Linear–quadratic detectors for spectrum sensing

Ezio Biglieri
Marco Lops

Abstract: Spectrum sensing for cognitive-radio applications may use a matched-filter detector (in the presence of full knowledge of the signal that may be transmitted by the primary user) or an energy detector (when that knowledge is missing). An intermediate situation occurs when the primary signal is imperfectly known, in which case we advocate the use of a linear–quadratic detector. We show how this detector can be designed by maximizing its deflection, and, using moment-bound theory, we examine its robustness to the variations of the actual probability distribution of the inaccurately known primary signal.

Index Terms: Cognitive Radio, Spectrum sensing, Linear-quadratic detectors.

I. Introduction and motivation of the work

Spectrum sensing, one of the major functions of interweaved cognitive radio [4], detects and classifies spectrum holes, i.e., regions of the spectrum space that can be opportunistically used by secondary users. The signal observed by the spectrum sensor has the vector form

\[y = x + n \]

(1)

where \(x \) is the primary-user signal, \(n \) the noise, and \(\epsilon \) takes on value 1 if a primary signal is included in the observation, and 0 otherwise. The vectors in (1) have \(N \) real components, corresponding to discrete signal samples (in our context, \(N \) is also called sensing time\(^{\text{r}} \)).

A spectrum sensor decides between the two hypotheses \(H_0 : \epsilon = 0 \) and \(H_1 : \epsilon = 1 \). Decision is made by comparing the statistic \(Y \), a suitable function of the observed signal, against a threshold \(\theta \). The two probabilities of interest here are the false-alarm and detection probabilities, whose definitions are

\[P_{\text{FA}} \triangleq \Pr \{ Y > \theta \mid H_0 \} \]

(2)

\[P_{\text{D}} \triangleq \Pr \{ Y > \theta \mid H_1 \} \]

(3)

The choice of the statistic \(Y \) depends on how much information about \(x \) and \(n \) is available to the detector, and on the tolerable complexity of the calculations entailed in the decision process. Two common choices of \(Y \) refer to situations in which \(x \) has a structure which is perfectly known (coherent, or matched-filter linear detector) or totally unknown (energy quadratic detector) [4, Ch. 4]. The situation we examine in this paper is intermediate between those two: here, assuming that \(x \) is incompletely known, we use a detector which has the matched-filter and the energy one as special cases (the linear–quadratic [LQ] detector). Its performance approaches that of the linear detector when the uncertainty on the primary signal is small, and that of the quadratic detector in the opposite case. To illustrate our findings, we use a simple model for the uncertainty, assuming that \(x \) is the sum of a perfectly known signal \(s \) and a disturbance \(i \) whose probability distribution is only known within an “uncertainty set,” which includes distributions whose first moments are known, reflecting a common approach to partial statistical modeling through moments. (This model can be viewed as a variation on the theme of the one proposed in [23], in which availability of side information on the minimum primary-signal strength is also assumed. See also [21].) A way of describing the philosophy underlying our approach is by observing the difference between decision making under risk, which occurs when a perfect statistical model of the observation is available and decision making under ignorance, which occurs when there is uncertainty on the model to be used.

To choose the detector parameters under the assumed uncertainty of the model (which does not allow the “natural” choice of using for \(Y \) the likelihood ratio) we maximize a generalized signal-to-noise ratio, called deflection. Next, we examine how this detector performs under several scenarios, and discuss its robustness to the variation of the actual probability distribution of the unknown signal. The results described in this paper are related to the “robust decision design” problem (see, e.g., [17] and references therein), which we approach by assuming a specific structure for the receiver and examining its robustness to probability distributions differing from the Gaussian one. In fact, when the distribution of signal and/or noise is unknown, likelihood ratio cannot be used for optimum detection. If this is the case, it seems a reasonable solution to assume a fixed form for the detection statistic and optimize its performance. The rationale behind this choice will be discussed in the following.

Robustness is evaluated here by deriving sharp upper and lower bounds to the performance of the detector as the probability distribution of \(i \) ranges through the uncertainty set. Among other information, robustness analysis provides the designer with a tool yielding the conditions under which unsatisfactory performance is due to model uncertainty rather than to noise effects (other examples of this situation are examined, in different contexts, in [10, 20]).

