ReCaml: Execution State as the Cornerstone of Reconfigurations

Jérémy Buisson
Université Européenne de Bretagne
Écoles de St-Cyr Coëtquidan / VALORIA
 jeremy.buisson@st-cyr.terre-net.defense.gouv.fr

Fabien Dagnat
Université Européenne de Bretagne
Institut Télécom / Télécom Bretagne
Fabien.Dagnat@telecom-bretagne.eu

Abstract
Most current techniques fail to achieve the dynamic update of recursive functions. A focus on execution states appears to be essential in order to implement dynamic update in this case. Indeed it alleviates restrictions on the active status of updated elements. We therefore propose a novel language construct for the introspection of execution states, which matches a delimited continuation with a pattern. With formal semantics and type system, (1) unsound upgrade programs can be detected statically and (2) the implementation does not need any specific compilation scheme. This represents one step towards formally verifiable dynamic updates and improved applicability. Beyond the simple example presented in this article, our approach can be applied to dynamically update schedulers, interrupt handlers, reactive systems and interaction loops.

Categories and Subject Descriptors D.3.2 [Programming Languages]: Language Classifications—Applicative (functional) languages; D.3.3 [Programming Languages]: Language Constructs and Features—Control structures; D.3.4 [Programming Languages]: Processors—Compilers; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages

General Terms Languages

Keywords dynamic software updating, continuation, functional language, execution state introspection, static typing, Caml

1. Introduction
Stopping a critical and long-running system may not be possible or more simply not acceptable as it would incur an excessive financial or human cost. Such systems can only be maintained and updated at runtime. Dynamic software updating is the action of modifying a running software. While being technically complex, dynamic software updating is needed as argued by Appavoo et al. (2003) and Neamtiu et al. (2006). One of the main challenges when updating a running software is to ensure that, after the update, the modified software remains consistent and achieves its goals. Final results must not be compromised even if intermediate results are reused in a different context. For instance, the Gmail outage in February 2009 (Cruz 2009) is due to an update of the data placement service that was inconsistent with the redundancy strategy. This inconsistent update caused a global denial of service.

A software can be split into interacting pieces that can switch between active and passive states. Following the usual strategy, dynamically updating (a piece of) this software preserves consistency if: (1) none of the impacted pieces is active at the time of the update (Kramer and Magee 1990; Vandewoude et al. 2007), (2) the state of each piece is appropriately handled (Gupta et al. 1996; Gilmore et al. 1997; Chen et al. 2007) and (3) the global properties of the whole software are maintained. Any kind of structural units can be used such as for example functions, modules, classes or components. When chosen, the kind of software elements defines the granularity of updates.

The previously described approach implicitly assumes that the impacted pieces of software can go into a passive state often enough in order to perform the needed updates. This is especially true in systems that actively require the pieces of software to passivate (Kramer and Magee 1990; Bruneton et al. 2006), but also in other systems that wait for such passive states to emerge spontaneously (Altekar et al. 2005; Neamtiu et al. 2006). While this assumption holds in many cases such as web request handlers, some pieces of code never fulfill this assumption. For example, Arnold and Kaashoek (2009) mention that the primary Linux scheduler function cannot be passive as it is on the stack of all sleeping threads. Baumann et al. (2007) also acknowledge their technique is unable to update exception handlers in a kernel. Yet it is relevant to update such subsystems at runtime (Makris and Ryu 2007). Interpreters are another typical example of software that sometimes cannot be updated. Indeed, their read-evaluate-print loop is passive (not on the call stack) only when the evaluate part terminates which may require an unbounded long delay. For example, when using an interpreter to execute long running tasks (such as in satellites or more classically in JVM servers), updating it may be needed while the hosted task (and therefore the interpreter) is active. The second limit of this structural approach is that some optimizing compilers squash software structure into long-running functions. For instance, synchronous language compilers produce a single huge block of code that interleaves components (Amagbégnon et al. 1995). When execution structure does not match the software structure, it becomes difficult to determine which code needs to be passivated. Assume a program that is made of the execution of a recursive function. If old and new versions can be consistently mixed, e.g., if the types are not changed, we can rebind names to the new version (Dmitriev 2001; Bierman et al. 2003; Ericsson AB 2008). Otherwise, either updates have to wait for completion or the execution has to start over, hence failing to update dynamically. Dynamic re-binding lets the active code complete with the old version (Dmitriev 2001; Ericsson AB 2008). Even if it is correct with respect to types, the resulting mixture of versions can lead to behaviors that belong to none of the software versions. In fact, the actual behavior is non-deterministic as it depends on the timing of the update. In addition, since updates are supposed to change the properties of the software, one can question the validity of substitutions when consid-
As a consequence of the previous point, updates can occur at any time. A compensation ensures consistency afterwards, according to the execution state at the time of the update. Therefore, no preventive action (such as quiescing or passing pieces of the software) is required. In addition, even if updates might not be effective immediately, they can be executed with no delay.

3. Optimistic update. As a consequence of the previous point, updates can occur at any time. A compensation ensures consistency afterwards, according to the execution state at the time of the update. Therefore, no preventive action (such as quiescing or passing pieces of the software) is required. In addition, even if updates might not be effective immediately, they can be executed with no delay.

4. Original application of delimited continuations. While continuations are common when studying languages and modeling exceptions and coroutines, they are rarely used in the area of dynamic software updating. Thanks to continuations, ReCaml does not require any source code transformation or any specific compilation scheme.

5. Functional approach. ReCaml focuses solely on introspecting execution states. We currently provide no means to change the value of a continuation. The resulting approach relies on the core language in order to reconstruct the new evaluation context from which the execution resumes. The compensation maps the state at the update time to the new result of the program.

2. Update Complexity vs Application Simplicity

In this section, our aim is to convince the reader that updates can be so complex that the search for sophisticated solutions is justified. We are aware that supporting tools will be required in order to ease the proposed solution. We leave this problem to subsequent work, beyond the scope of this paper.

Our argumentation relies on a program computing a Fibonacci number. This very simple toy example is just aimed as a proof of concept to illustrate the difficulties when updating a program which is repeatedly active at the time of the update. If updates are already complex for such a simple program, then it should be worse for real applications. The initial version of our example is:

```haskell
let rec fib n = if n < 2 then n else (fib (n-1)) + (fib (n-2)) in fib 12345
```

2.1 Initial Remarks and Overall Approach

There is no point in splitting this code in finer structural elements. This program is built around a single recursive function, whose outermost execution completes only when the whole program terminates. Hence trying to passivate the `fib` function makes no sense. As already mentioned, if old and new versions can be mixed, dynamic re-binding obviously solves the problem, even if the rebound function is active. Usually, this assumption implies that the type of

1 Except possibly abstracting arithmetic operations in the integer data type.

Here, the abstract data type is implicit as Haskell’s `Nat` type class.
the rebound function does not change, as in Erlang (Ericsson AB 2008) and Java HotSwap (Dmitriev 2001). If the type of the fib function is changed, then rebinding it breaks consistency.

