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Abstract—In this paper, we define an online algorithm to
learn the generalized cosine similarity measures fork-NN
classification and hence a similarity matrix A corresponding to
a bilinear form. In contrary to the standard cosine measure the
normalization is itself dependent on the similarity matrix which
makes it impossible to use directly the algorithms develomgke
for learning Mahanalobis distances, based on positive, sém
definite (PSD) matrices. We follow the approach where we

The rest of the paper is organized as follows: Section 2 de-
scribes the problem we are dealing with, where we define the
generalized cosine similarity. The online algorithm, gon
with the projections onto the set of positive, semi-definite
(PSD) matrices, for both the separable and inseparable
cases, are discussed in Section 3. Theoretical justifitatio
for the algorithm is described in Section 4. Finally, sectio

first find an appropriate matrix and then project it onto the
set of PSD matrices, which we have adapted to the particular
form of generalized cosine similarities, and more particuhrly
to the fact that such measures are normalized. The resulting
online algorithm as well as its batch version is fast and has
got better accuracy as compared with state-of-the-art metbds
on standard data sets.

provides experimental validation along with a comparison
with other methods.

Il. PROBLEM SETTING

Letx andz’ be two examples iiR?. We consider similarities
of the form:
Keywords-Generalized cosine; Similarity learning;k-NN clas-
sification , xt Ax’
sa(z, ') = ==
VatAxva't Ax’
whereA > 0 is a positive, semi-definite matrix. By choosing

Many people have used the underlying geometry of theA as the identity matrix, equation 1 becomes the standard

data to improve thek-NN algorithm (e.g. by learning cosine similarity. Other positive, semi-definite matricks

S S = fine different scalar products and norms, so that equation 1
Mahanalobis distance metric instead of standard euclidean o . .
. ; corresponds to a cosine in a new basis of the underlying
distance), thus paving the way for a new research areg

termed metric learning Most of these works have based vector space. Because of this property, we will say that

their approaches on distance learning [1], [2], [3], [4]. [5 g?rl;ﬁgzgels corresponds to the family of Generalized Cosine
However, some other works have constated that similarity : . .
; PR .7 The examples we consider are in the form of tuples,
should be preferred over distance. A similarity is dramati- , . .
(z,2',y) where each example is composed of the instance

cally different from the distance since it is not necesgaril pair (z,2') and a labely which is +1 whenz and 2’ are

positive and it also does not obey the triangle inequality'similar and is -1 in the case when they are dissimilar. When

Similarity measures are usually preferred over distan@s on the data is separable, the margin of a sample, S, denoted by

while dealing with textual data, where cosine measure hag ; ; - i .
: . v, is defined as the minimum separation between all pairs
been proved to be more appropriate as compared with the _1) examples:

various distance metrics. Still many approaches [6], [7],Of similar (21, 21, +1) and dissimilar(z,, z3,
[8], [9], including ours where we learn generalized cosine
similarities, show that cosine similarity should be consid
ered as opposed to the euclidean distance, over non-textuy introducing a threshold € R, the above equation can
collections (e.g.Balance lonosphere Iris and Wine in  be rewritten as:

addition to the textual ones. This explains the importarfce o
learning appropriate similarity measures, instead ofdist
metrics, fork-NN classification over various data collections.
If several works have partially addressed this problemdas f
example [10], [11], [12], [9]) for different applicationsye =~ wherey > 0 and—1+~v < b < 1 —+. The two inequalities
know of no work which has fully addressed it in the contextcan be combined to form a single linear constraint:

for generalized cosine similarities. This is exactly thelgo
of the present research.
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V(z,2',y) y=+1=sa(z,2’) > b+~

V(z,2',y) :y=—1=sa(z,2’) <b—1

y(b—sa(x,2)) < —y ©)



Considering tuples of the fornir., z.,y,), at each time Let us introduce the following two quantities, which will
step, or roundr, we can compute the loss incurred by the allow us to define a simple projection:
current matrix-threshold paitA, b) as: )
= min[z' Az, 2"t Az']
I:(A,b) = max{0,y, (b — sa(z-,2)) + 7} -1
which is a variant of the hinge loss. Our goal is thus to find
a matrix-threshold paifA, b) which minimizes the overall Ry
loss. When the data is separable, there exists a matrix- _
threshold pair such that the overall loss is 0 (as inequality & have:
holds for matrix-threshold pairs separating the data). We . 2t AL .
now present an online algorithm to learn a matrix-threshold ~ Ry1(2"42") € ——=——=—— < R (2" A7)
pair, reviewing the cases where the data is separable and is vt AVt Az

