
ORIGINAL ARTICLE

Solving a bi-objective cell formation problem with stochastic
production quantities by a two-phase fuzzy linear
programming approach

Masoud Rabbani & Fariborz Jolai & Neda Manavizadeh &

Farzad Radmehr & Babak Javadi

Received: 6 January 2010 /Accepted: 30 May 2011 /Published online: 10 June 2011
# Springer-Verlag London Limited 2011

Abstract We propose a bi-objective cell formation problem
with demand of products expressed in a number of
probabilistic scenarios. To deal with the uncertain demand
of products, a framework of two-stage stochastic program-
ming model is presented. The proposed model considers
minimizing the sum of the miscellaneous costs (machine
constant cost, expected machine variable cost, cell fixed-
charge cost, and expected intercell movement cost) and
expected total cell loading variation. Because of conflicting
objectives, we develop a two-phase fuzzy linear program-
ming approach for solving bi-objective cell formation
problem. To show the effectiveness of the proposed
approach, numerical examples are solved and the results
are compared with the two existing approaches in the
literature. The computational results show that the proposed
fuzzy method achieves lower objective functions as well as
higher satisfaction degrees.

Keywords Cellular manufacturing design . Cell formation
problem .Multi-objective . Fuzzy linear programming .

Stochastic programming model

1 Introduction

Cellular manufacturing (CM) is the application of group
technology and has emerged as a promising alternative
manufacturing system. CM entails the creation and opera-
tion of manufacturing cells. Parts are grouped into part

families and machines grouped into cells. Various
approaches have been suggested for forming manufacturing
cells. Good discussions of cellular manufacturing systems
can be found in Burbidge [1], Suresh and Meredith [2], and
Selim et al. [3]. The design of cellular manufacturing
systems has been called cell formation (CF). Given a set of
part types, processing requirements, part type demand, and
available resources (machines, equipment, etc.), a general
design of cellular manufacturing consists of the following
approaches: (a) part families are formed according to their
processing requirements, (b) machines are grouped into
manufacturing cells, and (c) part families are assigned to
cells [4]. Because of the complexity and computational
hardness of CF problem, majority of the methods in the
literature attempt to optimize only one objective combine
minimizing intercell movements, machine operation cost,
machine set-up cost, subcontracting cost, and inventory
holding cost in cell formation [5]. The design of manufac-
turing cells with respect to multiple criteria has been an
attractive research which has not received as much attention
as a single objective in the literature in the recent decades
[6]. In this research, first, we survey the number of research
works in the literature that proposed multi-objective
mathematical models for the CF problem. Then well-
known researches considering uncertainty concept in the
CF problem are presented, and finally the concluding
remarks are given.

Nei and Gaither [7] applied a capacity constrained
method to multi-objective CF problem. The objective of
the model is to minimize the bottleneck cost, intra/intercell
load imbalances, and maximize the overage cell utilization.
Venugopal and Narendran [8] developed a bi-criteria
mathematical model for machine component grouping
problem to minimize the volume of intercell movement
and to total cell load variation. Zhao and Wu [9] suggested
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a genetic algorithm (GA) approach to apply certain
operators to group the machines into manufacturing cells
with multi-objective functions. The objectives of the model
are: exceptional elements, inter/intracell parts movements
cost and the total cell load variation. Mansouri et al. [6]
reviewed the literature with respect to the multi-objective
methodologies proposed for cellular manufacturing systems
design. Baykasoghlu et al. [10] proposed an integer
multiple objective nonlinear mathematical programming
for cell formation problem with respect to minimizing the
parts based on production requirements and processing
sequences of parts, cell load imbalance, and extra-capacity
requirements. Solimanpour et al. [11] presented a new
mathematical model to solve the multi-objective cell
formation problem with multiple process plans and inde-
pendent manufacturing cells. The objectives considered in
this model are: (1) to maximize the total similarity between
the parts, (2) to minimize the total processing cost, (3) to
minimize the total processing time, and (4) to minimize the
total investment needed for the acquisition of machines. A
genetic algorithm with multiple fitness functions is pro-
posed to solve the formulation problem.

Lei and Wu [12] presented a Pareto-optimality-based
multi-objective tabu search (MOTS) algorithm to the
machine-part grouping problems with multiple objectives:
minimizing the weighted sum of inter- and intracell moves
and minimizing the total cell load variation. A new
approach is developed to evaluate the nondominance of
solutions produced by the tabu search. Comparisons
between MOTS and the GA are done, and the results show
that MOTS is quite promising in multi-objective cell
design.

Aramoon Bajestani et al. [13] suggested a multi-
objective dynamic cell formation problem to minimize the
total cell load variation and sum of the miscellaneous costs
which consist of machine cost, intercell material handling
cost, and machine relocation cost. A new multi-objective
scatter search proposes to find locally Pareto-optimal
frontier and compares it with two salient multi-objective
genetic algorithms.

Uncertainty can be considered essentially in two differ-
ent types: randomness due to inherent variability in the
system (i.e., in the population of outcomes of its stochastic
process of behavior) and imprecision due to lack of
knowledge and information on the system. The former
type of uncertainty is often referred to as objective,
stochastic whereas the latter is often referred to as
subjective, epistemic, and state of knowledge [14, 15].
Most traditional cell formation procedures ignore any
changes in demand over time caused by product redesign
and uncertainties due to volume variation, part mix
variation, and resource unreliability [16]. However in
today’s business environment, product life cycles are short,

and demand volumes and product mix can vary frequently.
Thus, the decision-making process in cellular manufactur-
ing system often involves uncertainties. A number of
researchers have applied uncertainties for the CF problem;
the applications of uncertainties are classified as fuzzy
theory and stochastic programming.

