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Rapid Impairment of Skeletal Muscle Glucose
Tr a n s p o rt/Phosphorylation by Free Fatty Acids in
H u m a n s
Michael Roden, Martin Krssak, Harald Stingl, Stephan Gruber, Astrid Hofer, Clemens Fürnsinn, Ewald Moser,

and Werner Wa l d h ä u s l

The initial effects of free fatty acids (FFAs) on glu-
cose transport/phosphorylation were studied in seven
healthy men in the presence of elevated (1.44 ± 0.16
mmol/l), basal (0.35 ± 0.06 mmol/l), and low (<0.01
mmol/l; control) plasma FFA concentrations (P < 0.05
between all groups) during euglycemic-hyperinsulinemic
clamps. Concentrations of glucose-6-phosphate (G-6-P),
inorganic phosphate (Pi), phosphocreatine, ADP, and
pH in calf muscle were measured every 3.2 min for 180
min by using 3 1P nuclear magnetic resonance spec-
t r o s c o p y. Rates of whole-body glucose uptake increased
similarly until 140 min but thereafter declined by ~20%
in the presence of basal and high FFAs (42.8 ± 3.6 and
41.6 ± 3.3 vs. control: 52.7 ± 3.3 µmol · kg– 1 · min– 1, P <
0.05). The rise of intramuscular G-6-P concentrations
was already blunted at 45 min of high FFA exposure
(184 ± 17 vs. control: 238 ± 17 µmol/l, P = 0.008). At 180
min, G-6-P was lower in the presence of both high and
basal FFAs (197 ± 21 and 213 ± 18 vs. control: 286 ± 19
µmol/l, P < 0.05). Intramuscular pH decreased by –0.013
± 0.001 (P < 0.005) during control but increased by
+0.008 ± 0.002 (P < 0.05) during high FFA exposure,
while Pi rose by ~0.39 mmol/l (P < 0.005) within 70 min
and then slowly decreased in all studies. In conclusion,
the lack of an initial peak and the early decline of mus-
cle G-6-P concentrations suggest that even at physio-
logical concentrations, FFAs primarily inhibit glucose
transport/phosphorylation, preceding the reduction 
of whole-body glucose disposal by up to 120 min in
humans. D i a b e t e s 48:358–364, 1999

I
nsulin resistance is a common feature of obesity and
dyslipidemia, which predispose one to type 2 diabetes
and premature cardiovascular diseases (1,2). Free
fatty acids (FFAs) are considered to play a pivotal role

in the pathogenesis of diabetes (2,3) and may even be
involved in the early events leading to insulin resistance. In

offspring of type 2 diabetic parents, plasma FFA concentra-
tions are inversely correlated with insulin sensitivity (4,5).
M o r e o v e r, nonobese normoglycemic Mexican-American off-
spring of type 2 diabetic parents present with diminished
insulin-induced suppression of FFAs (6). However, the mech-
anism by which FFAs induce insulin resistance is still under
debate (7).

From in vitro studies, Randle et al. (8,9) postulated that
increased FFA oxidation inactivates pyruvate dehydrogenase
with subsequent inhibition of phosphofructokinase (8–10).
This would cause intracellular glucose-6-phosphate (G-6-P) to
rise and then decrease hexokinase II activity with consequent
decreased glucose uptake and glycogen synthesis. Evidence
for the operation of such a mechanism in vivo has been
recently provided in rats (11,12). In humans, lipid/heparin
infusion inhibits carbohydrate oxidation (13–17), but neither
an increase in cellular citrate levels (16) nor inhibition of
pyruvate dehydrogenase could be demonstrated in muscle
biopsies (18). Only a few authors also reported a reduction in
insulin-sensitive whole-body glucose disposal (15,19,20),
which is primarily accounted for by impaired nonoxidative glu-
cose metabolism (16,19), suggesting FFA-induced inhibition
of muscle glycogen synthesis (21). However, defects in frac-
tional activity of glycogen synthase were observed in some
(16,17,20) but not in other studies (18,22).

We have recently reported that the decrease in insulin-
dependent glucose disposal is associated with a blunted
increase of intramuscular G-6-P and with reduction in rates
of glucose oxidation and glycogen synthesis (23). However,
we could not exclude an initial transient increase in G-6-P, and
the effects were observed only at high plasma FFA concen-
trations of ~2 mmol/l.

