Gaussian noise reduction in greyscale images

Nachtegael, Mike; Schulte, Stefan; Van Der Weken, Dietrich; De Witte, Valerie; Kerre, Etienne E.

Abstract
The reduction of noise in an image, considered as a goal itself or as a pre-processing step, is an important issue. Besides classical filters, a wide variety of fuzzy filters has been developed. These filters use techniques from fuzzy set theory, and have the ability to incorporate the uncertainty that is involved in noise detection. However, it is very difficult to judge the quality of these filters. The goal of our comparative study is to select those filters that have the best performance for Gaussian noise reduction, and to investigate whether the use of fuzzy techniques represents a substantial improvement.

References

1. Kaoru Arakawa,
 Median filter based on fuzzy rules and its application to image restoration,
 Fuzzy Sets and Systems, v.77 n.1, pp.3-13,
 January 15, 1996
2. Arakawa, K.
 Fuzzy rule-based image processing with optimization,
 Springer-Verlag, Heidelberg, Germany, pp. 222-247.
3. Young Sik Choi, R. Krishnapuram,
 Image enhancement based on fuzzy logic,
 October 23-26, 1995
4. Farbiz, F. and Menhaj, M.B.
 A fuzzy logic control based approach for image filtering,
 Springer-Verlag, Heidelberg, Germany, pp. 194-221.
5. Farbiz, F., Menhaj, M.B. and Motamedi, S.A.
 Edge preserving image filtering based on fuzzy logic,
6. Forero-Vargas, M.G. and Delgado-Rangel, L.J.
 Fuzzy filters for noise reduction,

7. Jiu, J.Y.
 Multilevel Median Filter Based on Fuzzy Decision,
 (1996) DSP IC Design Lab, E.E. NTU.

8. Kwan, H.K.
 Fuzzy filters for noise reduction in images,

 Adaptive fuzzy filter and its application to image enhancement,

10. Chang-Shing Lee; Yau-Hwang Kuo; Pao-Ta Yu,
 Weighted fuzzy mean filters for image processing, Fuzzy Sets and Systems, v.89 n.2, pp.157-180,
 July 16, 1997

11. M. Mancuso; R. De Luca; R. Poluzzi; G. G. Rizzotto,
 A fuzzy decision directed filter for impulsive noise reduction,
 Fuzzy Sets and Systems, v.77, n.1, pp.111-116,
 January 15, 1996

 Fuzzy filters for noise reduction: the case of impulse noise,

13. J. R. Parker,
 Algorithms for Image Processing and Computer Vision,

14. Russo, F.
 FIRE operators for image processing,
15. Russo, F.; Ramponi, G.
 A noise smoother using cascade FIRE filters,

16. Russo, F.; Ramponi, G.
 A fuzzy filter for images corrupted by impulse noise,

17. Russo, F.; Ramponi, G.
 Removal of impulse noise using a FIRE filter,
 (1996b) IEEE Proceedings of ICIP, Lausanne, Switzerland, pp. 975-978.

 A fuzzy impulse noise detection and reduction method,

 Fuzzy-similarity-based noise cancellation for real-time image processing,

20. Tolt, G.; Kalaykov, I.
 Real-time image noise cancellation based on fuzzy similarity,

 Noise reduction by fuzzy image filtering,

22. Van der Weken, D; Nachtegael, M.; Kerre, E.E.
 Using similarity measures for histogram comparison,

 Using similarity measures and homogeneity for the comparison of images,

24. Wang, J.-H.; Chiu, H.-C.
 HAF: an adaptive fuzzy filter for restoring highly corrupted images by histogram estimation,
Authors’ affiliation

Ghent University, Department of Applied Mathematics and Computer Science, Krijgslaan 281 S9, B-9000 Ghent, Belgium.