Kim et al. [17] considered a multi-objective machine cell
problem, in which part types have several alternative part
routings and the expected annual demand of each part type
was known and total intercell part movements and total
machine workload imbalances were simultaneously mini-
mized. Liu et al. [18] proposed a mathematical model that
incorporates multiple key real-life production factors
simultaneously, namely, production volume; batch size,
alternative process routings and perfect coefficient of each
routing, cell size, unit cost of inter/intracell movements, and
path coefficient of material flows and developed a heuristic
algorithm. Ostrosi et al. [19] presented an approach to
consensual cell formation in cellular manufacturing design.
They proposed two models. The first model was devoted to
the consensus conjecture which satisfies globally the set of
measurable criteria and the second model addressed the
problem of nucleus recognition. Tsai and Lee [20] presented
a multi-functional MP model that incorporates the merits of
related CF models based on the systematic study of MP
models. The proposed model can offer the suitable modules
that include the different objective functions and constraints
for user to solve the related problem.

1.1 Fuzzy theory

A number of researchers have applied fuzzy clustering,
fuzzy mathematics and fuzzy mathematical programming
for the CF problem.

Masnate and Settineri [21] tailored a fuzzy c-means
clustering algorithm for developing a nonbinary approach
to group technology based on the capabilities of fuzzy
logic. They also integrated fuzzy c-means with the strategy
for minimum makespan scheduling. Shankar and Vrat [5]
presented two fuzzy linear programming models for “post-
clustering” stage and considered the fuzziness of part
demand and budgetary limit on purchasing new machines
and the aspiration level of the objective function. Susanto et
al. [22] modified a fuzzy clustering approach presented by
Chu and Hayya [23] and proposed a new fuzzy c-means
and assignment technique able to perform part type clusters
and machine-type clusters separately. A numerical example
was illustrated and problems that arose in implementing
this approach were discussed. Lozano et al. [24] also
proposed a modified approach of the standard fuzzy c-
means clustering algorithm by taking into account the effect
of the weighting component on the fuzziness of the solution
and the linking among the degree of membership of parts as
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well as machines and the prototypes of machine cells and
part families.

Arikan and Gungor [25] proposed a fuzzy parametric
programming model of cell formation by assuming fuzzy
part demands, fuzzy machine capacity, and fuzzy machine
duplication cost. Their objective minimizes three types of
fuzzy costs associated with exceptional elements. Torkul et
al. [26] employed fuzzy logic to study the design of part
families and machine cells simultaneously. Their main aim
was to compare manufacturing cell design made of fuzzy
clustering algorithm (fuzzy c-means) with the crisp meth-
ods. The obtained computational results proved the supe-
riority of fuzzy clustering solutions for selected datasets.
Ravichandran and Rao [27] proposed a new fuzzy
clustering algorithm and a new similarity coefficient for
subgrouping parts/machines before the optimal grouping
and for optimal grouping. The results showed that the new
approach to fuzzy part family formation and grouping
efficiency provided a more realistic solution methodology
for part family formation in CM applications.

Pai et al. [28] developed a nonbinary part, machine, and
cell matrix. In the matrix, each entry illustrates the degree
of belonging of a part or a machine to a manufacturing cell.
Both fuzzification and defuzzification procedures were used
in dealing with the cell formation problem in a fuzzy
environment. Szwarc et al. [29] were developed crisp and
fuzzy mathematical models to optimally determine machine
grouping and parts assignment under fuzzy demand and
machine capacity. The object of these models was to
minimize the processing and the material handling costs.
Safaei et al. [30] developed a fuzzy programming-based
approach to solve an extended mixed-integer programming
model for a dynamic CF problem. Moreover, in real
manufacturing systems some parameters such as part
demands and the availability of manufacturing facilities in
each period were regarded as piecewise fuzzy numbers.
They proposed a fuzzy programming-based approach to
design a dynamic cellular manufacturing system. The
objective is to determine the optimal cell configuration in
each period with maximum satisfaction degree of the fuzzy
objective and constraint.

Papaioannou and Wilson [31] considered the fuzziness
concept in a comprehensive mathematical programming
formulation where parts are assigned to machines and
machines to cells simultaneously by minimizing the
number of distinct cells used by each part and set-up costs
when allocating machines to cells and the number of times
a part revisits a cell for a later machine operation.

1.2 Stochastic programming

In CMS, Tilsley and Lewis [32] addressed the issue of
uncertainty in demand by using “cascading” strategy. A

cascading system of cells is one where each cell is a child
of another cell. The child cell consists of some machines
similar to those of its parent cell along with some additional
machines. If variable demand or mix changes result in the
parent cell not being able to cope, the parts can be rerouted
to one of the child cells giving the CMS flexibility.

Seiffodini [33] incorporated probabilistic demand in
designing the CMS. Each product mix and the related
part-machine matrix are assigned probabilities. For each
product mix considered, the best cell configuration is
determined. Subsequently for each of these best cell
configurations, the expected intercell material handling
cost based on possible product mixes id determined.
Finally, that cell configuration with the lowest expected
intercell material handling cost is selected as the
preferred CMS. Later Seifoddini and Djassemi [34]
conducted a simulation study of a CMS where the part
mix changes to illustrate the sensitivity of the CMS to
part mix changes. This sensitivity analysis can help the
decision maker predict the performance of a CMS under
uncertainty.

Harhalakis et al. [35] considered product demand
changes during a multi-period planning horizon. They
developed a mathematical programming model to minimize
the expected intercell material handling cost. Cao and Chen
[36] discussed a robust cell formation approach with
demand of products expressed in a number of probabilistic
scenarios. The model is to minimize machine cost and
expected intercell material handling cost.