The aims of the present study were therefore 1) to follow
the initial time-course of intramuscular G-6-P, 2) to correlate
rates of whole-body glucose uptake and changes of muscular
G-6-P concentration at fasting and postprandial plasma FFA
concentrations, and 3) to simultaneously monitor intracellu-
lar allosteric effectors of muscle glucose metabolism, such as
inorganic phosphate (Pi), phosphocreatine (PCr), ADP, and pH
in human calf muscle. Thus, we applied in vivo 3 1P - n u c l e a r
magnetic resonance (NMR) spectroscopy (23,24) to continu-
ously measure these parameters by using an NMR spectrom-
eter of higher magnetic field strength and homogeneity to
increase the sensitivity and time-resolution of G-6-P meas-
urements. By using this improved noninvasive approach,
problems of previous techniques, due to tracer methodology
and handling of tissue biopsies, can be avoided (25).
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RESEARCH DESIGN AND METHODS

S u b j e c t s . Studies were performed in seven healthy men (age 25 ± 1 years, BMI
23.02 ± 1.30 kg/m2, body surface area 1.99 ± 0.08 m2) who had no family history
of diabetes and who were not taking medications on a regular basis. They
stopped moderate regular exercising at least 3 days before the experiments and
were on an isocaloric diet (30 kcal · kg– 1 · day– 1; carbohydrate/protein/fat:
60/20/20%) for 3 days and then fasted overnight for 12 h before the experi-
ments. Written informed consent was obtained from all subjects after expla-
nation of the nature of the studies, which were approved by the human ethics
committee of the University of Vienna.
Hyperinsulinemic-euglycemic clamps. At 7:30 A.M., catheters (Va s o f i x ;
Braun, Melsungen, Germany) were placed in one antecubital vein of each arm
for blood sampling (left arm) and infusions (right arm). Conditions of insulin-
stimulated whole-body glucose uptake were created by performing hyperinsu-
linemic- (~400 pmol/l) euglycemic (~5 mmol/l) clamps for 180 min. Regular
human insulin (Actrapid; Novo Nordisk, Bagsvaerd, Denmark) was administered
as a primed continuous intravenous infusion (1 mU · kg– 1 · min– 1). Constant fast-
ing plasma glucose concentrations were achieved by a variable intravenous glu-
cose infusion (1.1 mol/l). All subjects were studied under three experimental con-
ditions: 1) elevation of plasma FFA concentrations (~1.5 mmol/l; LIP) induced
by intravenous infusion of a triglyceride emulsion (1.5 ml/min Intralipid 20%; Kabi
Pharmacia, Stockholm, Sweden) combined with a bolus (250 IU) continuous
intravenous infusion of heparin (0.2 IU · kg–1 · min–1) (16,23), 2) fasting plasma
F FA concentrations (~0.5 mmol/l; BAS) induced by intravenous triglyceride infu-
sion (1.5 ml/min) only, and 3) insulin-suppressed plasma FFA concentrations
(<0.01 mmol/l; CON) during intravenous saline infusion (1.5 ml/min). Experi-
mental protocols were spaced by 4- to 8-week intervals during which the par-
ticipants’ body weights and lifestyle remained unchanged. Blood samples were
drawn in 5-min intervals for monitoring of plasma glucose. For the determina-
tion of plasma insulin, FFA, and triglyceride concentrations, blood was collected
every 15 or 30 min and immediately cooled, centrifuged, and stored at –80°C to
avoid further lipolysis.
In vivo 31P-NMR spectroscopy. Subjects were in a supine position inside an
NMR spectrometer (3.0 T, 80-cm diameter bore, Medspec S300-DBX; Bruker,
Ettlingen, Germany). The right lower leg was positioned so that the isocenter
of the magnetic field was placed ~2 cm into the medial head of the gastrocne -
mius muscle to obtain 3 1P-spectra (23,24,26) before the start (baseline) and then
every 3.2 min during the clamps. 31P-NMR spectra (90° radio frequency pulse,
pulse length 150 µs, 4,096 data points, 32 averages, repetition time of 6 s) were
obtained by using a 10-cm circular double-resonant surface coil for 1H (125.6
MHz) and 3 1P (50.8 MHz). The proton coil was used for scout imaging and
shimming of the water signal. All spectra were zero filled to 32 K, apodized using

either a 2-Hz exponential function for baseline spectra or a 10-Hz exponential
function for difference spectra, and corrected manually for baseline and phase.
Because of potential contamination with phosphomonoester resonances ( - g l y c-
erol phosphate), only part of the chemical shift range of G-6-P (2.6–2.3 ppm rel-
ative to Pi) was integrated. Intramuscular concentrations of G-6-P, Pi, and PCr
were quantified by comparison of the respective resonance areas with that of