II. Linear and linear–quadratic sensing

A general expansion of the functional which maps the observations \(y_1, \ldots, y_N \) to the statistic \(Y \) can be obtained in the form
of a Volterra expansion [3, 16]:

\[Y = S(y_1, y_2, \ldots, y_N) = w^{(0)} + \sum_i w_i^{(1)} y_i + \sum_i \sum_j w_{ij}^{(2)} y_i y_j + \cdots \]

One may choose the “Volterra coefficients” \(w^{(0)}, w_i^{(1)}, \) etc., which maximize a suitable cost function, as the deflection to be described below. The use of a Volterra expansion typically allows one to express the optimum statistic in terms of the moments of the random variables \(y_1, \ldots, y_N \). In particular, one may choose the order of the Volterra expansion (4) so that only the known moments of \(y_1, \ldots, y_N \) are involved. Now, it seldom occurs that many moments are available with sufficient accuracy. Thus, a reasonable approach to this situation of uncertainty would be to assume a given structure for the moments (typically, a Gaussian structure in which all moments can be computed from first- and second-order moments), and evaluate the performance when the observed samples are actually not Gaussian. This is the approach we take in the following, where for simplicity we focus our attention on a second-order expansion.

Coherent sensing is the most natural spectrum sensing technique under the assumption that the primary signal \(x \) is perfectly known to the detector. The corresponding decision statistic \(Y \) is built as a linear function of the observed vector \(y \):

\[Y_L = w^T R_n^{-1} y \] \hspace{1cm} (5)

Assume instead that no prior knowledge of \(x \) is available. In this case hypothesis testing becomes a composite problem, and a computable decision statistic can be obtained through the Generalized Likelihood-Ratio Test (GLRT), viz.,

\[Y_{GLRT} = \max_{x \in \mathbb{R}^N} \frac{f_y|y \mid \mathcal{H}_1, x}{f_y|y \mid \mathcal{H}_0} = \max_{x \in \mathbb{R}^N} \frac{f_n(y - x)}{f_n(y)} \]

with \(f \) denoting probability density functions. This leads to the quadratic test statistic

\[Y_Q = y^T R_n^{-1} y \] \hspace{1cm} (6)

In particular, when the primary signal structure is totally unknown and \(n \) is white, one may use as \(Y \) the measure of the energy contents of the observed signal, which yields

\[Y_Q = ||y||^2 \] \hspace{1cm} (7)

The more general statistic we advocate here, where only partial knowledge of \(x \) is assumed, encompasses (5) and (7) as special cases, and consists of a linear–quadratic function \(Y_{LQ} \) of \(y \). This may be thought of as obtained by truncating to the second-order term the Volterra-series expansion of a generic nonlinear decision functional of \(y \). It has the form

\[Y_{LQ} = c + w^T y + y^T W y \] \hspace{1cm} (8)

where \(c \) is a constant (whose value is irrelevant to the detector performance), and the superscript \(^T \) denotes transposition. The “optimum” values \(w_o \) and \(W_o \) of the two relevant parameters in (8), the vector \(w \) and the matrix \(W \), may be chosen as those maximizing a generalized signal-to-noise ratio known as deflection

\[D \triangleq \frac{\mathbb{E}(y \mid \mathcal{H}_1) - \mathbb{E}(y \mid \mathcal{H}_0))^2}{\mathbb{V}(y \mid \mathcal{H}_0)} \] \hspace{1cm} (9)

where \(\mathbb{E} \) denotes expectation, and \(\mathbb{V} \) denotes variance.