Ghezavati and Saidi-Mehrabad [37] addressed a new
mathematical model for cellular manufacturing problem
integrated with group scheduling in an uncertain space to
minimize total expected cost consisting maximum tardiness
cost among all parts, cost of subcontracting for exceptional
elements, and the cost of resource underutilization. This
model optimized cell formation and scheduling decisions,
concurrently. It is assumed that processing time of parts on
machines is stochastic and described by discrete scenarios
enhances application of real assumptions in analytical
process.

1.3 Concluding remarks

A number of conclusions from the survey of the literature
review can be drawn such as:

& Most of the formulations for CF propose a mathemat-
ical programming model with the main objective of
minimizing the total number of intercellular move-
ments. Other mathematical programming formulations
involve cost-related objective functions and only a few
consider machine/load utilization as a goal parameter
for CF.
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& Fuzzy theory has been employed mainly for clustering
purposes and within mathematical programming for-
mulations for addressing uncertainty in certain model
parameters.

& The number of research works dealing with stochastic
programming in CF problem is fairly small.

& Most of the proposed methodologies in the last decade
focus on a single criterion for CF. Only a few studies
deal with multiple objectives.

Based on the above conclusions from the survey of the
literature, we intend to propose probabilistic bi-objective
CF problem with the minimal of two objectives simulta-
neously as follows: (1) machine constant/variable, intercell
movements, and fixed cell costs and (2) cell loading
variation costs.

The significance of this study is two folds. First, this is
the first study which uses a two-stage stochastic program-
ming model to face the bi-objective cell formation problem.
Second, a two-phase fuzzy linear programming approach
for the bi-objective cell formation problem is proposed and
the superiority of the two-phase fuzzy linear programming
approach over well-known solving approaches in the
literature is shown.

The structure of this paper is as follows: Section 2
describes the background of the two-stage stochastic
programming model. Section 3 presents a detailed descrip-
tion of the bi-objective stochastic cell formation problem.
Section 4 proposes a two-phased fuzzy linear programming
approach. In Section 5, experimental and comparison
results are given. Finally, we present our conclusions in
Section 6.

2 Framework of two-stage stochastic programming
model

In the following text, the framework of the two-stage
stochastic programming model is briefly described. For
detail, the reader is refereed to Dantzing [38], Kall and
Wallace [39], and Ruszczynski and Shapiro [40]. The most
widely applied and studied stochastic programming mod-
els are two-stage linear programs [41]. Here, the decision
maker takes some action in the first stage, after which a
random event occurs affecting the outcome of the first-
stage decision. A recourse decision can then be made in
the second stage that compensates for any bad effects that
might have been experienced as a result of the first-stage
decision. The optimal policy from such a model is a single
first-stage policy and a collection of recourse decisions (a
decision rule) defining which second-stage action should
be taken in response to each random outcome. Although
two-stage stochastic linear programs are often regarded as

the classical stochastic programming modeling paradigm,
the discipline of stochastic programming has grown and
broadened to cover a wide range of models and solution
approaches. The approach of two-stage stochastic
programming model has found various applications in
different fields for example in electric energy producers
[42], transportation network protection [43] and financial
planning [44]. There is no study which applied the two-
stage stochastic programming to the cell formation
problem.

The general form of the model is expressed as follows:

Min cT1 x1 þ Ey h x1;yð Þf g ð1Þ
s.t.

Ax1 ¼ b ð2Þ

x1 2 �h n1þ ð3Þ
where

h x1;yð Þ ¼ Min sTy2 ð4Þ
s.t.

T yð Þx1 þ wy2 ¼ h yð Þ ð5Þ

y2 2 �h n2þ ð6Þ

and Ey �f g is the expected value function, Ψ is the random
vector, and h(Ψ) and T(Ψ) depend on a random vector Ψ
representing a particular sample from a multi-variant
probability space π.

Equations 1–3 represent the first-stage model and
Eqs. 4–6 represent the second-stage model. x1 is the vector
of first-stage decision variables. The optimal value of x1 is
not conditional on the realization of the uncertain param-
eters. c1 is the vector of cost coefficients at the first stage. A
is the first-stage coefficient matrix and b is the
corresponding right-hand side vectors. y2 is the vector of
second-stage (recourse) decision variables. s is the vector of
cost (recourse) coefficient vectors at the second stage. W is
the second-stage (recourse) coefficient matrix and h(Ψ) is
the corresponding right-hand side vector. T(Ψ) is the matrix
that ties the two stage together. In the second-stage model,
the random constraint defined in Eq. 5, h yð Þ � T yð Þx1, is
the goal constraint: violations of this constraint are allowed,
but the associated penalty cost, sTy2, will influence the
choice of x1 . The function h x1;yð Þ is the recourse penalty
cost or second-stage value function, and the notation
Ey h x1;yð Þf g denotes the expected value of recourse
penalty cost (second-stage value function) with respect to
the random vector Ψ.
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Consider the special case when π is finite, which gives
p ¼ y1;y2; :::;yQ

� �
, and Pr y ¼ yqð Þ ¼ prq. q ¼ 1; :::;Q

representing a scenario is its known distribution. By
replacing T(Ψq) with Tqand h(Ψq) with hq, the two-stage
stochastic programming model can be reformulated as the
following algebraic equivalent LP:

Min cT1x1 þ
XQ
q¼1

prq sT yq2
� � ð7Þ

s.t.