An update has therefore to deal with the current execution state. It corresponds to the stack of calls already started with their arguments. Such ongoing calls are called activations in the rest of the paper. Updating a function requires to specify the action to handle each activation. Such specifications are called compensations. For example, updating a function f of type \(\tau_1 \rightarrow \tau_2 \) while changing its type to \(\tau_1' \rightarrow \tau_2' \) may require to convert its argument to its new type (\(\tau_1' \)) or its result to be used by code expecting values of the old type (\(\tau_2 \)). More generally, a compensation can:

- yield to the activation, hence executing the old version until the completion of the activation. The result may need to be converted to conform to the new type of its calling activation if it has changed. Note that this is the semantics of Erlang, Java HotSwap and more generally of dynamic rebinding, where result conversion is the identity function.
- cancel the activation, hence starting over the call with the new version. Call parameters shall be converted according to the new version. The result shall also be converted according to how the compensation handles its calling activation.
- extract intermediate results from the activation in order to feed some custom code. Depending on how the calling activation is compensated, this custom code computes the new result in place of the canceled activation.

The relative worth of each strategy depends on the time at which the update occurs. For example, if the considered activation is close to its completion, then it may be worthwhile to let it complete its execution. If the activation has started recently, then it may be better to abort and start over. If the update occurs in the middle of the execution period, then the third option could be more appropriate.

In the third option, the amount of reusable intermediate results varies depending on the old and new versions. The extreme case where no intermediate result can be reused matches the second option, i.e., aborting the activation and starting over the call. The quantity of reusable results gives an additional hint in order to choose the most advantageous option.

2.2 Replacing the Type of Integers

We first emphasize problems arising when modifying a type. As the computed Fibonacci number becomes high, using fixed-size integers will result in an overflow. Instead, it is safer to use arbitrary precision integers. The new version of the program is5:

```ocaml
let rec fib n =
  if n < 2 then num_of_int n
  else (fib (n-1)) +/ (fib (n-2))
```

Obviously, using dynamic rebinding forbids this update as the type of fib is changed and there is at least one active call. Assuming that the integer data type has been well abstracted, one possible strategy could consist in updating this data type, like Gilmore et al. (1997) and Neamtu et al. (2006) do. This approach has two major drawbacks. First, it updates all the uses of integers, while we want that only the result of the fib function has the overhead of arbitrary precision integers. Second, at the time of the update, some of the executions of the fib function might have already produced overflowed integers. A systematic update of all integers has no chance to distinguish the overflowed values that must be recomputed.

One possible update is as follows. Given an activation, if none of the recursive calls has been evaluated, then the activation can start over with the new version of the function. Otherwise, the compensation checks intermediate results in order to detect whether an overflow has occurred. Only non-overflowed results are converted to the new type. Overflown or missing results are computed using the new version. Last, the compensation uses the arbitrary precision operator in order to perform the addition. The compensation handles caller activations in a similar way, taking into account the fact that the type of the call result has already been converted. The code of this update is outlined in Section 3 to illustrate ReCaml.

2.3 Introducing Memoization

Second, we emphasize difficulties that occur when changing the algorithmic structure. In our example, there is a well-known algorithm with linear time complexity, while the initial one has exponential time complexity. The new version of the program is:

```ocaml
let rec fib' n i fi fi1 =
  if i=n then fi
  else fib' n (i+1) (fi +/ fi1)
```

This can be done in let fib n = if n < 2 then num_of_int n else fib' n 2 1/1/.

We can safely mix new and old versions and rebind dynamically the name fib as the type of the function is not changed. However, in this case, the effective behavior still has polynomial time complexity. Indeed, in the worst case, there is a stack of n activations of the old function, each of which subsequently performs up to one call to the new version. The effective behavior is worse than aborting and starting over the program, which is not satisfactory.

A better way to perform this update is to look out for two consecutive Fibonacci numbers in intermediate results. The new version is evaluated from the greatest pair, passed as parameters to the fib' function. If there is no such pair, it is not worth reusing any intermediate result and the program would rather start over.

2.4 Discussion

Using these two simple examples, we aim at showing that updating a software at runtime and in the right way is a difficult task. There is no general scheme that applies well to all of the cases. In the first case (Section 2.2), each activation is converted independently of the others to the new version. In the second case (Section 2.3), as the algorithm changes radically, all of the activations are cancelled and there is a lookup for specific intermediate results. These update schemes are complex despite the simplicity of the application.

In addition, our examples show that even for a single application, the right scheme depends on the update itself. This is the reason why we argue in favor of a mechanism that allows developers to design specific schemes for each update. This approach would not prevent proposing some update schemes “off-the-shelf”, e.g., relying on some tools such as code generators, thus avoiding burdening developers when possible. Makris and Bazzi (2009) for instance have already proposed such automatic generation strategies.

3. Overview of the Approach

In the above examples, the key mechanism is the ability to introspect activations when updating. Updates of Section 2 require in-

5Makris and Bazzi (2009) use the name stack/continuation transformer and Gupta et al. (1996) use state mapping. Being functional, ReCaml does not allow in place modification of a continuation but favors the construction of a new future. Hence, we prefer a new name to avoid misunderstanding.

3In Caml libraries, num_of_int is the function that converts an integer to arbitrary precision; */ is the addition over arbitrary precision integers.

4To keep the program simple, we extend Caml with 1/ to denote the arbitrary precision literal 1 similarly to the */ notation for arbitrary precision addition.
termediate results from activations. They also need to identify what has been done and what has still to be evaluated in each activation. For the implementer, this means that we need the mechanism to reify the state of the execution, including the call stack. To achieve this, we use continuations to model activations and we propose a new pattern matching operator \(\text{match_cont} \), abbreviated as \(\text{mc} \). Given a continuation, it matches the return address of the top stack frame as an indication of what remains to be done in the activation. It pops this stack frame and picks values from it in order to retrieve intermediate results. To do this, we extend the semantics with low-level details of the dynamics of the runtime stack.

In the following, we give an overview of how this operator helps in the \(\text{fib} \) example (Section 2.2). Here we give only part of it to make it easier to comment and understand. Section 6 gives more details and the full source code is in Figure 7.

The version below of the \(\text{fib} \) function is annotated for the purpose of update. Call-sites’ labels may be given by the update developer or generated by some assisting tool. The labelling strategy is not discussed here because it is beyond the scope of this paper.

```plaintext
let rec \text{fib} \ n =
  if \ n < 2 then \ n
else (let \ fn1 = \langle L1 \rangle \ \text{fib} \ (n-1) in
        let \ fn2 = \langle L2 \rangle \ \text{fib} \ (n-2) in
          \text{fn1+fn2})
in \langle L\text{Root} \rangle \ \text{fib} \ 12345
```

Using these labels, the update developer can write a function that chooses the most appropriate strategy for each activation of \(\text{fib} \) depending on the point it has reached.