= maz[z' Az, 2"t Az']

inseparable. By subtractingb from all terms and multiplying by, we
get:
[11. ONLINE ALGORITHM
. tAx!
In the case where the data is separaBlé,> 0, 3b, —1 + y[Ry1(x'A2’) —b] < y __rar b]
v < b < 1 —~ such that the matrix-threshold pair, b) VItAIVtx’tf}x’
completely separates the data, i.e. has zero loss for al tim < y[R-1(2" Az’) — ]

steps. Because the matrik should separate the data and o " _

be, at the same time, positive, semi-definite, one can relpubstitutingA to y[——="2—— — b], we arrive at:

on a strategy based on first finding a matrix-threshold pair

with zero loss and close to the current matrix-threshold pai { Ryi(a'Ax’) —b < A< R (z'Ax') —b ify=1
and second on projecting the obtained matrix on the sel R-i(z'Az') —b< A< Rii(a'Ax’)—b if y=—1
of positive, semi-definite matrices (an approach remimsce

of the one defined in [4]). The first step aims at finding Hence, matrix-threshold paifsi, b) such that:
matrix-threshold pairs with small loss, whereas the second

step ensures the fact that the obtained matrix is positive, (Ri1(2"Az") =) >y A (b= Roa(a' Aa") > v

semi-definite and hence defines a valid generalized cosine, ) -
similarity. will have zero loss. The two inequalities correspond to the

two different types of data we are dealing with: similar
examplesy = +1), and dissimilar exampleg = —1).

Using the aforementioned inequalities, we can define two
subsets ofC. on which the current matrix-threshold pair
should be projected according to the valueyof

Let C, C R™*+1 pe the set of all matrix-threshold pairs
having zero loss on example,, z., y.):

Cr = {(A,b) e R"* 11 (A,b) =0}

We then defineC, as the set of all admissible matrix- , 2y L _
threshold pairs: Crr={(4b) € Rn; tRyi(a'Aa) —b >~} ify=1
) Clm ={(Ab) e RV L —R_4(2'Az) + b >~} ify=—1
Co={(AD)eR" ™ :A4>0,-14+~7<b<1—7}
which can be conveniently rewritten:
The update step of our algorithm is thus based on two
. . 2
projections: Ol = {(A,b) e R T . yR, (2" Az')—yb > v}, y € {-1,+1}
1) First, project the current matrix-threshold pai, b-) o _
on C,. The matrix threshold pair thus obtained is The orthogonal projection ofA-,b;) (the current matrix-

denoted by(A:,b:), threshold pair) orC?, i.e. the closest element frofal,, b, )
2) Then projeci{A:,b;) onto C, to get(A, 1,br11) in C7¥, takes the form:
We now review these two projections. A: = Ar +ya(zz’t), with a € R,yR,(z! Asa’) — yb = v

A. Projection ontoC'
b = br+uya

The set of matrix-threshold pairs having zero losgen’)
can be rewritten as: where

xt Ax! B> o= v —yRy(z"As2") + yb
T 4z Ry ([[=]*['[1?)

Cr = {(A,b) e RV 11y



B. Projection ontoC, the eigenvalues and eigenvectors of mattix)

In order to describe the projection ontfy, we can note that bz =br +ya

A-41 is the projection ofA; onto the set of all positive, if (b7 >0)

semi-definite matrices, anfg ., the one ofb; onto the set by i1 = min(bs, 1 —7)
beR:—14+~4<b<1—7. else

In order to projectA; onto the set of all positive,
semi-definite matrices, we use the decompositidn, =
> Ajujul’, where \; and u; are the eigenvalues and

elggnv_ectorsf Zf the m?]tr'XAf‘ TPePg'SmX AT“ IS thef The above algorithm assumes that the data is separable. In
projection of A; qu the set.o matnce; (see for the case where the data is inseparable, the loss becomes
example [13]). Kr_10wmg the eigenvalues and e'ger“’ecmr?lon—zero, which can be dealt with by introducing a new
of Az, we can writed,, as: parametery; which is used to decrease the previously
introduced marginy (this affects only the projection onto

bry1 =maz(bs, —1+7)

— sl L. .
Aryr = Z AU C,, the projection onta”, being left unchanged). The set
32 >0 C. thus becomes:
If the matrix A; is already symmetric, we use symmetric ) ot Az
Householder reduction to convert it into a tridiagonal nxatr C;, = {(Ab)eR" T y[———F—m= -}
followed by QR transformation. On the contrary, we convert . VatAzyzt Az
it to Hessenberg form before converting to real Schur form. Z 7=}