The solution to this problem is illustrated in [15] and, for the complex case, in [5]. It requires knowledge of the fourth-order statistics of the random variables involved, which we do not assume to be available for \(x \) (more generally, one could use a truncated version of a Volterra series including terms beyond second-order, which would need exact knowledge of higher-order moments for the optimization of its parameters [16]). We search instead for a solution assuming only knowledge of second-order statistics. This can be obtained by assuming a Gaussian distribution for \(x \), or, more generally, a “Gaussian-like” distribution, characterized by zero third-order moments and a relation between second-order and fourth-order moments typical of Gaussian distributions (see [15] for details. Ref. [8] shows an example of a Gaussian-like, but non-Gaussian, probability density function. Observe also that having null third-order moments uncouples the equations yielding the optimum linear and quadratic parts, so that the optimum linear–quadratic detector is obtained by using independently calculated optimal linear and quadratic systems [15]). The resulting solution has a closed form. Specifically, assuming that

\[x \sim N(s, R_s) \] \hspace{1cm} (10)

which corresponds to having \(x = s + i \), with \(s \) a known deterministic signal and \(i \) a Gaussian disturbance, we have [15, 19]

\[w_o = R_n^{-1} s \] \hspace{1cm} (11)

\[W_o = R_n^{-1} R_s R_n^{-1} \] \hspace{1cm} (12)

and hence

\[Y_{LQ} = s^T R_n^{-1} y + y^T R_n^{-1} R_s R_n^{-1} y \] \hspace{1cm} (13)

Denoting by 0 and 0 the null vector and the null matrix, respectively, we can see from (11)–(13) that

1 Gardner [8] discusses the concept of structurally constrained receivers, which are based on a combination of a simple ad hoc procedure with an optimization procedure, and yield the best performance for some classes of problems.

2 Also called “detection index” [6] or “output signal-to-noise ratio” [11, p. 53]. The most sensible optimization criterion would be to optimize the receiver operating characteristics, which appears to be a formidable task. The rationale behind the choice of the deflection as a cost function for the optimization of the LQ detector offering both tractability and practical utility is discussed in [14] (see also [1]). Other possible second-order cost functions related to deflection are categorized in [9, 19]. Baker [2] derives relations between the optimum deflection criterion test statistics and the log-likelihood ratio. In [1], the deflection is optimized for a purely quadratic statistic, viz., \(Y_Q = y^T W y \), with results consistent with those presented here.

...
(a) \(w_n \) corresponds to the whitened matched filter.
(b) If \(i = 0 \) (corresponding to a deterministic primary signal), then \(R_i = O \), and hence the optimum statistic \(Y \) is linear.
(c) If \(s = 0 \) (corresponding to a zero-mean Gaussian primary signal), then the optimum statistic is quadratic, which yields the energy-detector statistic \(Y_Q \) when \(n \) and \(i \) are white.
(d) The “full” linear–quadratic statistic is optimum only if \(s \neq 0 \) and \(R_i \neq O \).

Defining the vector \(u \triangleq R_n^{-1}y \), completing the square in (13), and removing an irrelevant additive constant, we may write the LQ statistic in the new form

\[
Y_{LQ} = \left\| \frac{1}{2} R_n^{-1/2} s + R_i^{1/2} R_n^{-1} y \right\|^2
\]

(14)

In the special case of white \(n \) and \(i \), viz., \(R_n = \sigma_n^2 I \) and \(R_i = \sigma_i^2 I \) with \(\sigma_i^2 > 0 \), the LQ statistic assumes the exceedingly simple form

\[
Y_{LQ} = \| \gamma^2 s + y \|^2
\]

(15)

where

\[
\gamma^2 \triangleq \frac{\sigma_n^2}{2\sigma_i^2}.
\]

(16)

This parameter quantifies in a way the amount of uncertainty on the distribution of \(i \) by comparing the variance of the noise against that of \(i \): large values of \(\gamma^2 \) indicate small uncertainty, and hence suggest the use of a coherent detector, while a small \(\gamma^2 \) would naturally lead to the energy detector, as immediately reflected by the structure of (13). We may also observe the expression of the resulting maximum deflection, which yields

\[
D_{\text{max}} = \frac{\| x \|^2}{\sigma_n^2} \frac{1}{\gamma^2} \frac{\| x \|^2}{\sigma_i^2} + \frac{\| x \|^2}{\sigma_i^2}
\]

(17)

\[
= \left(1 + \frac{1}{2\gamma^2} \right) \frac{\| x \|^2}{\sigma_n^2}
\]

(18)

and shows the two separate contributions of the linear and quadratic part of the detector.