The main function compensating the effect of the update from \text{int} to \text{num} is given below. At each step, this function \text{comp_caller_of_fib} proceeds by finding what is the state of the activation at the top of the current continuation (\(k \)) using \text{match_cont}. The second parameter (\(r \)) is the result value that would have been used to return to the top stack frame.

```plaintext
let rec \text{comp\_caller\_of\_fib} \ k \ r =
  \text{match\_cont} \ k \ with
  | \langle L1:n \rangle \ :: \ k' \ → \ (\ast \ (1) \ complete \ with \ new \ version \) ∗)
    let \ fn1 = if \ (n-1)<45 then \ r else \text{fib} \ (n-1) in
    let \ r′ = (fn1 +/(\text{fib} \ (n-2))) in
    \text{comp\_caller\_of\_fib} \ k' \ r′
  | \langle L2:n \ fn1⟩ \ :: \ k' \ → \ (\ast \ (2) \ convert \ fn1 \) ∗)
  | \langle L\text{Root}⟩ \ :: \ _ \ → \ (\ast \ (3) \ resume \ normal \ execution \) ∗)
```

Notice that when filtering a case the update developer can specify values that he wants to extract from the current activation. For example, in case (1), he may use the rank of the Fibonacci number being calculated (here it is bound to \(n \)) and in case (2), he may also access the intermediate result of \text{fib} \ (n-1) named here \text{fn1}.

As described in Section 2.2, when the top stack frame matches \(L1 \), the compensation has first to check whether the result \(r \) of \text{fib} \ (n-1) has overflowed. Assuming that integers are coded by, e.g., 31-bits signed integers, we statically know that the biggest correct (smaller than \(2^{30} - 1 \)) has rank 44. So the compensation compares the rank \(n-1 \) (where \(n \) is picked from the stack frame on top of the continuation \(k \)) of \(r \) (here, it is \text{fib} \ (n-1)) to 44 in order to decide whether it can be reused. Then the compensation completes the popped activation in \(r' \). Last, we have to compensate the tail \(k' \) of the continuation. Because the next stack frame is also suspended at a call of \text{fib} \ (L1 originates from \text{fib}), we have to check once again for the callers of \text{fib}. Hence the tail \(k' \) is compensated by a recursive call of \text{comp_caller_of_fib}.

In the following, \(v \) is a value; \(e \) denotes a term; \(x \) is a variable; \(k \) is a continuation, i.e., an evaluation context; \(p \) denotes a prompt; \(\langle l \rangle \) names a call-site; and \(\mathcal{E} \) is an environment.

```plaintext
v ::= \( \lambda x.e, \mathcal{E} \) | \ p | \text{cont} \ (k)
\ e ::= \ v \ | \ x \ | \ \lambda x.e \ | \ \text{let\ rec\ x} = \lambda x.e\ \text{in} \ \langle l \rangle \ e \ | \langle l \rangle \ e\ e
\ \text{frame}_{\langle l \rangle, \mathcal{E}, p'}e \ | \ \text{env}_e \ | \ mc\ e\ \text{with} \ (\langle l \rangle, x, x, \overline{\mathcal{E}}, e) \ e\ e
\ \text{capture}_{\langle l \rangle, p} \uparrow e \text{to} v \varepsilon \text{with} e \ | \ \text{cap}_{\langle l \rangle, \mathcal{E}} \uparrow \text{to} p \varepsilon \text{with} v
\ \text{reinstate}_{\langle l \rangle, \mathcal{E}} e \ e \ | \ \text{setprompt}_{\langle l \rangle, \mathcal{E}} e \ e \ | \ \text{newprompt}
\ k ::= \square \ | \langle l \rangle \ k \ v \ | \langle l \rangle \ e \ k \ | \ \text{frame}_{\langle l \rangle, \mathcal{E}, p'}k \ | \ \text{env}_k
\ mc\ k\ \text{with} \ (\langle l \rangle, x, x, \overline{\mathcal{E}}, e) \ e\ e
\ \text{capture}_{\langle l \rangle, \mathcal{E}} \uparrow k \ v\ e \ | \ \text{capture}_{\langle l \rangle, \mathcal{E}} \uparrow k \ v\ e \ | \ \text{reinstate}_{\langle l \rangle, \mathcal{E}} k \ v \ e \ | \ \text{reinstate}_{\langle l \rangle, \mathcal{E}} e k \ \text{with} \ e
\ p' ::= \ p \ | \ \perp
\ \mathcal{E} ::= \square \ | \ (x \mapsto v) \ ; \ \mathcal{E}
```

Additional constraint:
- A continuation \(\text{cont} \ (k) \) is either empty (\(k \) is \(\square \)) or its innermost operator is \text{frame} \ (\(k \) ends with \text{frame}_{\langle l \rangle, \mathcal{E}, p'}\square \).

![Figure 1. Grammar of terms and continuations](image1)

4. The ReCaml Language

Building on the \(\lambda \)-calculus, ReCaml adds a model of stack frames, which are generated by the compiler. On top of this model and of a continuation framework, it implements the \text{mc} operator. In doing so, developers programming updates in ReCaml can manipulate runtime states using the same language. Embedding the operator in the language allows us to extend the type system in order to eliminate statically unsound update programs.

Triggering and executing an update is the responsibility of the execution platform. It is done by some kind of interrupt that can preempt execution at any time. However, updates must deal on their own with their timing with respect to the application execution. The execution platform captures the execution state and passes it as an argument in the update. In return, updates have to guess when the execution has been preempted to select appropriate actions.

4.1 Syntax

We first describe the syntactical constructs and notations (Figure 1) then we discuss the choices in the design of the grammar.

4.1.1 Description of the grammar

While \(\lambda x.e \) is the usual abstraction construct, \((\lambda x.e, \mathcal{E}) \) denotes a closure such that the captured environment \(\mathcal{E} \) is used to evaluate the body of the function upon application. The syntax of the application operator \((\langle l \rangle \ e \ e) \) is extended with a label \(\langle l \rangle \) that names the call-site. The \(\text{env}_e \) operator evaluates its subterm \(e \) in the environment \(\mathcal{E} \) instead of the current evaluation environment. Recursive functions are defined as usual (let rec \(x = \lambda x.e \in \mathcal{E} \)).

Our continuation framework defines first-class, instantiable prompts and first-class delimited continuations. Intuitively, prompts are delimiters that bounds the outermost context that shall be captured within a continuation. Hence a delimited continuation represents only part of the remainder of execution. The newprompt operator instantiates a fresh prompt. The \(\text{setprompt}_{\langle l \rangle, \mathcal{E}} e \) operator inserts a delimiter in the evaluation context. Given a prompt, the \(\text{capture}_{\langle l \rangle, \mathcal{E}} \uparrow \text{to} e \text{with} e \) operator captures and replaces the current continuation up to the innermost delimiter. The continuation is wrapped by the \(\text{cont} \ (k) \) constructor. The \(\text{reinstate}_{\langle l \rangle, \mathcal{E}} e \) operator reinstates and evaluates a continuation. We shall explain later in Section 4.1.2 the \(\text{cap}_{\langle l \rangle, \mathcal{E}} \uparrow \text{to} p \text{with} v \) operator, which is an explicit intermediate step in the capture of a continuation.
In order to model the state structure, we introduce an operator \(\langle \text{frame} \rangle \langle \epsilon, \lambda, p, e \rangle \), which annotates activation boundaries. The operator denotes that \(e \) is evaluated in a new stack frame that results from the call/return site \(\epsilon \). At the boundary, a prompt is possibly set if the third annotation \(p \) is not \(\bot \) (i.e., it is the name of a prompt). \(\epsilon \) recalls the evaluation environment of the enclosing context of the operator thus keeping track of the values accessible in this frame.