- ATP (23,24,26), assuming an ATP concentration of 5.5 mmol/l for nonexercising
muscle (27,28). During the studies, changes of G-6-P, P i, and PCr versus base -
line were determined from difference spectra (Fig. 1). Measurement of G-6-P by
3 1P-NMR spectroscopy has been validated in frozen rat muscle (29). In the pres-
ent study, the precision of measurements was assessed from determination of
root mean square amplitude variation due to spectral noise, as described pre-
viously (24). Average root mean square noise measured from a 1-kHz bandwidth
without any resonance gives a variation (1 SD) of G-6-P concentration of 25
µmol/l muscle in a 7-min difference spectrum. In addition, variability of signal
intensities due to spectrometer instability was calculated from the residual
intensity of the ATP resonances in the individual difference spectra, and the sub-
traction error was <2%. Under these conditions, the mean basal G-6-P concen-
tration of 118 µmol/l muscle will result in a between-scan variation of signal inten-
sity of <2.4 µmol/l muscle. The precision of baseline muscle G-6-P measurements
was assessed in three young nondiabetic subjects by comparing four consecu-
tive 7-min spectra obtained from the same subject (14, 19, and 29 µmol/l) and
was close to the predicted value of 25 µmol/l. Intracellular pH was calculated
from the difference of the chemical shift between Pi and PCr, as previously
described (24,30).
Analytical methods. Plasma glucose concentrations were measured by the glu-
cose oxidase method (Glucose Analyzer II; Beckman, Fullerton, CA). Plasma
insulin was measured by double antibody radioimmunoassay (Serono Diag-
nostics, Freiburg, Germany) with an interassay coefficient of variation (CV) of
<5%. Plasma concentrations of FFAs were measured by an enzyme assay using
acyl-CoA synthase and acyl-CoA oxidase with subsequent colorimetric deter-
mination of the resulting hydrogen peroxide (Wako, Richmond, VA). The inter-
and intra-assay CVs were 3.6 and 2.4%, respectively. Plasma triglycerides were
hydrolyzed by lipase, and the released glycerol was measured by a peroxidase-
coupled colorimetric assay (31).
Calculations and statistical analysis. Whole-body glucose disposal was cal-
culated from mean glucose infusion rates for 20-min intervals and corrected for
urinary glucose loss. Statistical analyses were performed by using StatView 4.5
(Abacus Concepts, Berkeley, CA). Data are given as means ± SE. Differences
between groups were evaluated by analysis of variance (ANOVA) followed by
the Schéffe and the Student-Newman-Keuls post hoc tests. Changes of sequen-
tial data within experiments were compared by the paired Student’s t test or

FIG. 1. Measurement of changes ( ) in

intramuscular G-6-P, Pi, and PCr in the

right calf muscle of a young healthy sub-

ject during triglyceride infusion

(Intralipid 20%, 1.5 ml/min) without

heparin. A: Difference between the

actual (t = 57–64 min) and the baseline (t

= –5 min) 3 1P-NMR spectrum. B: Deter-

mination of G - 6 - P, Pi, and PCr from

the respective peak amplitudes in the

d i fference spectrum (increased in size

eight times).



360 DIABETES, VOL. 48, FEBRUARY 1999

FFAs AND GLUCOSE TRANSPORT/PHOSPHORYLATION

A N O VA for repeated measurements. Simple linear regression analysis was used
for correlation of data. Differences were considered statistically significant at
the 5% level.