Since the derivation of (11)-(12) was made under the assumption of Gaussian-like distribution for \(i \), which might not be valid in practice, the LQ-detector must be scrutinized to examine its behavior with distributions differing from the one assumed. Thus, after examining its “optimum” behavior, we shall proceed to derive upper and lower bounds to its performance when the distribution of \(i \) ranges in an uncertainty set, as defined by the partial knowledge of the distribution itself.

III. Performance of LQ detector with Gaussian-like distribution

From now on, and purely for simplicity’s sake, we pursue our analysis referring only to the case corresponding to (15). The performance of the decision statistic is now evaluated by computing

\[
P_{\text{FA-LQ}} = P \left[\| \gamma^2 s + i + n \|^2 > \theta \right]
\]

(19)

\[
= Q_{N/2} \left(\sqrt{\lambda_0}, \sqrt{\theta/\sigma_n^2} \right)
\]

(20)

\[
P_{\text{D-LQ}} = P \left[\| (1 + \gamma^2) s + i + n \|^2 > \theta \right]
\]

(21)

\[
= Q_{N/2} \left(\sqrt{\lambda_1}, \sqrt{\theta/\sigma_n^2} \right)
\]

(22)

where \(Q(\cdot, \cdot) \) denotes the generalized Marcum Q-function

\[
Q_m(a, b) \triangleq \frac{1}{\sqrt{\pi m}} \int_b^\infty \exp \left(-x^2 + \frac{a^2}{2} \right) I_{m-1}(ax) \, dx
\]

(23)

\(I_n(\cdot) \) is the modified Bessel function of the first kind and order \(n \) and

\[
\lambda_0 \triangleq \frac{\gamma^4}{\sigma_n^2} \| s \|^2
\]

(24a)

\[
\lambda_1 \triangleq \frac{(1 + \gamma^2)^2}{\sigma_n^2 + \sigma_i^2} \| s \|^2
\]

(24b)

We compare the performance of the LQ detector to that of the linear detector, which has

\[
P_{\text{FA-L}} = P \left[s^T n > \theta \right] = Q \left(\frac{\theta}{\sqrt{\| s \|^2/\sigma_n^2}} \right)
\]

(25)

\[
P_{\text{D-L}} = P \left[s^T (s + i + n) > \theta \right] = Q \left(\frac{\theta - \| s \|^2}{\sqrt{\| s \|^2/\sigma_n^2 + \sigma_i^2}} \right)
\]

(26)

where \(Q(\cdot) \) denotes the Gaussian tail function.

Figs. 1-2 illustrate the improvement over the linear detector obtained by using a linear–quadratic statistic with a Gaussian primary signal. The calculations leading to these figures assumed a primary signal \(s = 1 \), where 1 denotes the all-1 \(N \)-vector. It is seen that the improvement obtained depends on the value of \(\gamma^2 \): a small \(\gamma^2 \), corresponding to a relatively high energy in the partially known component \(i \), makes the statistic (15) close to \(Y_Q \), which justifies the improvement on the linear detector. Conversely, a large value of \(\gamma^2 \), corresponding to a small amount of uncertainty in modeling \(y \), makes the improvement introduced by the quadratic term marginal, as expected.

A. Sample complexity

We now examine, following [20], how the sensing time \(N \) depends on the signal-to-noise ratio and on \(\gamma^2 \) for a given performance level. Assuming that \(P_{\text{FA}} \) and \(P_{\text{D}} \) can be given the form

\[
P_{\text{FA}} = Q \left(\sqrt{N\theta - A} \right)
\]

(27)

\[
P_{\text{D}} = Q \left(\sqrt{N\theta - C} \right)
\]

(28)

and eliminating \(\theta \) from (27)-(28), we obtain

\[
N = (C - A)^{-2} \left[\sqrt{BQ^{-1}(P_{\text{FA}}) - \sqrt{DQ^{-1}(P_{\text{D}})}} \right]^2
\]

(29)