The last operator \(\langle \text{call} \rangle \langle \epsilon, x_1, x_2, \tau, e_1 \rangle \) deconstructs a continuation relying on its stack frame structure. It compares \(\epsilon \) and the return address on top of the continuation. If the labels match, the continuation is split at the second innermost frame operator in a head (the inner subcontinuation) bound to \(x_1 \) and a tail (the outer subcontinuation) bound to \(x_2 \). Furthermore, the variables \(\tau \) are bound to the values of the topmost stack frame. Then \(e_1 \) is executed in the so extended evaluation environment. There are two other cases: either the return address does not match (\(e_2 \) is executed) or the continuation is empty (\(e_3 \) is executed).

The language has 3 kinds of values: closures, prompts and continuations.

4.1.2 Discussion

Having explicit closures and the \(\text{env} \) operator is the usual approach for the implementation of lexical scoping in small-step environment-based semantics. As a side-effect, the \(\text{env} \) operator also ensures that closures are independent of any evaluation environment, i.e., any continuation brings its required environment in an \(\text{env} \) construct. To some extent, this is similar to the destruct-time \(\lambda \)-calculus (Bierman et al. 2003; Sewell et al. 2008), which delays substitutions until values are consumed. That way, bindings can be marshalled and move between scopes.

Delimited continuations is a natural choice in our context. Indeed, when the \(\text{nc} \) operator splits a continuation into smaller ones, it instantiates continuations that represent only parts of execution contexts. This is what delimited continuations are designed for. Our framework is similar to the ones of Gunter et al. (1995) and Dybvig et al. (2007). We do not need instantiable prompts or first-class prompts as updates capture only continuations up to the root of execution. We keep these features in order not to disturb readers used to such delimited continuation frameworks. The following table approximates the matching of our operators with existing frameworks. Readers can refer to Shan (2004), Kiselyov (2005) and Dybvig et al. (2007) for more complete comparisons.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>newprompt</td>
<td>newPromp</td>
<td>new_prompt</td>
<td></td>
</tr>
<tr>
<td>setprompt</td>
<td>pushPrompt</td>
<td>set</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>withSubCont</td>
<td>cupto</td>
<td></td>
</tr>
<tr>
<td>reinstall</td>
<td>pushSubCont</td>
<td>fun. application</td>
<td></td>
</tr>
</tbody>
</table>

In addition, we adapt the framework:

- We align the delimiters of continuations with the delimiters of stack frames. To do so, we annotate the \(\text{frame} \) operator with an optional prompt in order to delimit where prompts are set. Furthermore, the continuation operators must have a call-site label \(\langle \epsilon \rangle \) in order to insert \(\text{frame} \) constructs.

- We have to introduce a dummy \(\text{cap} \) operator to align a stack frame delimiter with the inner delimiter of the continuation. To do so, a \(\text{frame} \) operator (which needs the evaluation environment) is inserted at the innermost position of the continuation, in place of the capture operator. The \(\text{cap} \) operator saves the needed evaluation environment (the one at the position of the capture operator) before the continuation is actually captured.

- Like Dybvig et al. (2007), we encode continuations in a specific \(\text{cont} \) form rather than a closure (Gunter et al. 1995). That way, the linear structure of continuations (a stack in the implementation; the nesting of evaluation contexts in the language) is maintained and can be used by the \(\text{nc} \) operator. Furthermore, encoding a continuation as a closure would introduce a variable, which would infringe the type preservation lemma due to the typing of call-site labels, as we will see later (Section 4.4). Last, making the distinction between continuations and closures, the \(\text{nc} \) operator does not have to handle regular closures.

Intuitively, a \(\text{frame} \) operator is inserted when a call is done and disappears when the callee terminates. Thus, when a continuation is captured, all its activations are delimited by \(\text{frame} \) operators. The \(\text{nc} \) operator uses them to split continuations into smaller ones. One can note that the environment of a \(\text{frame} \) is redundant. This environment indeed comes from the enclosing \(\text{env} \) construct. While our choice imposes a dummy \(\text{cap} \) operator in the continuation framework, it makes \(\text{nc} \) simpler. Indeed, it does not need to look for \(\text{env} \) constructs to collect environments when a continuation is split.

4.2 Semantics

The small step operational semantics of Figure 2 formalizes the above description of ReCaml. We adopt an environment-based approach with lexical scoping of variables. The judgment \(\mathcal{E} \vdash e \rightarrow e' \) asserts that the term \(e \) reduces to \(e' \) in the evaluation environment \(\mathcal{E} \). Rules \(\text{SUBST}, \text{CLOSE} \) and \(\text{LETREC} \) are the classical ones for substituting a variable, building a closure and recursive definitions, respectively. As usual with environment-based semantics, the \(\text{env} \) operator installs a local environment in order to evaluate the nested term (rule \(\text{ENV} \)). Because the \(\text{frame} \) operator bounds activations, the local environment used to evaluate the nested term is empty (rule \(\text{FRAME} \)). Here, it is the role of the inner \(\text{env} \) operator to give the actual execution environment. Figure 2 gives only primitive reduction rules. Except \(\text{frame} \) and \(\text{env} \), which need special treatment of the environment, the \(\text{CONTEXT} \) rule generically reduces contexts according to the grammar of \(k \). Because it is constrained with values, it fixes a strict right-to-left call-by-value evaluation order.

The management of the \(\text{frame} \) operator is one originality of the semantics. It implements the life cycle of activations. This operator is instantiated when a closure is applied (rule \(\text{APPLY} \)), when a prompt is set (rule \(\text{SETPROMPT} \)) and when a continuation is reinstalled (rule \(\text{REINSTALL} \)). It collapses when a callee activation returns a value (rule \(\text{FRAMEVAL} \)). Paired with the \(\text{frame} \) operator, the \(\text{env} \) operator provides the local evaluation environment for the instantiated activation. For instance, applying a closure, e.g., the identity function, proceeds as follows:

\[
\mathcal{E} \vdash \langle \epsilon \rangle (\lambda x. x, \mathcal{E}_2) v \quad \text{APPLY} \quad \text{frame}(\epsilon, \lambda, \perp) \quad (\text{env}_{\langle x\mapsto v \rangle} \diamond \mathcal{E}_2 \cdot v) \\
\text{FRAMEVAL} \quad \text{cap}(\epsilon, \perp) \quad (\text{env}_{\langle x\mapsto v \rangle} \diamond \mathcal{E}_2 \cdot v) \\
\text{FRAMEVAL} \quad v \\
\]

Capturing a continuation is done in two steps. First, the evaluation environment at the \(\text{capture} \) operator is saved, mutating the operator into \(\text{cap} \) (rule \(\text{CAP1} \)). The second step is the standard continuation capturing. A \(\text{cap} \) operator using prompt \(p \) is only reduced within a \(\text{frame} \) tagged by \(p \). If such a \(\text{frame} \) exists, the context \(k \) between this \(\text{frame} \) and \(\text{cap} \) is reified as a continuation \(\text{cont}(k) \).