These forms make it easier to find the eigenvalues and thgettings = v — +; leads to:

eigenvectors. Template Numerical ToolKNT* was used to ,

find the eigenvalues and eigenvectors for the projectiohs. A C2Y = {(4,b) € R" *' . yR, (' Aa')+yb > B}, y € {—1,+1}
ternatively, one can also use Lanczos method [13] along wit
symmetric tridiagonal QR algorithm or bisection method to
find the eigenvalues and the eigenvectorsief _ B—yRy(z"A;2") + yb

a =
C. Algorithm R, (|lIPTl2']P)
We denote the algorithm based on the above method gdowever, the rest of the algorithm remains the same.
gCosLA for Gengralized Cpsipe Learning Algorithm. The IV. ANALYSIS
update rule consists of projecting the matrixonto the set
of PSD matrices. For each example (in the form of a pair
the loss is calculated based on the similasity The update
is performed only in case the loss is greater than zero.

i1’his finally yields the modified value far:

)'The following theorem provides a loss bound for the algo-
rithm gCosLAiIn the separable case. It assumes the existence
of a PSD matrix4 which separates the data in a strict sense,
as well as the existence of an upper bound on the scalar

. product between all basic instance pairs. The inseparable

gCosLA - Training case is treated in exactly the same way by replacing the

Input: training set of the form{z, 2", y), of n vectors inR?,  positive real numbery with an arbitrary real number, not

number of epochd/; b represents the threshold necessarily positives.

Output: list of (p x p) matrices((A1,b1),- -, (Aq,bq)) Theorem 1: Le{xy, 2}, v1), - (zr,2),y-),--- be a se-

Initialization ¢ =1, A, = I (identity matrix),b =0,y >0  duence of examples. For any PSD matxlet:

Repeat M times (epochs 1
o roer) 7 = minlw Av, ol Arf), 1<
- ’ —1
get triplet(z,2’,+1) € R™ x R" and
.ZT(A’ b) = maz{0,y(b = sa(,2)) + 7} — = mazfz' Az, 2 A2l), 1< i
if (I-(A,b)>0) Ry
%ﬂ = maz|(z' Az), (2" Az')] Assume that there exists a positive, semi-definite matrix
Rl,l = min[(x' Az), (2"t Az")) a real number and a positive real numbey such that:
a= W (Ryq(2"Az") —b) >y A (b— R_(2'A2’) > v
- 1t
Ar = Ar +ya(wz”) . Using the notations introduced previously, [Bte R* be
Arg1 =225, 50 Ajuju; (Where); andu; are an upper bound such that:

!Can be obtained from http://math.nist.gov/tnt/index.htm Ry||z|?||z'||* < R, y € {-1,+1}



Then the following bound holds for any > 1: matrices and ultimately selecting the one which produces
maximum accuracy on the first validation set.

M
9 2 9 Combining the prediction rules mentioned above, with our
;(ZT(A’ b)) <R (HA T2 + () ) algorithm, we get four different possibilities for comsamn:

1) Standardk-NN rule with the cosine similarity by
A proof of theorem 1 can be established along the same  yeplacingA matrix by the Identity matrix. This rule is
lines as the proof of the loss bound provided for B@LA refered to akNN-cos
algorithm in [4]. As it is mainly technical, we omit it here. ) Standarck-NN rule with the similarity, based on the
In [4], the only requirement made is the fact that the data  general cosine as in the equation 1, learned with the

should lie in a sphere of radiuR. This requirement is algorithmgCosLA This method is termed de\N-A
translated in the case of a generalized cosine similarity 3) The symmetric prediction rule with the cosine simi-
by the fact that the scalar product between data points, larity having A = I, which we call asSkNN-cos
normalized by its maximum or minimum Va|ueS, is bounded. 4) Symmetric prediction rule with the Sim"arity, based
This leads to a stricter notion of separation. It however on the general cosine given in the equation 1, learned
allows one to rely on simple projections. with gCosLA This method appears &kNN-A

As the inseparable case can be treated in exactly the samg,jess otherwise stated. we used a binary version of

way, by directly replacing the positive scalarby 5, a  gcosLA in which a sequence of matrices is learned for
scalar not necessarily positive, one can see that the comdit o, classdne vs othets and assessed the quality of a

imposed is not really restrictive, and leads to an algorithn‘bi\/en method with its average accuracy (i.e. the accuracy
with an explicit bound on the loss function. averaged over the different classes).