\(\cdot \)A comparison with the quadratic detector would be unfair, since its use does not assume any information on the primary signal structure.
approximate P_{FA-LQ} and P_{D-LQ} in the form (27)-(28), where
\begin{align}
A &= \gamma^2\text{snr} + 1 \\
B &= 4\gamma^4\text{snr} + 2 \\
C &= (1 + \gamma^2)^2\text{snr} + 1 + 1/2\gamma^2 \\
D &= 4(1 + \gamma^2)^2(1 + 1/2\gamma^2)\text{snr} + 2(1 + 1/4\gamma^4)
\end{align}
and hence
\begin{equation}
N \approx \left[(1 + 2\gamma^2)\text{snr} + 1/2\gamma^2\right]^{-2} \left[\sqrt{4\gamma^2\text{snr} + 2Q^{-1}(P_{FA-LQ})} - \sqrt{4(1 + \gamma^2)(1 + 1/2\gamma^2)\text{snr} + 2(1 + 1/4\gamma^4)}Q^{-1}(P_{D-LQ})\right]^{-2}.
\end{equation}

It is observed that the first factor in the RHS of the above equation is roughly constant for small snr, while varies as snr^{-2} for large values of snr, while the second factor increases as snr. Thus, for very low snr the value of N remains about constant with snr, while it decreases as snr^{-1} for larger snr (notice also that for relatively large values of snr the accuracy of (35) is questionable, as the Gaussian approximation leading to it may not be valid).

The linear detector has
\begin{align}
A &= 0 \\
B &= s^2\sigma_n^2 \\
C &= s^2 \\
D &= s^2(\sigma_i^2 + \sigma_n^2)
\end{align}
and hence
\begin{equation}
N = \text{snr}^{-2} \left[Q^{-1}(P_{FA-L}) - \sqrt{1 + 1/2\gamma^2}Q^{-1}(P_{D-L})\right]^{-2}
\end{equation}
so that, for a given target pair P_{FA-L}, P_{D-L}, N varies as snr^{-2}.

Fig. 3 shows the behavior of N as a function of snr for the linear and linear–quadratic detector.

B. Robustness of LQ detector: A first stab

The analysis carried on supra was assuming that, in addition to i being a Gaussian vector, the variance σ_i^2 of its components were known, so that the value of γ^2 parameterizing the detector was computed using the exact values of σ_n^2 and σ_i^2. A more realistic assumption is that the value of σ_i^2 is only approximately known through its estimate $\hat{\sigma}_i^2$, so that the detector using an estimated value of γ^2 is likely to be mismatched. We now examine this situation by evaluating the effect on P_{D-LQ} of a mismatched σ_i^2 (the value of P_{FA-LQ} will not be affected by the mismatch). For convenience, here we use the probability of misdetection $P_{MD-LQ} \triangleq 1 - P_{D-LQ}$). For a fair analysis, we consider that adding i to s increases its power, so that the probability of misdetection would be improved by a larger uncertainty term σ_i^2 unless the observed signal power is kept constant. This is done by replacing for $\|s\|^2$ in (24a)-(24b), under the assumption $s = si$, the term $N\|s^2 - \sigma_i^2\|^2$, where σ_i^2 is the actual value of the variance of the components of i, which may differ from the...
value $\hat{\gamma}^2$ estimated and used to determine γ^2. Fig. 4 illustrates the effect of such mismatch. In this figure, $s = 1$, $N = 20$, $\sigma_n^2 = 1$, and $\hat{\gamma}^2 = 1/N$, so that $\gamma^2 = 10$.

IV. Inaccurate model of i: Detector robustness

The structure of Y_{LQ} was chosen in Section II under a Gaussian-like assumption on x and a given value of γ^2. Now, if the assumption on the statistics of x is not valid, the LQ detector is mismatched, and hence its performance may be degraded. One may examine this performance with a number of different models for x: for example, Fig. 5 shows the receiver operating characteristics with uniformly distributed i. We observe that in this situation the performance of the LQ detector is not degraded by the mismatch (actually, it is even improved, reflecting the fact that maximization of the deflection does not necessarily imply optimization of P_D and P_{FA}).

A more accurate scrutiny of the implications of the model mismatch leads to the evaluation of the robustness of the LQ statistics to signal-model variations. To do this, while still accepting that $x = s + i$, with s a known signal, we assume that a limited knowledge of the distribution of i is available, for example in the form of its range and variance (we also assume that it has mean zero), and study how the detector performs as that distribution varies in the uncertainty set defined by those constraints. Under these conditions, after observing that the probability of false alarm does not depend on i, we may write

$$P_D = E_I P_D(i)$$

(38)

where I denotes the actual distribution of i, E_I expectation with respect to I, and $P_D(i)$ the detection probability conditioned on i. The extent of variation of P_D as I runs in the uncertainty set tells us how robust the detector is.