A \(\text{frame} \) is inserted in place of \(\text{cap} \) consistently with the constraints of our language. The closure argument \(\text{cap} \) of \(\text{cap} \) is applied to the resulting continuation (rule \(\text{CAP2} \)). In rule \(\text{CAP2} \), the enclosing prompt \(p \) is consumed. The system proceeds as follows:

\[
\mathcal{E}_1 \vdash \text{frame}(\epsilon_1, \mathcal{E}_1, \mathcal{E}_1, p) \quad (\text{env}_{\epsilon_2} \cdot (\text{cap}(\epsilon_2, \perp) \cdot v \text{up to } \langle \lambda x. e, \mathcal{E}_3 \rangle)) \\
\text{CAP2} \quad \text{frame}(\epsilon_1, \mathcal{E}_1, \mathcal{E}_1, p) \quad (\text{env}_{\epsilon_2} \cdot (\text{cap}(\epsilon_2, \perp) \cdot v \text{up to } \langle \lambda x. e, \mathcal{E}_3 \rangle)) \\
\text{frame}(\epsilon_1, \mathcal{E}_1, \perp) \quad (\text{env}_{\epsilon_2} \cdot (\text{cont}(k) \cdot \epsilon)) \\
with \ k = \epsilon_2 \cdot (\text{frame}(\epsilon_2, \perp) \cdot \epsilon) \\
\]
If no frame tagged by \(p \) encloses \(\text{cap} \ p \), a runtime error occurs:

\[
\text{CAPERR}: \ E \vdash k \nmid \text{frame}_{\text{\(\mathcal{L} \)}} \cdot \text{\(\text{cap} \ p \uparrow \)} \rightarrow \text{runtime error}
\]

The \(\text{mc} \) operator splits a continuation at the second innermost \(\text{frame} \), which delimits the top stack frame (rule \(\text{MCMATCH} \)). The rule \(\text{MCMATCH’} \) handles the case where the continuation contains a single stack frame. The tail subcontinuation is therefore the empty continuation. The rules for \(\text{mc} \) assume that the continuation is either empty (rule \(\text{MEMPTY} \)) or the innermost operator within the continuation is \(\text{frame} \) (rules \(\text{MCMATCH, MCMATCH’} \)). As shown in Fig. 1, this is enforced as a structural constraint on the language. It is trivial to show that the semantics produces only continuations that conform to this constraint.

4.3 Type System

The type system adheres to the usual design of the simply-typed \(\lambda \)-calculus. Types may be variable types, usual functional types, prompt types or continuation types. The type of a prompt is parameterized by the type of the value that flows through delimiters tagged by that prompt. The type of a continuation is parameterized by the type of the parameter and the type of the result of the continuation. The grammar for types is:

\[
\tau ::= \alpha \mid \tau \rightarrow \tau \mid \tau \text{ prompt} \mid \tau \text{ prompt}
\]

Fig. 3 gives the type system for the term language. The judgement \(E, P, \tau \vdash e : \tau \) asserts that given the typing environments \(E, P \) and \(\tau \) in an enclosing function whose return type is \(\tau \), the term \(e \) has type \(\tau \). \(E \) (resp. \(P \)) maps variables (resp. prompts) to types. \(L \) maps call-site labels to label types, which are triplets \((\tau_{\text{par}}, \tau_{\text{res}}, V)\) where \(\tau_{\text{par}} \) and \(\tau_{\text{res}} \) are types; and \(V \) is an environment that maps variables to types. The inference algorithm computes \(\tau_{\text{par}} \) and \(\tau_{\text{res}} \).

The \(\text{L} \) environment is intended for splitting continuations at activation boundaries. Figure 4 gives an intuition of its interpretation, based on the semantics of the \(\text{mc} \) operator. A \(\tau_1 \rightarrow \tau_2 \) continuation \(k \) is split into \(k_{\text{head}} (\tau_1 \rightarrow \tau_2) \) and \(k_{\text{tail}} (\tau_2 \rightarrow \tau_0) \). Composing the two subcontinuations results obviously in the original continuation. \(\tau_2 \) is the return type of the function that encloses \(l_1 \). This is the reason why the type judgment has \(\tau \) (the type of the enclosing function) in its left-hand side. \(\tau_1 \) is the return type of the call \(l_1 \). In order to type values that \(\text{mc} \) retrieves from the popped activation, e.g., the value of \(x_1 \), the type of \(l_1 \) contains the type environment at the call \(l_1 \). Consequently, the type of \(l_1 \) is:

- \(\tau_{\text{par}_{l_1}} = \tau_1 \) is the type of the value that flows at the boundary;
- \(\tau_{\text{res}_{l_1}} = \tau_2 \) is the return type of the enclosing function;
- \(V_{l_1} = [x_1 \rightarrow \tau_{\text{res}_{l_1}}] \) binds types to the activation variables.

In the example (Section 3), the types of labels are:

\[
\begin{align*}
L_1 & \rightarrow \{ \tau_{\text{par}} = \text{int}; \tau_{\text{res}} = \text{int}; V = \{ \text{fib} \rightarrow \text{int}; \text{n} \rightarrow \text{int} \} \\
L_2 & \rightarrow \{ \tau_{\text{par}} = \text{int}; \tau_{\text{res}} = \text{int}; V = \{ \text{fib} \rightarrow \text{int}; \text{n} \rightarrow \text{int}; \text{fns} \rightarrow \text{int} \} \\
L_{\text{root}} & \rightarrow \{ \tau_{\text{par}} = \text{int}; \tau_{\text{res}} = V; V = \{ \text{fib} \rightarrow \text{int}; \text{n} \rightarrow \text{int} \} \}
\end{align*}
\]

As usual, when typing an application (\(\text{APPLY} \)), the two subexpressions are typed using the same hypotheses. The first subexpression must be a function accepting values of the type of the second
subexpression. The originality of our rule concerning application is the calculus of the type of the label. This type captures the type of the enclosing function \(\tau_1 \), the current environment \(E \) and the type \(\tau_3 \) that flows at the label, i.e., the type of the result.

Some constructs introduce frames and therefore modify the type of the enclosing function of a subexpression. For example, the type of the enclosing function of \(e_2 \) in \(\text{setprompt} \), \(e_1, e_2 \) is \(\tau_2 \) because the setprompt operator enclose \(e_2 \) in a frame whose prompt is of type \(\tau_2 \) (see \text{setprompt} in Figures 2 and 3).

Typing a continuation expression (CONT) requires a specific type system. It is mutually recursive with the type system for terms. The judgment \(E, P, L, \tau \vdash k : \tau_2 \vdash_\star \tau_3 \) is similar to the one for terms. Most of the rules derive from the type system for terms. For instance, the following rule is immediate from rule \text{APPLY} (Fig. 3):

\[
E, P, L, \tau_1 \vdash k : \tau_2 \overset{\kappa}{\rightarrow} \tau_3 \quad \text{APPLY.} \quad L(l) = \{\tau_{p*} = \tau_3, \tau_{r*} = \tau_1, V = E\} \quad E, P, L, \tau_1 \vdash \kappa \langle l \rangle \overset{\kappa}{\rightarrow} \tau_4
\]

We therefore omit the rules, except the following additional one for empty continuations:

\[
\text{HOLE.} \quad E, P, L, \tau_1 \vdash \kappa \vdash_\star \tau_2 \overset{\kappa}{\rightarrow} \tau_2
\]

4.4 Soundness

We consider soundness as the conjunction of type preservation and progress, stated as follows.