V. EXPERIMENTAL VALIDATION A. Overall Results

We compared the four methods we retained on all of our

are part of the UCI database ([14]), namelgnosphere cpllect!ons. The comparison betwegﬁ,osl_.Aand cosine is
given in table Il. It is pertinent to mention here that we

Iris, Wine Balance Soybean (Small)Glass Identification . .
Pima Indians Diabetes BUPA liver Disordemnd Letter ~ 9VV¢ only the best results obtained over k=1 and k=3. We
glEan see thagCosLAperforms much better than cosine on

We used nine different datasets to assg€®sLA which

RecognitionThese are standard collections which have bee . ) .
g alance(gain of 1.7%),Wine (gain of 2.4%),lonosphere

used by different research communities (machine learnin

patternyrecognition, statistics etc.). The (informatiomuab (gain of 3.6%) and_ivgr (better by 4'50/.0)' The performance

the datasets is summarized in the table I. of all of the methods is comparable fbis, Letter, So_ybean.
In order to create pairs of examples, we found 5 neares"’[md Glass We can also observe that the symmetric version

neighbors for each example from the class it belongs to?f kNN perform better than the standaktiN Fu_rthermore,

Additionally, the same number of nearest neighbors fromIt can be noted thaBkNN-Amethod along withgCosLA

different classes was also found. We used a batch version ce%gorlthm has the best accuracy.

gCosLA based on the approach described by [151: based oB. Comparison with previous approaches

the average of the different matrices learAt= llel We give here a detailed comparison between our approach

We futhermore used two classification rules: the standardnd several state of the art methods. The first two learn
kNN rule and a symmetric version of it which consists similarity [7], [9] whereas the next three are interested
in computing thek-nearest neighbors in each class and inin learning distances with kNN algorithm [2], [16], [5].
selecting the class with the highest overall similarity. The algorithms are: Similarity Learning Algorithr8iLA
5-fold nested cross-validation was used to learn the matriSimilarity Learning with Neural NetworlSNN Information
sequenceé A, --- , A,) for all of the datasets. The number Theoretic Metric LearninglTML, Maximally Collapsing
of iterations and the number of matrices to be used was alsdletric LearningMCML, Large Margin Nearest Neighbor
learnt. As already stated, in a sequence of hypothesisaghe | LMNN and a multiclass version of SVMSILA [9] also
g elements may be more interesting than the earlier ones. llearns a similarity matrix which can be diagonal, symmetric
order to determine the optimum number of epochs and ther asymmetric. However, the normalization is independant
value ofq, a validation set was used. Another validation setof the similarity matrix learnt. They have used voted per-
was employed to determine the best valugo?0 percent of ceptron of [17] which cannot be used in our case. The
the data was used for test purpose for each of the dataset. Gimilarity used inSNNis always positive, unlikeyCosLA
the remaining data, 70 percent was used for learning whereasving to the use of sigmoidal functionTML uses an
15 percent each for the two validation sets. It was observethformation-theoretic approach based on Stein’s lossamle
that for each dataset, the best value ®fis different. A the Mahalanobis metric, where it imposes constraints on
greedy strategy was used, by generating a large number dfie distances between examples, constraints that can be



Iis  Wine Balance lonosphere Glass Soybean Pima Liver Lette
Learning ex. 84 100 350 196 120 26 430 193 11200
Validation ex. 36 43 150 81 52 12 185 83 4800
Test ex. 30 35 125 70 42 9 153 69 4000
Classes 3 3 2 6 4 2 2 26
Features 13 4 34 9 35 8 6 16
Table |
CHARACTERISTICS OF DATASETS
kNN-cos  kNN-A@SILA)  kNN-A(gCosLA  SkNN-cos  SkNN-A GiLA)  SkNN-A (gCosLA
Soybean 1.0 0.994 1.0 0.989 0.989 1.0
Iris 0.987 0.987 0.987 0.982 0.987 0.989
Letter 0.997 0.962 0.994 0.997 0.962 0.995
Balance 0.959 0.979 0.986 0.969 0.983 0.986
Wine 0.905 0.916 0.933 0.909 0.916 0.933
lonosphere  0.871 0.911 0.907 0.871 0.911 0.907
Glass 0.902 0.902 0.905 0.902 0.902 0.905
Pima 0.652 0.647 0.664 0.665 0.678 0.665
Liver 0.632 0.609 0.691 0.658 0.609 0.703

Table I
RESULTS FOR ALL COLLECTIONS

relaxed for finding an admissible solutioMCML uses a for Wing SNN has got a better performance as compared
conditional distribution over data points which reflecte th with our algorithm. The primary reason for this is ti&itIN
fact that, ideally, points in the same class should have avas able to down-weigh an influential attribute fdfine
high conditional probability (the class is collapsed), wvdas  whereas our method was unable to do so, since we do not
points from different classes should have a low one (e.g. O)perform feature selection whilSNNdoes so.