A. Moment bounds

Our study of the LQ detector robustness consists of finding sharp upper and lower bounds to (38) as I runs through all the possible distributions of i satisfying the set of constraints imposed by the physical aspects of the problem. Some of these constraints take the form of generalized moments of i (i.e., expected values of known functions of i), while others may involve what is known about the structure of the distribution of I. Formally, the problem to be solved is

$$\sup_{I} E_I P_D(i), \quad \text{s.t. } E_I k(i) = \mu$$

along with its equivalent version with inf in lieu of sup. Here, I is the subset of all possible probability distributions satisfying the given constraints.

A simple, yet important special situation occurs when I is the unconstrained set of all possible distributions with finite support. In this case, if few generalized moments of I are exactly known,
or even known within a certain interval, geometric moment-bound theory (see, e.g., [7, 12, 13, 25] and references therein) allows one to obtain sharp upper and lower bounds to the values of P_D. Here we assume the knowledge of range and variance of i. The geometric moment-bound theory relevant here is summarized by the following fact. Let Z denote a random variable with range in the finite interval \mathcal{Z} and unknown cumulative distribution function (CDF). Let $k_1(z)$ and $k_2(z)$ be two continuous functions defined over \mathcal{Z}. The moment space of Z, denoted M, is defined as the (closed, bounded, and convex) set of the pairs

$$
\left(\int_{\mathcal{Z}} k_1(z) dG(z), \int_{\mathcal{Z}} k_2(z) dG(z)\right)
$$

as $G(\cdot)$ runs over all CDFs defined over \mathcal{Z}. The main result we need is the following [12, 25]: M is the convex hull of the curve $\mathcal{C} \triangleq \{(k_1(z), k_2(z)) | z \in \mathcal{Z}\}$ in \mathbb{R}^2. Explicitly, by choosing $k_1(z) = z^2$ and $k_2(z) = f(z)$, the expected value of $f(Z)$ can be identified with the second coordinate of M. If the first coordinate is chosen as the known value of $\mathbb{E}Z^2$, then upper and lower bounds to $\mathbb{E}f(X)$ are obtained by direct evaluation of the upper and lower envelopes of M.

B. Robustness of linear detector

Consider the linear detector first. We have

$$P_{D-L}(i) = \mathbb{P}[s^T n > \theta - \|s\|^2 - s^T i] = Q\left(\frac{\theta - \|s\|^2 - \mu(i)}{\sqrt{\|s\|^2 \sigma_n^2}}\right)$$

(40)

where $\mu(i) \triangleq s^T i$ is a random variable with range (μ_{min}, μ_{max}), mean zero, and variance $\|s\|^2 \sigma_n^2$. Assuming again $s = 1$ and the components of i confined in $(-a, +a)$ (so that $\sigma_i^2 \in (0, a^2)$), and a symmetric probability density function for $\mu(i)$, the curve whose convex hull yields sharp upper and lower bounds to P_{D-L} is

$$\mathcal{C}_{D-L} \triangleq \{z^2, f(z) | z^2 \in (0, N a^2)\}$$

(42)

where

$$f(z) \triangleq \frac{1}{2} \left[Q\left(\frac{\theta - N - z}{\sqrt{N \sigma_n^2}}\right) + Q\left(\frac{\theta - N + z}{\sqrt{N \sigma_n^2}}\right) \right]$$

(43)

C. Robustness of LQ detector

Consider next the linear–quadratic detector. From (21) we obtain

$$P_{D-LQ}(i) = \mathbb{P}[\|u\|^2 > \theta/\sigma_n^2 | i]$$

(44)

where $u \triangleq \sigma_i^2 ((1 + \gamma^2)s + i + n)^2 / \sigma_n^2$ has, conditionally on i, a noncentral χ^2 distribution with noncentrality parameter

$$\lambda(i) = \frac{1}{\sigma_n^2} ((1 + \gamma^2)s + i)^2$$

(45)