R E S U LT S

Plasma concentrations of glucose, insulin, FFAs, and

t r i g l y c e r i d e s . Fasting plasma concentrations of glucose
(CON: 5.3 ± 0.0 mmol/l; BAS: 5.4 ± 0.0 mmol/l; LIP: 5.4 ± 0.0
mmol/l), FFAs (407 ± 33, 435 ± 25, and 404 ± 53 µmol/l), and
insulin (34 ± 2, 38 ± 0.2, and 41 ± 3 pmol/l) were similar in all
studies. During hyperinsulinemic-euglycemic clamp tests,
plasma glucose concentrations did not change from baseline
levels (Fig. 2A), while plasma insulin concentrations
increased ~10-fold within 15 min and remained constant
without differences between the experiments (120–180 min:
396 ± 16, 395 ± 15, and 385 ± 16 pmol/l, P < 0.000001 vs. 
baseline) (Fig. 2B). Plasma FFA concentrations rapidly
decreased, reaching the detection limit (10 µmol/l) between
60 and 90 min of control studies (P < 0.001; Fig. 2C). During
lipid infusion without heparin (BAS), plasma FFA concen-
trations transiently decreased to a nadir at 45 min, but they
were still ~4.6-fold higher compared with control values (P

< 0.05). Thereafter, plasma FFA levels increased toward fast-

ing concentrations until 180 min (350 ± 65 µmol/l; NS vs.
baseline, P < 0.05 vs. CON and LIP). In the presence of com-
bined lipid/heparin infusion, plasma FFA concentrations
started to rise at 45 min and were ~3.6-fold increased at 180
min (LIP: 1,444 ± 157 µmol/l; P < 0.0005 vs. baseline, P < 0.05
vs. CON and BAS). Plasma triglyceride concentrations were
similar at baseline (CON: 84 ± 6 mg/dl; BAS: 99 ± 8 mg/dl; LIP:
84 ± 7 mg/dl) and increased during lipid infusions (BAS: 342
± 19 mg/dl, P < 0.05; LIP: 260 ± 17 mg/dl, P < 0.05 vs. CON: 54
± 2 mg/dl).
Whole-body glucose uptake. In control experiments, rates
of whole-body glucose uptake continuously rose until the end
of the study (Fig. 3A). During both basal and high lipid stud-
ies, rates of whole-body glucose uptake increased in parallel
until 140 min only, then they dropped and were ~20% lower in
the presence of basal (BAS: 41.6 ± 3.3 µmol · k g– 1 · m i n– 1, P <
0.05 vs. CON) or elevated plasma FFA concentrations (LIP:
42.8 ± 3.6 µmol · k g– 1 · m i n– 1, P < 0.05 vs. CON) than during con-
trol studies at 160–180 min (52.7 ± 3.3 µmol · k g– 1 · m i n– 1) .
Intramuscular G-6-P concentrations. Baseline G-6-P con-
centrations in human calf muscle were comparable before the
start of each experiment (Table 1). Intramuscular G-6-P con-
centrations rose linearly within 20 min in all studies (total 
G-6-P at 17 min: CON: 229 ± 18 µmol/l, P < 0.001; BAS: 216 ±
23 µmol/l, P = 0.01; LIP: 207 ± 28 µmol/l, P < 0.01 vs. baseline)

FIG. 2. Plasma concentrations of glucose (A), insulin (B), and FFA s

(C) during infusion of saline (low FFA; CON, ), triglycerides (basal

F FA; BAS, ), or triglycerides plus heparin (elevated FFA; LIP, ) .

Data are given as means ± SE of seven healthy subjects who underwent

each of the three studies.

FIG. 3. Rates of whole-body glucose uptake (A) and intramuscular

G -6-P concentrations (B) in the presence of low (CON, ), basal

(BAS, ), and elevated (LIP, ) plasma FFA concentrations. Data are

given as means ± SE of seven healthy subjects who underwent each of

the three studies.

