi|) \hat{f}(\xi),$$

$$\left(\Psi_t(f)\right)(\xi) = \psi(t|\xi|) \hat{f}(\xi). \quad (22)$$

It follows from (16), (20) and Lemma 3 that for $u \geq 0$ and $0 \leq j \leq d + 1$,

$$|\phi^{(j)}(u)| \leq C_{\ell, d}\left(\frac{1}{u + 1}\right)^{\frac{3(d+1)}{2}} \quad (23)$$

On the other hand, by (9) and a straightforward computation, we obtain that for $u \geq \frac{\pi}{2}$

$$A_\ell(u) \geq C_{\ell, d}\int_0^{\frac{3}{2}} \left(\sin \frac{u}{2}\right)^{-2\ell} dv \geq C_{\ell, d} > 0 \quad (24)$$
and for $0 < u < \frac{\pi}{2}$

\[
\frac{A_2(u)}{u^{2\ell}} \geq C_{\ell,d} \frac{1}{u^{2\ell}} \int_0^1 (1 - v^2)^{\frac{d-1}{2}} (u v)^{2\ell} dv \geq C_{\ell,d} > 0,
\]

which, together with (21), implies that

\[
\psi \in C^\infty[0, \infty) \quad \text{and} \quad \text{supp} \psi \subset [0, 4\mu].
\]

Now invoking Lemma 4 three times, with $a = \eta, \phi$ and ψ, respectively, in view of (23), (26) and the fact that η is a C^∞-function with compact support, we obtain from (17) and (22) that for $1 \leq p \leq \infty$,

\[
\sup_{t > 0} \|V_t(f)\|_p + \sup_{t > 0} \|\Phi_t(f)\|_p + \sup_{t > 0} \|\Psi_t(f)\|_p \leq C_p \|f\|_p.
\]

We claim that (18) and (19) follow from (27). In fact, from the identity

\[
(f - V_t/2\mu(f))^\wedge(\xi) = W(t\xi)(f - B_{\ell,t}(f))^\wedge(\xi),
\]

where

\[
W(\xi) := \left(1 - \eta\frac{|\xi|}{2\mu}\right)\left(\frac{m_\ell(|\xi|)}{1 - m_\ell(|\xi|)} + 1 + m_\ell(|\xi|) + (m_\ell(|\xi|))^2\right),
\]

it follows that

\[
f - V_t/2\mu(f) = \Phi_t(f - B_{\ell,t}(f)) + (I - V_t/2\mu)(I + B_{\ell,t} + B^2_{\ell,t})(f - B_{\ell,t}(f)),
\]

where I denotes the identity operator on $L^p(\mathbb{R}^d)$. This, together with (27) and the fact that $\|B_{\ell,t}\|_{(p,p)} \leq C_{\ell,t}$, gives (18).

Similarly, from the identities

\[
(t^{2\ell} \Delta^\ell V_t/2\mu(f))^\wedge(\xi) = \frac{(-1)^\ell t^{2\ell} |\xi|^2 \eta(\xi)}{1 - m_\ell(t|\xi|)} (f - B_{\ell,t}(f))^\wedge(\xi)
\]

it follows that

\[
t^{2\ell} \Delta^\ell V_t/2\mu(f) = (-1)^\ell \Psi_t(f - B_{\ell,t}(f)),
\]

which, again by (27), implies (19). This completes the proof.

Acknowledgements

The authors would like to thank Professor Z. Ditzian for supplying them with some preprints of his excellent papers on K-functionals, which gave a better perspective on their proof. The authors would also like to thank the anonymous referee for pointing out some misprints of their paper.
References