Consequently,

$$P_{D-LQ}(i) = Q_{N/2}(\sqrt{\lambda(i)}, \sqrt{\theta/\sigma_n^2})$$

(46)

The random variable $\lambda(i)$ has, under the assumption that i has mean zero, a known mean value

$$\mathbb{E}[\lambda(i)] = \frac{\|s\|^2}{\sigma_n^2} ([\|s\|^2 + N \sigma_n^2])$$

(47)

The range of $\lambda(i)$ (which we assume to be finite) is denoted $(\lambda_{min}, \lambda_{max})$. For example, if $s = 1$ and the components of i take values in $(-a, +a)$, with $a \geq 1 + \gamma^2$, we have from (45)

$$\lambda_{min} = 0 \quad \lambda_{max} = \frac{N}{\sigma_n^2}(1 + \gamma^2 + a)^2$$

Thus, the upper and lower bounds for P_{D-LQ} at $\sigma_i^2 \in (0, a^2)$ are given by the values of the upper and lower extremes of the convex hull of the curve

$$\mathcal{C}_{D-LQ} \triangleq \left(z, Q_{N/2}(\sqrt{z}, \sqrt{\theta/\sigma_n^2}) | z \in (\lambda_{min}, \lambda_{max})\right)$$

(48)

corresponding to the abscissa $\mathbb{E}[\lambda(i)] = N[(1 + \gamma^2)^2 + \sigma_i^4]/\sigma_n^2$.

D. Comparisons

Fig. 6 shows the moment space of the detection probability with linear statistic. Increasing the sample size N, besides increasing P_{D-L}, yields a narrower moment space. This observation may be used to determine the sample size, whose choice influences the performance of the spectrum sensor as well as its robustness. Robustness analysis provides a tool to decide when unacceptable detector performance is caused by low signal-to-noise ratio, or rather by an insufficiently accurate model of system parameters.

Figs. 7 and 8 show two moment spaces of the detection probability with linear–quadratic statistics. As for the linear case, increasing the sample size N, besides increasing the detection probability, yields a narrower moment space. Comparing the moment spaces of linear and linear–quadratic detector, one may observe that, as discussed above, increasing the power of the interference increases the probability of detection of the linear–quadratic detector, while decreases the one of the linear detector.
Fig. 7. Moment space of \(P_{D_{0}} \). N = 8, s = 1, \(\sigma_{0}^{2} = 1 \), \(\sigma_{1}^{2} = 4 \), and \(\alpha = 1.125 \). The curve \(D_{0} \) and the boundaries of its convex hull are shown.

Fig. 8. Same as in Fig. 7, but with \(N = 12 \).

E. A generalization

We observe here that, while the bounds achieved are sharp, i.e., they correspond to distributions that are achievable under the constraints assigned and hence cannot be further tightened, the choice of a wide set \(\mathcal{I} \) might provide loose, and hence pessimistic, bounds. For example, in the cases examined above the extremal distributions turn out to be discrete, which may not be a realistic model. Thus, one may want to rule out distributions being ill-fitted to the specific problem and hence making the moment bounds unreasonably loose. For computational purposes, it is convenient to restrict the underlying distribution to belong to a convex set \(\mathcal{I} \) [18, 22]. This is because a number of constrained moment bounds characterized by a convex constraint set \(\mathcal{I} \) can be solved as semidefinite programs. Since the intersection of two convex sets is also convex, these constraints can also be combined together. Unimodal, symmetric, and monotone convex distributions may be considered. In this framework, the authors of [24] present a semidefinite programming formulation of the problem of deriving bounds to the probability \(P[x^{T}Ax + 2b^{T}x + c < 0] \), where \(x \) is an \(n \)-dimensional real random vector with known first and second moments \(\mathbb{E} x \) and \(\mathbb{E} x^{2} \).

V. Conclusions

We have examined the robustness of a linear–quadratic detector for spectrum sensing when the primary signal can only be imperfectly modeled, and hence the detector may be mismatched. The detector was designed by maximizing a generalized signal-to-noise ratio. The robustness of the detector to variations of the signal distribution was studied using geometric moment-bound theory.

REFERENCES