Ax1 ¼ b ð8Þ

Tqx1 þ wyq2 ¼ hq q ¼ 1; :::;Q ð9Þ

x1; y
q
2 � 0 q ¼ 1; :::;Q ð10Þ

The vector of first-stage decision variables, x1, is
scenario independent. The vectors of second-stage decision
variables, yq2 are introduced to control the random con-
straints with minimal recourse penalty cost. In this special
case where π is finite, the expected value of second-stage
value function with respect to the random vector Ψq is

Ey h x1;yð Þf g ¼ PQ
q¼1

prq sT yq2
� �.

3 A two-stage stochastic programming approach
for a bi-objective cell formation problem

In this section, we present the proposed bi-objective cell
formation model as a mixed-integer programming. The
problem is considered under the following assumptions:

3.1 Assumptions

1. The operating time for processing all part types on
different machine types are known.

2. Each part must be processed according to a known
sequence of operations.

3. The demand of product is not deterministic and
described by several discrete scenarios with probabil-
ities of their occurrences.

4. The capabilities and capacity of each machine type is
known.

5. Parts are moved between cells in fixed cost and batch
sizes.

6. The maximum number of cells must be specified in
advance.

7. Lower and upper bounds of machines in each cell
need to be specified in advance.

8. Each machine type can perform one or more operations
(i.e., machine flexibility) without modification cost.
Likewise, each operation can be done on one machine
type with different times (i.e., routing flexibility).

9. The cell or cells to be constructed will be determined
from the problem solution, depending on the fixed
costs of cell construction, cell capacities are another
related factor.

10. Intercell movement costs are constant for all moves
regardless of the distance traveled.

11. Intercell batch sizes are constant for all productions.
12. Constraints relating to inventory control theory such

as backorders, subcontracting, holding, etc. are not
allowed.

3.2 Notations

C Index for manufacturing cell (c=1,2,…,C)
m Index for machine type (m=1,2,…,M)
p Index of part type (p=1,2,…,P)
j Index of operation of part (j=1,2,…,OP)
q Index of scenario (q=1, 2,…,Q)

3.3 Input parameters

3.3.1 Deterministic parameters

P Number of part types.
OP Number operations of part P.
M Number of machine types.
C Maximum number of cells that can be

formed in each period.
B Batch size for intercell movements.
tjpm Time required to process operation j of

part p on machine type m.
ajpm = 1 If operation j of part p can be done

on machine type m; otherwise it is zero.
αm Constant cost of machine type m.
βm Variable cost of machine type m for each

unit time.
Fc Set-up and operating cost of cell c.
γ Intercell movement cost per batch.
UBc Upper bound of cell c.
Tm Capacity of machine type m.

3.3.2 Recourse parameters

Dq
p Demand of part type p in scenario q.

Prq Occurrence probability of scenario q.
Sqp ¼ 1 If part p is present in scenario q;

otherwise it is zero.
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Vq ¼ i : SqpÞ ¼ 1
n o

Index set of parts present in scenario q.

3.4 Decision variables

3.4.1 First-stage decision variables

Nmc Number of machine type m in cell c.
Yc=1 If cell c will be formed; otherwise it is zero.

3.4.2 Second-stage decision variables

X q
jpmc ¼ 1 If operation j of part p in cell c in scenario q

performs by machine type m, otherwise it is
zero.

Zq
jpc ¼ 1 If operation j of part p is done in cell c in

scenario q, otherwise it is zero.

3.5 Objective functions

3.5.1 The objective function at the first stage

MinZ1 ¼
XC
c¼1

FcYc þ
XC
c¼1

XM
m¼1

amNmc ð11Þ

The first term in expression 11 is the machine cost or the
machine depreciation cost which is calculated based on the
number of different machine types used in a cell. The last
term is the fixed-charge cost for setting up manufacturing
cells.

3.5.2 The objective functions at the second stage

MinZ1 ¼
PQ
q¼1

PC
c¼1

P
p2Vq

POP
j¼1

PM
m¼1

SqpprqbmD
q
ptjpmx

q
jpmc

þ 1
2

PQ
q¼1

P
p2Vq

POP�1

j¼1

PC
c¼1

Sqpprq
Dq

p

B

l m
g Zq

ðjþ1Þpc � Zq
jpc

��� ���
ð12Þ

MinZ2 ¼
XQ
q¼1

XC
c¼1

XM
m¼1

X
p2Vq

ðqqmpc � "qmpcÞ2 ð13Þ

The first term in expression 12 is the expected variable
cost of all machines required in all cells. The last term is the
expected intercell material handling cost. The total expected
cell load variation is considered as the objective function in
expression 13. It is obvious that, expected intercell

movement cost in expression 12 will equal 0 if all machines
are assigned into one cell, and total expected cell load
variation in expression 13 will be 0 provided that only one
machine is assigned to each cell.

3.6 Constraints

3.6.1 The constraint at the first stage

XM
m¼1

Nmc � UBcYc 8c ð14Þ

Constraint 14 specifies the lower bound for cell size.

3.6.2 The constraints at the second stage

XC
c¼1

XM
m¼1

ajpmx
q
jpmc ¼ 1 8j; q; p 2 Vq ð15Þ

Zq
jpc ¼

XM
m¼1

X q
jpmc 8j; p 2 Vq; c; q ð16Þ

XQ
q¼1

X
p2Vq

XOP
j¼1

prqS
q
pD

q
ptjpmx

q
jpmc � TmNmc 8m; c ð17Þ

Yc � Zq
jpc 8j; p 2 Vq; c; q ð18Þ

qqmpc ¼
POp
j¼1

Dq
pprqS

q
p tjpmX

q
jpmc

Tm
8m; p 2 Vq; c; q ð19Þ

"qmpc ¼
PM
m¼1

qqmpcNmcPM
m¼1

Nmc

8p 2 Vq; c; q ð20Þ

Constraint 15 ensures that each operation is assigned
only to one machine and one cell. Constraint 16 implies
that if at least one operation of part p is performed in cell c
in scenario q, then the value of Zq

jpc will be equal to 1;
otherwise, it will be set to zero. Constraint 17 guarantees
that machine capacity is not exceeded. Constraint 18
ascertains whether cell c is formed. qqmpc is the expected
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workload on machine m by part p in cell c under scenario q
will be Compute by Eq. 19, and "qmpc, the expected average
intracell processing time for part p in cell c in scenario q
will be obtained in Eq. 20.