A

B

C

A

B
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(Fig. 3B) without any difference between the studies. The rise
of intramuscular G-6-P concentrations was blunted with as
little as 45 min of high FFA exposure (P = 0.008 vs. CON). Until
t = 68 min, G-6-P levels further increased in control experiments
(P < 0.05), but they remained constant in the presence of either
basal or high plasma FFA concentrations. At the end of
clamps, intramuscular G-6-P concentrations had increased
~2.7-fold under control conditions (P < 0.0005 vs. baseline).
That increase was clearly reduced in the presence of basal and
high plasma FFA concentrations (total G-6-P at 180 min: 197 ±
21 and 213 ± 18 µmol/l vs. CON: 286 ± 19 µmol/l, P < 0.05) but
was not different between the two studies (Fig. 3B, Table 1).
Intramuscular Pi, PCr, ADP, and pH. Intramuscular con-
centrations of Pi, PCr, ADP, and pH at baseline as well as
changes during the clamp tests are summarized in Table 1.
Baseline (fasting) concentrations of Pi, PCr, ADP, and pH
were similar before the start of the clamps. Intramuscular Pi
increased in parallel by ~15% within 1 h and then slowly
declined in all studies (Fig. 4A). Independently of the plasma
F FA concentration, intramuscular PCr gradually decreased
within 1 h in all studies and remained stable thereafter. Dur-
ing lipid infusion with or without heparin, intramuscular ADP
slightly but significantly increased until the end of the
clamps. During control experiments, pH slightly but consis-
tently declined until 180 min (P < 0.005 vs. baseline) (Fig. 4B) .
In the presence of high FFA concentrations, intracellular pH
gradually increased (P < 0.05 vs. values between 50 and 70
min) until the end of the studies (180 min; P < 0.05 vs. CON).

D I S C U S S I O N

Short-term plasma FFA elevation started to inhibit insulin-
stimulated whole-body glucose uptake after 160 min. That

decrease in whole-body insulin sensitivity was preceded by a
blunted increase of intramuscular G-6-P, which was already
noted within 1 h. An FFA-dependent accumulation of intra-
cellular G-6-P concentration, which has been predicted by
R a n d l e ’s hypothesis (8,9) and observed during clamp studies
in rats (11,12), could not be detected in humans. An initial
transient increase of intramuscular G-6-P would be expected
to allosterically inhibit glucose transport/phosphorylation. But
even at improved time resolution of in vivo NMR spectroscopy
to detect rapid changes of G-6-P, no such initial rise of intra-
muscular G-6-P was noted in the present study when compared
with control experiments. This finding therefore supports the
concept that an alternative or additional mechanism is opera-
tive in FFA-induced insulin resistance in humans.

As a result of its location between glucose transport/phos-
phorylation and glycogen synthase enzymes along the path-
way of muscle glycogen synthesis, the intracellular G-6-P
concentration is sensitive to the relative activities of the
involved enzymes and the rate of glycolysis. Similar or
decreased G-6-P concentrations in the presence of impaired
nonoxidative glucose disposal argue for a defect at the steps
of glucose transport/phosphorylation (24). Interestingly,
impairment of G-6-P elevation was already detected at 45
min, which was previously seen only at 90 min of high FFA
exposure (23). Basal (fasting) plasma FFA concentrations
also induced a blunted increase in G-6-P, although of smaller
extent and with a delay of more than 1 h. The changes in intra-
muscular G-6-P occurred more than 100 min before any
reduction in whole-body glucose metabolism, which is
mostly due to decreased muscle glycogen synthesis (23). It is
therefore conceivable that FFAs primarily inhibit glucose
transport/phosphorylation, resulting in a reduction of the

TABLE 1
Baseline concentrations and changes ( ) in intramuscular G-6-P, Pi, PCr, ADP, and pH determined by using noninvasive 3 1P - N M R
spectroscopy in nondiabetic men studied during hyperinsulinemic euglycemia

Low FFA s Basal (fasting) FFA s Elevated FFA s

G-6-P (mg/kg muscle)
B a s e l i n e 0.108 ± 0.004 0.107 ± 0.010 0.100 ± 0.010
50–70 min +0.135 ± 0.008* +0.127 ± 0.014† +0.091 ± 0.009† ††
160–180 min +0.157 ± 0.009¶# +0.112 ± 0.008§‡‡ +0.090 ± 0.011§‡‡

Pi (mg/kg muscle)
B a s e l i n e 2.382 ± 0.131 2.393 ± 0.107 2.538 ± 0.100
50–70 min +0.351 ± 0.038‡ +0.451 ± 0.047‡ +0.358 ± 0.021||
160–180 min +0.218 ± 0.041*# +0.173 ± 0.034*# +0.141 ± 0.035**

PCr (mg/kg muscle)
B a s e l i n e 18.837 ± 0.461 19.524 ± 0.842 18.956 ± 0.602
50–70 min –0.501 ± 0.100‡ –0.869 ± 0.262† –0.541 ± 0.115‡
160–180 min –0.539 ± 0.140† –0.647 ± 0.102§ –0.591 ± 0.082§