\textbf{Lemma 1} \textbf{(Type preservation).} \textit{Given a term \(e_1 \) and an evaluation environment \(E \) such that \(T(E), P, L, \tau_1 \vdash e_1 : \tau_2 \). If \(e_2 \) reduces to \(e_3 \) in \(E \), then there exists an extension \(P' \) of \(P \) (\(\forall \tau_0 \) and \(\tau_p, P(p) = \tau_0 \) \(\Rightarrow P'(p) = \tau_p \)) such that in \(P' \), \(e_2 \) has the same type as \(e_1 \), i.e., \(T(E), P', L, \tau_1 \vdash e_2 : \tau_2 \).}

The existential quantification of \(P' \) is the technique of Gunter et al. (1995)\(^5\) in order to handle the \text{newprompt} case. Assume \(T(E), P, L, \tau_1 \vdash \text{newprompt} : \tau_2 \). \text{newprompt} reduces to

\[
\text{HOLE.} \quad E, P, L, \tau_1 \vdash \kappa \vdash_\star \tau_2 \overset{\kappa}{\rightarrow} \tau_2
\]

\(^5\) Gunter et al. (1995) note \(e_1 / P_1 \subset e_2 / P_2 \), where \(P_1 \) and \(P_2 \) are sets of prompts. The \(\subset \) relation denotes that given a typing environment \(P_1 \), there exists an extension over \(P_2 \) such that \(e_1 \) and \(e_2 \) have the same
a fresh prompt p in E. p is not in the domain of P. Hence choosing
P' = (p → τ2) :: P trivially ensures type preservation. In the other cases, we systematically choose P' = P.

Unlike usual proofs, we do not use a lemma showing that extending the environment would preserve typing. Instead, we use a context invariance approach. While Pierce (2009); Pierce et al. (2010) do so for pedagogical reasons, we have to because the standard weakening lemma is false due to the typing of call-site. Indeed, in L, the V field of the type associated with the label stores the typing environment (rules APPLY, FRAME, FRAME', CAPTURE, CAP, REINSTATE and SETPROMPT). Hence adding new variables to the environment, even if they do not occur free, may change label types in L. Intuitively, it would change the structure and content of stack frames, hence their types. Nevertheless, we must prove that the type of a value is independent of the context.

LEMMA 2 (Typing values). Given a value v, the type of v is independent of any context: E, P, L, τ ⊢ v : τe, implies E', P, L, τ' ⊢ v : τe for any E' and τ'.

This lemma is trivial following the CLOSURE, PROMPT and CONT typing rules. Type preservation for the SUBST reduction rule is therefore immediate. Restricting evaluation environments to values is a pragmatic solution to avoid any variable capture issue upon substitution.

In order to prove each of the other cases, we proceed in two stages. We first show that in order to type subterms, the rules build exactly the same environment before and after reduction. Hence reduction preserves the type of subterms. Then we use these results as premises of the typing rules for the reduced term.

Let’s sketch for instance the case of the APPLY reduction rule. Before reduction, assuming the parameter h has type τe, the body e of the closure is typed in the (x → τe) :: T(E) environment and the return type of the enclosing function is τe, the type of e (CLOSURE typing rule). After reduction, it is typed in the environment T ((x → e) :: E) according to the FRAME and ENV typing rules. From the definition of T, and invoking the lemma on typing values, the two environments are equal. Hence the type of subterm e is preserved. Using the ENV and FRAME typing rules, we conclude that the type is the same before and after reduction. Last we check that the APPLY typing rule (before reduction) and the FRAME typing rule (after reduction) compute the same label type for l. Hence the APPLY reduction rule preserves types.

Traversing the evaluation context to the redex, evaluation rules CONTEXT, FRAME and ENV compute at each step a new evaluation environment for each subcontext. Typing rules do the same with typing environments. Along the path to the redex, we observe that the rules recursively ensure that the evaluation and typing environments are equal up to T. This completes the proof.

LEMMA 3 (Progress). Given e1 such that [] : E, P, L, τ ⊢ e1 : τ. Then e1 is either a value; or e1 reduces to the above-mentioned runtime error; or e1 reduces to some term e2 in the empty evaluation environment.

In order to prove progress, we inductively analyze the typing rules. This proof is classical.

The proofs have been mechanized using the Coq theorem prover and the library of Aydemir et al. (2008), which together help to do machine-verified formal proofs on language semantics and type systems. For commodity reason, our Coq scripts differ in the following from the system of this paper. We explode the MCMATCH, type in their respective prompt environments. Using our P and P' as typing environments (respectively over P1 and P2), the ⊑ relation is (part of) what our type preservation lemma states.

MCMATCH', CAP1/CAP2 and REINSTATE reduction rules into detailed small steps. For example, we instantiate the CAP2 for each operator in the language k of evaluation contexts. For this purpose, we introduce additional dummy operators for in-progress mc and reinstate. In addition, the implementation of the mc operator has to look for the innermost (frame) operator of the continuation operand. Instead, it is much more convenient to reverse the nesting of operators in the continuation. At the cost of yet another dummy operator and of additional rules, we therefore represent continuations inside out. We use the technique of Gunter et al. (1995) to implement the freshness of instantiated prompts. Last, we move the additional constraint of the grammar to the type system.

4.5 Variation Points

One of the constraints that guides our work is to leave unchanged the application compiler. The rationale behind this constraint is that it makes it easier to integrate the ReCaml approach into existing compilers. To fulfill this constraint, we need to accommodate the choices done in legacy compilers. We identify several variation points that shall impact dynamic updates. In the following, we present how these points integrate our formal system. We focus on the specificities of our language. Hence we do not discuss variations, e.g., of the continuation framework, which have already been studied by Dybvik et al. (2007).

Usually, the implementation of execution states is not of great interest in the design of a language. This issue regards the compiler. But ReCaml focuses on modeling state manipulations, we have to take into consideration the implementation. For instance, label types depend on the context, and therefore on captured environments when building closures.

Regarding variables, we implement the following rules in the semantics Figure 2 and type system Figure 3:

- When a closure is built, it captures all the variables in the scope of which the λ operator lies, regardless these variables occur free in the body of the function.
- The parameter of a function is systematically added to the evaluation environment, regardless it occurs free in the body of the function. We do the same for let rec.

This is a coarse behavior. Indeed, many compilers optimize closures in order to capture only the variables that occur free. In order to model this behavior in ReCaml, we can replace the CLOSE reduction rule with the following one:

\[
\text{Restrict-Close: } E ⊢ λ x . e → (λ x . e, \text{restrict}_e (E))
\]

where \(\text{restrict}_e\) computes the restriction of the environment, e.g., \([x \mapsto E (x) \mid x \in \text{fv} (e)]\) to capture only the variables that occur
free in the body. We have to change the type system accordingly, replacing Abs with:

\[
\text{Restrict-Abs}: \frac{(x \mapsto \tau_2) :: \text{restrict}_e(E), P, L, \tau_3 \vdash e : \tau_3}{E, P, L, \tau_1 \vdash \lambda x.e : \tau_2 \rightarrow \tau_3}
\]

Type soundness obviously still holds.

This implementation does the restriction when the closure is built. This is what happens in many compilers. Instead, we could have delayed the restriction until application, hence inserting \(\text{restrict}\) in the \(\text{APPLY}\) reduction rule and in the \(\text{CLOSURE}\) and \(\text{ABS}\) typing rules. As of ReCaml, both implementations have the same behavior. We can also restrict parameters and let rec bound variables using the same technique.