4 Two-phase fuzzy linear programming approach

The development of various approaches, in order to solve
multi-objective problems, has been an on-going effort by
researchers. Various methods exist for optimizing the multi-
objective optimization problems and were classified into
five sets [39]: (1) scalar methods, (2) interactive methods,
(3) fuzzy methods, (4) method with use a meta-heuristic,
and (5) decision aid methods.

In this study, a two-phase fuzzy linear programming
approach is employed that belongs to the third classified
set.

4.1 Phase 1

First the general bi-objective model for cell formation
problem is presented and then appropriate operators for this
decision-making problem are discussed.

A general linear bi-objective model can be presented as:
Find a vector x written in the transformed uT ¼
u1; u2; . . . ; un½ � which minimizes objective function Zk with

Zk ¼
Xn
i¼1

ckiui k ¼ 1; 2: ð21Þ

and constraints:

u 2 Ud; Ud ¼ u=gðuÞ ¼
Xn
i¼1

ariui � br; r ¼ 1; 2; :::; l; u � 0

( )
ð22Þ

where cki, ari and ur are crisp or fuzzy values.
Zimmermann [45] has solved problems 21 and 22 by

using fuzzy linear programming. He formulated the fuzzy
linear program by separating every objective function Zj
into its negative ideal solution (ZNIS

k ) and positive ideal
solution (ZPIS

k ) by solving:

ZNIS
k ¼ max Zk ; u 2 Ud ; ZPIS

k ¼ min Zk ; u 2 Ud ð23Þ

ZPIS
k is obtained through solving the bi-objective problem

as a single objective using, each time, only one objective
and u 2 Ud means that solutions must satisfy constraints.

Since every objective function Zk, the value of it changes
linearly from ZPIS

k to ZNIS
k , it may be considered as a fuzzy

number with the linear membership function mZk ðUÞ as

shown in Fig.1. It was shown that a linear programming
problem (Eqs. 21 and 22) with fuzzy goal may be presented
as follows:

Find a vector u to satisfy:

eZk ¼ Xn
i¼1

ckiui �� Z0
k k ¼ 1; 2; :::;K ð24Þ

s.t.

grðuÞ ¼
Xn
i¼1

aKiui � br r ¼ 1;:::;l ð25Þ

ui � 0 i ¼ 1; 2; :::; n: ð26Þ

In this model, the sign ~ indicates the fuzzy environ-
ment. Zk

0 is the satisfaction degree that the decision maker
wants to reach.

Assuming that membership function, based on prefer-
ence or satisfaction is the linear membership for minimiza-
tion goals (Zk) is given as follows:

mZk ðuÞ ¼

1 for Zk � ZPIS
k ;

ZNIS
k �ZkðuÞð Þ
ZNIS
k �ZPIS

kð Þ for ZPIS
k � ZkðuÞ � ZNIS

k ; k ¼ 1; 2;

0 for Zk � ZNIS
k :

8>>><>>>:
ð27Þ

In fuzzy programming modeling, using Zimmermann’s
approach, a fuzzy solution is given by the intersection of all
the fuzzy sets representing either fuzzy objective. The fuzzy
solution for all fuzzy objectives may be given as

mDðuÞ ¼ \p
j¼1

mZjðuÞ
� �

ð28Þ

Zk
PIS Zk

NIS

(u)Zk
μ

 0 

 1 

Zk

Fig. 1 Objective function Zk as a fuzzy number
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The optimal solution (u*) is given by (Bellman and
Zadeh [46]):

mD u
»

	 

¼ max

u2Ud

mDðuÞ ¼ max
u2Ud

min
j¼1;:::;K

mZj
ðuÞ

� �
ð29Þ

With the “max–min” operator and α satisfaction degree,
the fuzzy linear programming problem can be solved as a
single-objective problem:

Maximize a ð30Þ
s.t.

a � ZNIS
k � ZkðuÞ

� �
ZNIS
k � ZPIS

k

� � k ¼ 1; 2 ð31Þ

grðuÞ � br r ¼ 1; :::;m ð32Þ

xi � 0 i ¼ 1; 2; :::; n and a 2 0; 1½ � ð33Þ
The “max–min” obtains the best solution (due to max

operator) among the set of the worst objective values
(due to min operator), each determined by a feasible
solution. An alternative approach may decide a different
operator, in place of the min operator. Indeed quite
reasonably, it may sometimes be desirable for a compen-
satory operator to be used instead of the min operator
(Lee and Li. [47]).

4.2 Phase 2

Here, we make use of the result of phase 1 to overcome
disadvantages of one-phase approach.