ADP (mg/kg muscle)
B a s e l i n e 0.062 ± 0.001 0.059 ± 0.001 0.060 ± 0.002
50–70 min +0.001 ± 0.000 +0.003 ± 0.001 +0.002 ± 0.001
160–180 min +0.000 ± 0.001 +0.002 ± 0.000|| +0.003 ± 0.001‡

p H
B a s e l i n e 7.070 ± 0.005 7.060 ± 0.006 7.055 ± 0.003
50–70 min –0.008 ± 0.001* –0.002 ± 0.002 –0.001 ± 0.001
160–180 min –0.013 ± 0.001‡ +0.003 ± 0.002 +0.008 ± 0.002 # ‡‡

Data are means ± SE of seven experiments at each FFA concentration. *P < 0.05, †P < 0.01, ‡P < 0.005, §P < 0.001, ||P < 0.0005, 
¶P < 0.00005 vs. corresponding baseline value. #P < 0.05, **P < 0.005 vs. corresponding values between 50 and 70 min. ††P < 0.05
vs. low and basal FFAs. ‡‡P < 0.05 vs. low FFA s .
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intracellular G-6-P pool. Intracellular G-6-P might subse-
quently gain control over the flux through glycogen synthase,
since the G-6-P concentration for half-maximal stimulation of
glycogen synthase is close to intramuscular G-6-P concen-
trations measured in vivo (~100 µmol/l) (32).

During the last 20 min of the clamp, intramuscular G-6-P
was correlated with whole-body glucose uptake (Fig. 5A) ,
which is in keeping with previous reports (24,25). Both
whole-body glucose metabolism (Fig. 5B) and intramuscular
G-6-P concentrations decreased with increasing plasma FFA
concentrations in the physiological range (Fig. 5C). A small
but significant elevation of plasma FFAs has been reported for
offspring of parents with type 2 diabetes who are insulin
resistant and at increased risk of developing diabetes (4–6).
These subjects also present with an impaired increase of
intramuscular G-6-P and with low whole-body glucose
uptake during hyperinsulinemic-euglycemic clamp tests (26).
The FFA-induced defects of glucose transport/phosphoryla-
tion are also in agreement with the metabolic alterations
characteristic of human obesity (33,34).

Our results are partly in contrast to the findings of Boden
et al. (17), who reported increased G-6-P at high (~750
µmol/l) plasma FFA concentrations and slightly, but not
significantly, decreased G-6-P levels at lower (~550 µmol/l)
plasma FFA concentrations. These differences from the
present study may reside in the use of different experi-
mental protocols, the muscle group studied, and/or the ana-
lytical methods. The present findings do not allow us to
localize the defect to either glucose transport via GLUT4 or
to glucose phosphorylation by hexokinase II. Although

insulin has been shown to regulate hexokinase II activity or
subcellular distribution (33,35), glucose transport more
likely is the rate-controlling step for insulin-stimulated glu-
cose disposal (36,37). Intrinsic activity of GLUT4 might be
decreased during FFA exposure, similar to what has been
reported for high-fat fed rats (38). It is notable that a
decreased rate constant of 1 8F-deoxyglucose transport was
also found during insulin stimulation in skeletal muscle of
obese patients (39).

A l t e r n a t i v e l y, FFAs could also decrease muscle insulin
sensitivity by increasing the flux of G-6-P to the hexosamine
biosynthetic pathway (40). Recently, Hawkins et al. (41) have
elegantly demonstrated that the FFA-induced decrease of
glucose uptake and glycogen synthesis is accompanied by an

FIG. 4. Changes ( ) in intramuscular Pi (A) and pH (B) in the pres-

ence of low (CON, ), basal (BAS, ), and elevated (LIP, ) plasma

F FA concentrations. Data are given as means ± SE of seven healthy

subjects who underwent each of the three studies.

FIG. 5. A: Linear correlation between whole-body glucose uptake (M

value, 160–180 min) and total intramuscular G-6-P concentration

(mean G-6-P, 160–180 min) in the presence of low ( ), basal ( ), and

elevated ( ) plasma FFA concentrations. Whole-body glucose uptake

(B ) (M value, 160–180 min) and rise of intramuscular G-6-P over

baseline (C) (mean G - 6 - P, 160–180 min) at various plasma FFA con-

centrations. Data are given as means ± SE of seven healthy subjects

who underwent all studies.