Accurate modelling of the variables is important as it impacts type labels and the amount of values the \(\text{mc}\) operator is able to retrieve from continuations. Other aspects, such as tail-call optimization and function inlining, impact when new stack frames are created. Consequently, they (indirectly) impact the outcome of the \(\text{mc}\) operator as well.

Tail-call optimization consists in destroying the calling activation at the time of a call when it occurs at the return position. We can implement this optimization thanks to additional rules, e.g., duplicating the \(\text{APPLY}\) reduction rule for the specific case, such that it does not insert any new frame operator. Possibly, there are also several env constructs that must collapse with the stack frame.

\[
\text{Tail-APPLY}: \frac{E \vdash \text{frame} \llbracket \lambda x.e, E_2 \rrbracket v}{\rightarrow \text{frame} \llbracket \lambda x.e, E_2 \rrbracket \text{env}(x \mapsto v): E, e}
\]

Notice that the frame in the right-hand side is the exact copy of the left-hand side one. Indeed, the properties of the enclosing stack frame (return address, local environment) are unaffected.

In order to handle inlined calls, the idea is coarsely the same, without any constraint on the context of the call. Nevertheless, there are additional difficulties: call-sites within the inlined function are replicated; the environment of the caller and callee environments shall merge. We do not run into deeper details in this paper, leaving the issues to further contributions.

5. Compiler Implementation

As a proof of concept, we have developed a prototype compiler of ReCaml, which targets a modified ZAM2 (Leroy 1990) virtual machine. The machine has a single stack for locals, function arguments, register backup and return addresses. In addition to the stack pointer, the machine has 4 registers:

- the program counter points at the next instruction to execute;
- the environment points at the values stored in the closure;
- the argument counter tells how many pending arguments have been pushed, as the machine implements the push / enter uncurrying technique (Marlow and Peyton-Jones 2006);
- the accumulator holds an intermediate result.

As shown in Figure 5, stack frames are delimited by blocks that save the return program counter, the environment and the argument counter registers. Pending arguments, if any (possibly 0), are pushed immediately above this block. The virtual machine provides a specific instruction for tail calls. Like our T\text{-APPLY} rule (Section 4.5), this instruction pops the local environment; it pushes a new one; and it branches to the body of the callee. The push / enter uncurrying technique let the caller of a function push all the available arguments onto the stack. The callee is responsible of popping only those it can immediately handle (or to build a partial-application closure if there are not enough parameters on the stack). While there are some pending arguments on the stack, the return instruction assumes that the return value is a closure, and makes a call. When all the pending arguments are consumed, the instruction returns back to the caller.

We extend the virtual machine to support continuations. A continuation is implemented as a slice of the machine stack with a copy of the argument counter register. Other registers (program counters, closure environment and accumulator) are saved within the slice of the stack by the generated code as required by the ZAM2. A prompt is a pointer to a position in the stack. The capture operator copies to the heap the slice between the prompt and the top of the stack; it saves the argument counter; and it makes a call to the body function. The \(\text{reinstate}\) operator copies from the heap back to the stack; it restores the argument counter; and it performs a return instruction with the argument. In addition to retrieving the stack pointer, setting a prompt makes a call such that the lower bound of a continuation is always aligned with a stack frame boundary, consistently with our semantics Figure 2.

Based on this implementation of continuations, the \(\text{mc}\) operator first checks whether the continuation is empty. If not, it uses the recorded number of pending arguments in order to skip data down to the first return address. The retrieved address is compared with the operand of the \(\text{mc}\) operator. Static knowledge gives the structure and size of the backing stack frame at the top of the continuation. This information allows to split the continuation at the stack frame boundary and retrieve values from the popped stack frame.

Tail call optimization does not need any special treatment. Indeed, activation annotations of tail calls simply never match as there is no corresponding location in the code.

In order to handle currying, the generated code uses the recorded number of pending arguments in order to find the location of the return address. Pending arguments are simply skipped, as if the callee was \(n\)-expanded according to the call. Following the same principle, arguments between the two subcontinuations belong to the tail. Therefore, the number of pending arguments has to be adjusted in subcontinuations like in Figure 6. In the head subcontinuation, the number of pending arguments in the stack frame is set to 0, as there is no pending argument below the stack frame. In the tail subcontinuation, the number of pending arguments on top of the stack comes from the popped stack frame (1 in the example).

As Marlow and Peyton-Jones (2006) have previously noticed, the push / enter uncurrying technique is not the most favorable setup in order to walk the stack, which is what our \(\text{mc}\) operator
1 prompt p →
2 (* Initial version *)
3 let rec fib n =
4 if n<2 then n
5 else (let fn1 = <L1>fib (n-1) in
6 let fn2 = <L2>fib (n-2) in
7 fn1+fn2) in
8 (* Previous implementation *)
9
10 (* New version *)
11 let rec fib_num n =
12 if n<2 then num (n
13 else (let fn1 = fib_num (n-1) in
14 let fn2 = fib_num (n-2) in
15 fn1*fn2) in
16 (* Previous implementation *)
17 (* Update from fixed-size to arbitrary precision integers *)
18 (* precision integer *)
19 (* return fib_new n else r is correct *)
20 (* if n is after 44, r has overflowed so *)
21 (* return fib_new n else r is correct *)
22 let ifnotover n r =
23 if n > 44 then fib_num n else r in
24
25 (* call graph: *)
26 (* ffb : L1 → ffb *)
27 (* ffb : L2 → ffb *)
28 (* [root]: Lroot → ffb *)
29 (→ : Lupdt → update *)
30 (→ to the fib node in the call graph: *)
31 let rec match_fib_callers r k =
32 match_cont k with
33 (→ : L1: r is ffb (n-1) *)
34 (→ : Lupdt as hd :: tl) →
35 (→ check whether r has overflowed *)
36 let fn1 = ifnotover (n-1) r in
37 let fn2 = fib_num (n-2) in
38 (* back to the caller: ffb *)
39 match_fib_callers (fn1*/fn2) tl
40 (* L2: r is ffb (n-2) & fn1 is ffb (n-1)*)
41 (→ <L2>: fn1 as hd :: tl →
42 (* check whether fn1 has overflowed *)
43 let fnn1 = ifnotover (n-1)
44 (num_of_int fn1) in
45 (* check whether r has overflowed *)
46 let fnn2 = ifnotover (n-2) r in
47 (→ as hd :: tl →
48 match_fib_callers (nfn1*/nfn2) tl
49 (* Lroot: r is the result of the program *)
50 (→ as hd :: tl →
51 (→ (* error *) (0/-1/))
52 in
53
54 (* compensation ffb → fib_num *)
55 let compensate r k =
56 match_cont k with
57 (→ : Lupdt as hd :: tl) →
58 (→ as k in
59 (→ : compensate r k)
60 set_updateRoutine
61 (fun r →
62 (→ p as k in
63 (→ : compensate r k)
64 num_of_int (<Lroot>fib 12345)
65

Figure 7. Real ReCaml code: from fixed-size to arbitrary precision integers.

achieves. More precisely, we remark that problems arise only when push / enter is combined with tail call optimization. Assume the following code:

let f2 = la. (capture p,up to p with v) in
let f1 = la. x (fib_num x) in
let x = fib_num x in

As uncurrying is done, l1 and l2 (resp. l3 and l4) refer to the same code location. They differ in the number of pending arguments above the return address, respectively 0 and 1. Due to tail call optimization, l1 and l2 (resp. l3 and l4) cannot be distinguished. Given the above description of the compiler, the captured continuation is split like in Figure 6. If the tail subcontinuation is subsequently compared to l1, it matches as there is 1 pending argument. Our formal system assumes that the type of the produced head subcontinuation is (τ_a → τ_a) → τ. However, its effective (runtime) type is (τ_a → τ_a) → τ. The problem arises because, due to tail call optimization, there is no means at this point to know where the pending parameter comes from, i.e., to distinguish between l1 and l2.