Lee and Li [47], Guu and Wu [48], and Li and Li [49]
used two-phased approaches to fix situations where the
max–min operator is not efficient. The two-phase method
uses the max–min operator in its first phase. It is well
known that the optimal solution obtained by phase 1 may
not be an efficient solution in the sense that there may
exist another solution in the feasible space dominating the
obtained solution by the max–min operator in phase 1 (a
solution a is said to dominate solution b if: (1) a is at least
as good as b regarding all objectives, and (2) a is strictly
better than b for at least one objective). In the second
phase, the solution is forced to improve upon and
dominate the one obtained by the max–min operator,
adding constraints and a new auxiliary objective function
to phase 2 to achieve at least the satisfaction degree
obtained in phase 1. An arithmetic operatorlis proposed to
obtain new satisfaction degrees that represent the bi-
objective linear programming objectives’ satisfaction

degrees. Thus, the proposed phase 2 problem is as
follows:

Maximize l ¼ min mZk ðuÞ
� �þ 1

K

XK
k¼1

wk lk � að Þ ð34Þ

s.t.

a � lk �
ZNIS
k � ZkðuÞ

� �
ZNIS
k � ZPIS

k

� � k ¼ 1; 2 ð35Þ

grðuÞ � br r ¼ 1; :::;m ð36Þ

ui � 0 i ¼ 1; 2; :::; n and a; l 2 0; 1½ � ð37Þ

where wk, the given weighting coefficients presenting the
relative importance among the fuzzy goals, are so thatPK
k¼1

wk ¼ 1; 0 < wk � 1 . We note that the constraints 35

enforce a better solution in phase by the requirements lk �
a ; k ¼ 1; 2 while maximizing the weighted mean squares
of the improvements. A good starting point for solving the
phase 2 problem is lk ¼ a ; k ¼ 1; 2. Then, the general
steps of our algorithm are outlined.

1. {Step 1} Compute the negative ideal solutions, i.e., the
ZNIS
k as given in Eq. 23; use these as the initial point for

the “max–min” model (Eqs. 30–33) to compute an
optimal solution (the obtained value of α is to be used
in phase 2.

2. {Step 2} Let l ¼ a in Eq. 34 and solve Eqs. 34–37 to
get an optimal solution.

The bi-objective fuzzy linear programming for the
proposed cell formation problem formulation is presented
as follows:

Min Z1
� ¼ PC

c¼1
FcYc þ

PC
c¼1

PM
m¼1

amNmc

þ PQ
q¼1

PC
c¼1

P
p2Vq

POP
j¼1

PM
m¼1

SqpprqbmD
q
ptjpmx

q
jpmc

þ 1
2

PQ
q¼1

P
p2Vq

POP�1

j¼1

PC
c¼1

Sqpprq
Dq

p

B

l m
g Zq

ðjþ1Þpc � Zq
jpc

��� ����� Z0
1

Min Z2
� ¼ PQ

q¼1

PC
c¼1

PM
m¼1

P
p2Vq

ðqqmpc � "qmpcÞ2 �
�
Z0
2

s.t.

Constraints 14 to 20.
The following solution procedure is employed to solve

the fuzzy bi-objective linear programming for the proposed
stochastic cell formation problem.
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4.2.1 Algorithm: two-phase fuzzy bi-objective linear
programming approach

Phase 1

Step 1 Construct the crisp fuzzy bi-objective linear
programming for the bi-objective stochastic cell
formation problem formulation.

Step 2 Solve the kth objective function with an optimiza-
tion technique such as branch-and-bound (B&B)
method embedded in Lingo 8 software, and set
ZPIS
k to the objective function value of the found

minimum solution (lower bound for the kth
objective Zk).

Step 3 Determine the values of the other objective
functions of the obtained solution in the
previous step and set ZNIS

k = the maximum value
among the obtained values (upper bound for the
kth objective Zk).

Step 4 Repeat steps 2 and 3 for all the objective functions.
Step 5 Define the membership function of each goal in the

fuzzy bi-objective linear programming.
Step 6 Construct the equivalent crisp formulation of fuzzy

bi-objective linear programming cell formation
problem according to Eqs. 30 to 33.

Step 7 Solve the equivalent crisp formulation in previous
step; then calculate the relative membership α of
each objective value’s satisfaction degrees.

Phase 2

Step 8 Set lk ¼ a; k ¼ 1; 2;:::;K, and solve the problem
(Eqs. 34–37) to get an optimal solution.

From the above algorithm, it should be evident that the
approach is effective in generating a preferred compromise
solution and the corresponding feasible satisfaction degree of
each objective function. In addition, we should highlight an
important issue which is the relationship between the preferred
compromise solution and the satisfaction degrees. Figure 2
illustrates the block diagram of the proposed approach.

5 An application example and performance analysis
of fuzzy bi-objective linear programming approach

5.1 A solution example

In this paper, the problem is considered for five parts, seven
machines, and three scenarios. A typical dataset for the
proposed model shown in Table 1. Each part has two
operations that must be done respectively. For simplicity,
we assume that all machine types have same capacity (i.e.,
300 h/period) independent of machine type. Dataset is

randomly generated in terms of the uniform distribution by
inspiration of literature. Table 2 shows different part types
to be processed in the three possible scenarios.

The linear membership function is used for fuzzifying
the objective functions for the above problem. The dataset
for the values of the lower bounds and upper bounds of the
objective functions and fuzzy number for the demands are
given in Table 3 (steps 1 to 4).