Looking for the probability distribution which minimizes  gCosLAperformed much better thaMCML and Multi-

the Kullback-Leibler divergence with the ideal distribu- class SVMfor all of the three collections considered. Our
tion leads to a convex optimization problem, the solutionmethod also outperformedMNN and ITML on two out

of which involves computing the eigen-decomposition ofof three data sets, nameBalanceand Iris. However they
the probability matrix.LMNN proposes the use of semi- performed better thagCosLAon Wine because they were
definite programming for learning a Mahanalobis distanceable to down-weigh an influential attribute liK&NN

that ensures a separation with a certain margin between

the examples. To compare our method basedgGosLA VI. CONCLUSION

with previous approaches, we used a multiclas_s version_ar\(,;{/e have developed in this paper an algoritrgGosLA to
comp.utedlthe global accuracy. The results of this COMPaNSOaan generalized cosine similarity measures, for botimenl
are given in table lll. We compare the methods on three UC<L;1nd batch modes. Because generalized cosine similarities
datasets common to all of the approaches. are based on scalar products, they involve bilinear forms

ComparinggCosLAwith SiLA we can see that foBal-  defined by positive, semi-definite matrices. However, the
anceand Wine gCosLAnot only outperformediLAbut it normalization introduced in the cosine similarity prevent
also required much fewer iterations for convergence. Thene from directly re-using algorithms previously introgdc
performance fogCosLAis on par with that oSiLAonlris.  for learning say Mahalanobis distances, also based on PSD
We also compared the binary versiong@osLAwith that  matrices. We have followed in this work the approach
of SILA (part of table Il).gCosLAperformed significantly  defined in [4], which consists in first finding an appropriate
better thanSiLA on Wine (93.3% vs 91.6%)Liver (70.3%  matrix and then projecting it on the set of PSD matrices,
vs 60.9%) and.etter (99.5% vs 96.2%) data sets with both which we have adapted to the particular form of generalized
kNN-A and SKNN-A Furthermore, we can observe that the cosine similarities, and more particularly to the fact that
performance ofjCosLAis on par withSiLAfor the rest of  sych measures are normalized. We have then experimentally
the datasets. HowevgCosLAconverged faster as compared tested our algorithm on several standard collections fiven t
with SiLAfor all of these datasets. UCI database.

While comparinggCosLAwith SNN we note that our We also compared the binary version g€osLA with
method outperforme®NN for Balanceand Iris. However that of SiLA The performance ofCosLAis significantly



gCosLA (kNN-A)  SILA (kNN-A) SNN  MCML LMNN ITML Multiclass SVM
Balance 0.976 0.952 0.879 0.925 0.916 0.920 0.922
Wine 0.880 0.863 0.951 0.837 0.974 0.974 0.801
Iris 0.973 0.982 0.934 0.967 0.953 0.961 0.956
Table il

DIFFERENT SIMILARITY AND METRIC LEARNING ALGORITHMS ON UCI DATASETS

better than that oSiLA on Wine (93.3% vs 91.6%)Liver

(70.3% vs 60.9%) and.etter (99.5% vs 96.2%) data sets
with both kNN-A and SKNN-A Furthermore, we observed
that the performance @fCosLAis on par withSiLA for the
rest of the data sets. HowevgCosLAconverged faster as
compared withSiLA for all of these datasets.

We have also compared a multiclass version of our
algorithm with other state of the art approacheBatance

Iris andWine (only 3 datasets were chosen since these were

common to all methods). ComparirgCosLAwith SiLA
we can see that foBalanceand Wing gCosLAnot only
outperformedSiLA but it also converged very rapidly. The
performance forgCosLAis on par with that ofSiLA on

Iris

gCosLAwith SNN we note that our method outperformed

but neverthelessgCosLAis faster. While comparing

SNNfor Balanceand Iris. However forWing SNNhas got

a better performance as compared with our algorithm. The

primary reason for this is th&NNwas able to down-weigh
an influential attribute folWine whereas our method was
unable to do so, since we do not perform feature selection
while SNNdoes so. Our method also outperformedNN
andITML on two out of three data sets, nam8alanceand

Iris.

However they performed better thgosLAon Wine

(5]

(6]

[7]

(8]

(10]

because they were able to down-weigh an influential atmibut[lll

like SNN gCosLAperformed much better thailCML and

Multiclass SVMfor all of the three collections considered.
Since dot products can be easily expressed with kernels,

gCosLAcan be extended to employ kernels, which we pla
to investigate in the future. Feature selection can also b
incorporated to improve the performance of our algorithm.
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