Since our formal system does not implement uncurrying or tail-call optimization, it does not raises the problem, consistently with our type soundness result. Indeed, our formal system produces the following continuation, which is different from Figure 6:

let x = frame (fib_num x) in e

Notice that this continuation is actually the same as the one an eval / apply compiler would produce: as the arity of the f2 closure is 1, l4 is not applied and l3 is not a tail call. In order to solve this problem in our prototype, we simply prevent uncurrying tail calls. Alternatively, we could have implemented the push / enter technique in our formal system. For instance, we can extend our frame operator with pending arguments. Adding tail call optimization to this modified system breaks type preservation for call-site labels experimental results. Hence we confirm what Marlow and Peyton-Jones (2006) say with stronger arguments: push / enter with tail-call optimization and stack-walking is not type-sound. Nevertheless, notice that the updated program actually walk the stack. We feel that one of the weaknesses of our current approach is that our mc operator handles one stack frame independently of any context. We leave the issue for future works.

We trigger reconfigurations using an interrupt-like approach. Because we want the alignment on stack frame boundaries, as a first implementation, we check for the trigger only when the execution control returns to a caller. This restriction is equivalent to explicit update points. The application developer can cause additional points thanks to dummy calls, each of which incurs a return.

6. Detailed Example

Figure 7 contains the full source code that updates fib from int
to num. The set_updateRoutine primitive (line 66) registers the function that is called when the virtual machine receives an update signal. In addition we use the following syntactic sugar:

line 1 prompt p → e
line 68 capture (Lupdt) upto p as k in e
The captured continuation corresponds to a path in the static call graph of the program (Figure 8) going from the root of execution to the compensation. The compensation is implemented by the compensate function (line 55). As represented by the dashed Lupdt edge in the call graph, the top stack frame is an activation of the anonymous function (line 67) registered by the set_update_routine primitive. It comes from the update infrastructure. Hence line 57, match_cont pops this useless stack frame before entering the effective compensation. In a more realistic application, we would have to find out which function the update is called from. In the example, as it can only be the fib function the compensation calls the match_fib_callers function (line 31) to handle the calls to fib according to the strategy described in Section 2.2:

L1 This case has been described in Section 3.

L2 The compensation function receives the result of fib (n−2). Furthermore, the match_cont gets the value of fib (n−1) from the call stack frame naming it fn1. Using the ifnotover function, we ensure that those intermediate results are correct (lines 43 to 46). Notice that if the result has overflowed the function ifnotover recomputes the corresponding Fibonacci number using its new version (line 23). To complete the fib function, we compute the sum of these two values (line 48). Last, we recursively compensate the tail of the continuation (line 48) as if the popped stack frame had returned the newly computed value.

Lroot At this point, r is fib 12345 and the compensation has completed. Hence we simply reinitialize the tail continuation (line 50). Indeed, the conversion to num has already been done as part of the update.

In this function, we assume that (1) the evaluation order is known, i.e., that fib (n−1) is evaluated before fib (n−2); and (2) intermediate results have names. To make this explicit, we use let. Instead, intermediate results could have had system-generated or a posteriori names. The evaluation order shall be inferred by the compensation.

Because we have not integrated any exception handling in our prototype, a negative number is returned (lines 51 and 60) to notify errors. Runtime errors can occur if the continuation does not match, when the update developer forgets to handle some call-sites.

7. Discussions and Conclusions

In this paper, we have presented two dynamic software updates that many current systems are unable to implement. Even if we consider a toy example, we have argued that the technique is still relevant in realistic applications. Despite the apparent simplicity of our use case, the two updates show high complexity both in design and in implementation. These examples contrast with the usual simple updates of complex applications in related works. In our work, we accept that updates might be difficult to design and implement. We have first focused in this paper on being able to achieve these updates. Still, we acknowledge that our current proposal does not provide a suitable abstraction level yet. In the context of a similar approach, Makris and Bazzi (2009) have for instance proposed automatic generators for some of the updates, which could be used as building blocks for a higher level update language.

The ReCaml language is the cornerstone of our work. It provides an operator (match_cont or mc) in order to introspect and walk continuations. Our examples have indeed emphasized how this operation helps in updating. We have formalized its environment-based semantics and defined a type system whose soundness is proved mechanically. Even if we have not discussed it in this paper, we have also developed a sound substitution-based semantics. Our prototype compiler of ReCaml is able to execute all the updates of Section 2. The examples of this article, the compiler and its proof (the coq scripts) can be found at http://perso.telecom-bretagne.eu/tabiendagnet/recaml.

In this paper, we have built ReCaml on top of a simply typed λ-calculus for simplicity reasons. It is well known that polymorphism with continuations needs restrictions in order to ensure soundness (Tofte 1990; Leroy 1993; Wright 1993; Asai and Kameyama 2007). As the mc operator splits continuations at activation boundaries, any type variable involved in an application might cause problems if it is generalized. Call-site types have to reflect polymorphism. The use of existential type variables seems appealing when the MC rule instantiates types from this information. Using the operand type might help remove existential variables and bring additional knowledge.

We have adopted a strict functional language and the ZAM2 virtual machine (Leroy 1990). The ZAM2 machine has allowed us quick and easy prototyping. Strict evaluation has made it easier to understand and therefore to manipulate the execution state. Unlike similar approaches (Hofmeister and Purtlito 1993; Makris and Bazzi 2009), ReCaml does not require any specific code generation. Instead, we have accommodated legacy compilers, relying on low level details of the underlying machine. Using continuations is not a necessity. Yet it provides sound formal foundations for our work. As works that provide production level JVM and CLR with continuations (Pettyjohn et al. 2005; Rompf et al. 2009) use specific code generation, targeting such machines might not be in the scope of ReCaml. On the contrary, our information attached to activation boundary annotations is actually close to usual debug information. Therefore the debugging infrastructures of JVM and CLR could be used to implement ReCaml for these platforms. While these infrastructures provide mechanisms to manipulate states, ReCaml would bring static typing. We are therefore confident that our idea fits well with several languages and machines.

Acknowledgments

We would like to kindly thank Kristis Makris and Ralph Matthes for their comments. The work presented in this paper has been partly funded by the French ministry of research through the SPoCIFY consortium (ANR 06 TLOG 27).

References

Benjamin Pierce. Lambda, the ultimate TA: Using a proof assistant to teach programming language foundations, September 2009. Keynote address at International Conference on Functional Programming.