The below membership functions for two-objective func-
tions are provided to minimize the sum of the miscellaneous
costs (machine constant cost, expected machine variable cost,
cell fixed-charge cost, and expected intercell movement cost)
and the expected total cell loading variation (step 5).

mZ1ðxÞ ¼
1 Z1 � 3; 471:96;
7;010�Z1
3;538:04 3; 471:96 � Z1 < 7; 010;
0 Z1 � 7; 010:

8>><>>: ð38Þ

mZ2ðxÞ ¼
1 Z2 � 0:1021;
6:8749�Z2
6:7728 0:1021 � Z2 < 6:8749;

0 Z2 � 6:8749:

8>><>>: ð39Þ

Start

Construct the crisp FBOLP model

Solve the kth objective function (k=1,2) and 

 set PIS
kZ = the lower bound of kth objective  

Set NIS
kZ = the maximum value among the obtained

values (Upper bound for the k th objective Zk) (k=1, 2)

Define the membership function 
of each Zk (k=1, 2) 

Transformed into the equivalent 
crisp formulation 

Solve and calculate the relative membership α  of each 
objective value’s satisfaction degrees  

Set αλ =k , 2),1( =k and solve the problem 

(34)-(37) to get an optimal solution

Stop

Phase 1 

Phase 2 

Fig. 2 Block diagram of the proposed approach
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The crisp formulation of fuzzy bi-objective linear
programming stochastic cell formation problem for the
numerical example can be formulated as follows (step 6):

Maximize a ð40Þ
s.t.

a � 7; 010� Z1
3; 538:04

ð41Þ

a � 6:8749� Z2
6:7728

ð42Þ

a 2 0; 1½ � ð43Þ
Constraints 14 to 20.

The Lingo software was used to run this fuzzy bi-
objective linear programming model, obtaining the results
for the objectives as Z1=4,790.713, Z2=0.8988, and the
overall degree of satisfaction with the DM’s multiple fuzzy
goals as 0.6267.

After getting the optimal solution from previous step,
according to the optimal objective function values, the step
6 satisfaction degree, α, can be used in this step (step 7).
Below equation represents the fuzzy bi-objective linear
programming stochastic cell formation problem that is
transferred from previous step. Furthermore, the decision
maker provided the relative importance of objectives
linguistically as: w ¼ ðw1;w2Þ ¼ ð0:65; 0:35Þ.

Maximize l ¼ min
7; 010� Z1
3; 538:04

;
6:8749� Z2

6:7728

 �
þ 1

2
w1 l1 � 0:6267ð Þ þ w2 l2 � 0:6267ð Þð Þ

ð44Þ
s.t.

0:6267 � l1 � 7; 010� Z1
3; 538:04

ð45Þ

0:6267 � l2 � 6:8749� Z2
6:7728

ð46Þ

l1; l2 2 0; 1½ � ð47Þ
Constraints 14 to 20.

This experiment is carried out by a B&B method by
using the Lingo 8 software, which is executed on a Pentium
4, 3 GHz, and Windows XP using 512 MB of RAM. The
results of applying the fuzzy bi-objective linear program-
ming to the problem of stochastic cell formation problem
are shown in Table 4.

In the first phase of the solution procedure in this study,
the acceptable DM satisfaction degree, α, is 0.6272 in the
fuzzy environment. Then, in phase 2, the DM satisfaction
degree is improved by adding lower limits, which all
objective functions have to exceed and new auxiliary
objective function. As a result of this modification, the

Table 1 Typical test problem

Machine information Process P1 P2 P3 P4 P5

αm$ βm $ Tm 1 2 1 2 1 2 1 2 1 2

715 0.43 300 M1 0.94

356 0.5 300 M2 0.27 0.47 0.63 0.5

314 0.62 300 M3 0.76 0.68

587 0.12 300 M4 0.42 0.23 0.81

177 0.56 300 M5 0.95 0.86 0.16

818 0.39 300 M6 0.12 0.21 0.27

775 0.75 300 M7 0.01 0.43 0.07 0.52

B=50; γ=40; F1=50; F2=50; F3=50; UB1=4; UB2=4; UB3=4

Table 2 Part demand

Scenario Probability Demand

1 0.65 300 500 0 1,000 900

2 0.25 0 200 100 600 200

3 0.10 1,033 918 0 0 1,153

Table 3 The dataset for membership functions

μ=0 μ=1 (PIS) μ=0 (NIS)

Z1 (sum of the miscellaneous costs) – 3,471.96 7,010

Z2 (expected total cell loading) – 0.1021 6.8749

PIS positive ideal solution, NIS negative ideal solution
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satisfaction degree is increased to 0.9978 and all objective
function values are decreased. The best cell configuration
obtained of the proposed approach is shown in Fig. 3.

5.2 Performance analysis

To evaluate the performance of the suggested approach, let
us consider the solution of the illustrated example by using
different approaches. The proposed approach was applied
to the test problem and its performance was compared with
the two-phase approach (LZL) proposed by Li and Li [49].
The two-phase approach proposed by Li and Li [49] is:

Maximize
X2
k¼1

wkmZk ðxÞ ð48Þ

s.t.

l � 7; 010� Z1
3; 538:04

¼ mZ1
ðxÞ ð49Þ

l � 6:8749� Z2
6:7728

¼ mZ2
ðxÞ ð50Þ

l;mZ1ðxÞ;mZ2ðxÞ 2 0; 1½ � ð51Þ
Constraints 14 to 20.

In the above formulation, λ denotes the minimum
satisfaction degree of the objective function which is found
by solving the Zimmermann’s max–min [45] approach, as
follows:

Maximize l ð52Þ
s.t.

l � 7; 010� Z1
3; 538:04

ð53Þ

l � 6:8749� Z2
6:7728

ð54Þ

l 2 0; 1½ � ð55Þ
Constraints 14 to 20.

The results of applying the LZL approach to the problem
of stochastic cell formation problem are shown in Table 5.