A

B

A

B

C
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increase of muscle UDP-N-acetyl-glucosamine in rats. Under
comparable conditions of hyperinsulinemia-euglycemia,
these authors found a similar time-course of glucose dis-
posal, which became significantly lower at ~3 h of lipid, glu-
cosamine, or uridine infusions. Interestingly, muscle G-6-P
concentrations were increased at that time and decreased
only thereafter, which is keeping with other studies in rats
(11,12). Under these conditions, more G-6-P would be con-
verted to fructose-6-phosphate and in turn result in elevation
of intramuscular hexosamines, which have been shown to
decrease glucose transport and GLUT4 translocation in vivo
and in vitro (40,42,43). In the present study, G-6-P concen-
trations increased in parallel during the first ~30 min, but they
were not higher during FFA exposure. Thus, it is unlikely that
such a mechanism is involved in FFA-induced insulin resis-
tance in humans, but it cannot be excluded that FFAs may
stimulate enzymes involved in the hexosamine pathway,
resulting in an increased flux of G-6-P to hexosamines and
lower intramuscular G-6-P levels. Finally, other mechanisms,
such as alteration of membrane fluidity and/or interaction with
insulin binding and action (44,45), intramuscular malonyl-CoA
(46), and/or impaired glucose or insulin delivery to skeletal
muscle due to reduced blood flow (47), might be involved in
the metabolic action of FFA s .

This study also found a small but continuous decline of
intramuscular pH during the hyperinsulinemic-euglycemic
control clamps. This is in contrast to the insulin-induced
increase of intracellular pH in frog and rat muscle (48,49) that
has been attributed to stimulation by insulin of the Na+/ H+

e x c h a n g e r, resulting in a decrease of the cytoplasmic H+ c o n-
centration with a concomitant rise of Na+ (50). The observed
decrease of intramuscular pH during hyperinsulinemia is in
excellent agreement with one previous study (51) and can be
explained by an increase of the resting membrane potential
and/or the rate of glycolysis and lactate production. Inter-
e s t i n g l y, intramuscular pH did not decrease but rather
increased during lipid infusion. Although stimulation of
membrane-associated acid extrusion systems, like the
N a+/ 2 H C O3

– t r a n s p o r t e r, could account for that effect, FFA s
may rather decrease lactate production (23) by inhibition of
glycolysis (11,12,15–17), which in turn might cause pH to
rise. It is notable that the observed changes in intracellular pH
during FFA exposure might in part allosterically affect hex-
okinase activity (52).

Intramuscular Pi rose by ~15% within the first 60–90 min,
which is in good agreement with previous hyperinsulinemic
clamp studies (24,51). That increase could be due to
increased uptake (50), presumably by using the Na+- d e p e n-
dent Pi transporter (53), which is keeping with the fall of
plasma Pi concentrations during hyperinsulinemic clamps
(51). Alternatively, Pi may reflect an increase in oxidative
ATP production (25), since the sum of Pi and G-6-P roughly
equals the decline of intracellular PCr. Interestingly, closely
monitoring the time-course of intramuscular Pi revealed that
the increase is followed by a decrease of Pi toward baseline
levels until the end of the studies. Decreased plasma Pi
and/or gradual reduction of ATP production with prolonged
insulin stimulation could account for a decrease of the 
transcellular gradient for Pi i n flux into skeletal muscle. Nev-
ertheless, intramuscular Pi, PCr, and ADP were not different
between the experimental protocols, indicating that alloster-
ical effects of these compounds on glucose-metabolizing

enzymes do not contribute to the FFA-induced decrease of
glucose disposal.

In conclusion, plasma FFA concentrations within the phys-
iological range cause rapid impairment of the insulin-depen-
dent rise in intramuscular G-6-P concentrations that pre-
cedes the reduction of whole-body glucose disposal by up to
120 min. In contrast to Randle’s classical hypothesis, this
finding indicates that FFAs induce a defect at the glucose
transport/phosphorylation step that is identical to that
described in obese subjects (54) and offspring of type 2 dia-
betic patients (26). FFAs might therefore be involved in the
early stages of insulin resistance when subjects are still nor-
m o g l y c e m i c .
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