To determine the degree of closeness of the fuzzy bi-
objective linear programming approach results to the ideal
solution, let us define the following family of distance
functions [50]:

Dp w;Kð Þ ¼
XK
k¼1

wp
k 1� dkð Þp

" #1
p

ð56Þ

where dk represents the degree of closeness of the preferred
compromise solution vector to the optimal solution vector
with respect to the kth objective function. l ¼
l1; l2; :::; lkð Þ is the vector of objectives satisfaction
degrees. The power p represents a distance parameter

1 � p � 1. Assuming
PK
k¼1

lk ¼ 1, we can write Dp(w,K)

with p=1.2 and ∞as follows:

D1 w;Kð Þ ¼ 1� PK
k¼1

wkdk the Manhattan distanceð Þ ð57Þ

D2 w;Kð Þ ¼ PK
k¼1

w2
k 1� dkð Þ2

� �1
2

the Euclidean distanceð Þ

ð58Þ

D1 w;Kð Þ ¼ max
k

lk 1� dkð Þf g the Tchebycheff distanceð Þ

ð59Þ
where, in minimization problems, dk takes the form: dk ¼ theð
optimal solution of ZkÞ= the preferred compromise solutionð
ZkÞ.
Thus, we can state that the approach which can derive a

preferred compromise solution is better than the others if:
Min Dp(λ,K) is achieved by its solution with respect to
some p as discussed in Abd El-Wahed and Lee [50].
Comparison of the results obtained using the max–min

C1 C2 
P4 P5 P1 P2 P3 

M3 1
M1 1C1 

M2 2 2 1
M5 2 1 
M4 2
M6 1

C2 

M7 2 

Fig. 3 Best cell configuration

Table 4 Obtained result of proposed approach

Z1* Z2* λ1* λ2* O.F.V.

3,949.401 0.4763 0.8650 0.9447 0.9978

Table 5 Obtained results of LZL approach

Z1* Z2* O.F.V.

3,921.866 0.5105 0.8962
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approach and Two-phase approach with the proposed fuzzy
bi-objective linear programming approach is summarized in
Table 6. From Table 6, it is clear that the suggested fuzzy
bi-objective linear programming approach gave a preferred
compromise solution which is better than the solution by
the approaches in [50] for all the distance functions D1, D2,
and D∞. This comparison shows the proposed fuzzy bi-
objective linear programming approach is superior to max–
min and LZL approach in the above test problem.

Figure 4 shows sum of the miscellaneous costs (machine
constant cost, expected machine variable cost, cell fixed-
charge cost, and expected intercell movement cost) and
expected total cell loading variation according to applied
approaches for solving proposed multi-objective stochastic
cell formation problem.

6 Discussion of results for future researches

In this paper, we proposed a two-phase fuzzy programming
approach and we solve the problem with Lingo 8 software.
Although it is an effective approach in practice, but we can
consider some weaknesses as following:
1. In Lingo software and with fuzzy programming, the

time of problem solving is very much, in the other
words this approach is a time consuming one.

2. The Lingo 8 solver and proposed algorithm are not
proper for large-sized problems.

3. The Lingo 8 solve the problem by an exact algorithm
(branch and bound), but meta-heuristic algorithms can
produce better results.

4. We cannot solve the problem with different approaches
in Lingo 8, so the software limits the users with one
approach.

5. The algorithm in Lingo 8 has a same procedure, but in
a meta-heuristic algorithm, we can change the proce-
dure with changing the conditions like problem size
and so on for achieving to high quality results.

These are only some limits of Lingo 8 software, future
researches can consider these weaknesses and find a
solution for each of them, although in literature some
papers propose the approaches which do not have the above

problems. Guo ZX et al. [51, 52] are the best examples in
the literature. Guo ZX [51] has presented a genetic
optimization process to solve this model, in which a new
chromosome representation, a heuristic initialization pro-
cess and modified crossover and mutation operators are
proposed. Also, Guo ZX [52] has presented a new
chromosome representation to tackle the operation assign-
ment by assigning one operation to multiple machines as
well as assigning multiple operations to one machine.
Furthermore, a heuristic initialization process and modified
genetic operators are proposed. The time of problem
solving has been presented in these papers; the time is
logical in these papers. These approaches with the
modifications are effective in large-sized problems. The
heuristic initialization process and modified operators can
adjust the algorithm with our models and the problem
conditions like size and so on. As we discussed, these
approaches can solve the problems which we have with
Lingo 8 software. Although, these papers are two proper
ones for above weaknesses, but this topic is a broad one
and the future researches can present new approaches
which do not have these weaknesses.

7 Conclusions

A fuzzy bi-objective linear programming approach is
developed for the cell formation problem with demand of
products expressed in a number of probabilistic scenarios.
Two crucial objectives of the machine constant cost,
expected machine variable cost, cell fixed-charge cost,
expected intercell movement cost, and the expected total
cell loading variation are considered for minimization. We
proposed a two-phase approach for the fuzzy bi-objective
linear programming. In the first phase, the problem is
solved using a max–min approach. The max–min solution
not being efficient, in general, we proposed a new model in
the second phase to maximize a composite satisfaction
degree at least as good as the degrees obtained by phase

Table 6 Comparison of solutions by three different approaches

Max–min
approach [40]

LZL approach
[44]

Proposed
approach

Optimal
solution

Z1 4,790.713 3,921.866 3,949.401 3,471.961

Z2 0.8988 0.5105 0.4763 0.1021

D1 0.4891 0.3545 0.3535 –

D2 0.3580 0.2897 0.2859 –

D∞ 0.3102 0.28 0.2749 –

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Max-Min approach LZL approach Proposed model

0

1000

2000
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Z1

Fig. 4 Objective functions values
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one. To show the effectiveness of the proposed approach, a
numerical example is solved to compare the performance of
the fuzzy bi-objective linear programming with the max–
min approach and LZL approach. The numerical results
show that the proposed approach achieves lower objective
functions as well as higher satisfaction degrees. The
proposed approach of this study showed satisfactory result
for small sized problems. Moreover, time complexity is not
addressed in this paper; however, this issue might be
important in large-sized problems, therefore, developing
efficient exact or heuristic solution methods can be
appealing in this area.
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