
Online and Batch Learning of Generalized Cosine Similarities

Ali Mustafa Qamar and Eric Gaussier
Laboratoire d’Informatique de Grenoble (LIG)

Grenoble University, France
ali-mustafa.qamar@imag.fr, eric.gaussier@imag.fr

Abstract—In this paper, we define an online algorithm to
learn the generalized cosine similarity measures fork-NN
classification and hence a similarity matrixA corresponding to
a bilinear form. In contrary to the standard cosine measure,the
normalization is itself dependent on the similarity matrix which
makes it impossible to use directly the algorithms developed
for learning Mahanalobis distances, based on positive, semi-
definite (PSD) matrices. We follow the approach where we
first find an appropriate matrix and then project it onto the
set of PSD matrices, which we have adapted to the particular
form of generalized cosine similarities, and more particularly
to the fact that such measures are normalized. The resulting
online algorithm as well as its batch version is fast and has
got better accuracy as compared with state-of-the-art methods
on standard data sets.

Keywords-Generalized cosine; Similarity learning;k-NN clas-
sification

I. I NTRODUCTION

Many people have used the underlying geometry of the
data to improve thek-NN algorithm (e.g. by learning
Mahanalobis distance metric instead of standard euclidean
distance), thus paving the way for a new research area
termed metric learning. Most of these works have based
their approaches on distance learning [1], [2], [3], [4], [5].
However, some other works have constated that similarity
should be preferred over distance. A similarity is dramati-
cally different from the distance since it is not necessarily
positive and it also does not obey the triangle inequality.
Similarity measures are usually preferred over distance ones
while dealing with textual data, where cosine measure has
been proved to be more appropriate as compared with the
various distance metrics. Still many approaches [6], [7],
[8], [9], including ours where we learn generalized cosine
similarities, show that cosine similarity should be consid-
ered as opposed to the euclidean distance, over non-textual
collections (e.g.Balance, Ionosphere, Iris and Wine) in
addition to the textual ones. This explains the importance of
learning appropriate similarity measures, instead of distance
metrics, fork-NN classification over various data collections.
If several works have partially addressed this problem (as for
example [10], [11], [12], [9]) for different applications,we
know of no work which has fully addressed it in the context
for generalized cosine similarities. This is exactly the goal
of the present research.

The rest of the paper is organized as follows: Section 2 de-
scribes the problem we are dealing with, where we define the
generalized cosine similarity. The online algorithm, along
with the projections onto the set of positive, semi-definite
(PSD) matrices, for both the separable and inseparable
cases, are discussed in Section 3. Theoretical justification
for the algorithm is described in Section 4. Finally, section 5
provides experimental validation along with a comparison
with other methods.

II. PROBLEM SETTING

Let x andx′ be two examples inRp. We consider similarities
of the form:

sA(x, x′) =
xtAx′

√
xtAx

√
x′tAx′

(1)

whereA ≥ 0 is a positive, semi-definite matrix. By choosing
A as the identity matrix, equation 1 becomes the standard
cosine similarity. Other positive, semi-definite matricesde-
fine different scalar products and norms, so that equation 1
corresponds to a cosine in a new basis of the underlying
vector space. Because of this property, we will say that
equation 1 corresponds to the family of Generalized Cosine
Similarities.

The examples we consider are in the form of tuples,
(x, x′, y) where each example is composed of the instance
pair (x, x′) and a labely which is +1 whenx and x′ are
similar and is -1 in the case when they are dissimilar. When
the data is separable, the margin of a sample, S, denoted by
2γ, is defined as the minimum separation between all pairs
of similar (x1, x

′
1, +1) and dissimilar(x2, x

′
2,−1) examples:

sA(x1, x
′
1) − sA(x2, x

′
2) ≥ 2γ (2)

By introducing a thresholdb ∈ R, the above equation can
be rewritten as:

∀(x, x′, y) : y = +1 ⇒ sA(x, x′) ≥ b + γ

∀(x, x′, y) : y = −1 ⇒ sA(x, x′) ≤ b − γ

whereγ > 0 and−1+ γ ≤ b ≤ 1− γ. The two inequalities
can be combined to form a single linear constraint:

y(b − sA(x, x′)) ≤ −γ (3)

Considering tuples of the form(xτ , x′
τ , yτ), at each time

step, or roundτ , we can compute the loss incurred by the
current matrix-threshold pair(A, b) as:

lτ (A, b) = max{0, yτ (b − sA(xτ , x′
τ)) + γ}

which is a variant of the hinge loss. Our goal is thus to find
a matrix-threshold pair(A, b) which minimizes the overall
loss. When the data is separable, there exists a matrix-
threshold pair such that the overall loss is 0 (as inequality3
holds for matrix-threshold pairs separating the data). We
now present an online algorithm to learn a matrix-threshold
pair, reviewing the cases where the data is separable and is
inseparable.

III. O NLINE ALGORITHM

In the case where the data is separable,∃A ≥ 0, ∃b,−1 +
γ ≤ b ≤ 1 − γ such that the matrix-threshold pair(A, b)
completely separates the data, i.e. has zero loss for all time
steps. Because the matrixA should separate the data and
be, at the same time, positive, semi-definite, one can rely
on a strategy based on first finding a matrix-threshold pair
with zero loss and close to the current matrix-threshold pair,
and second on projecting the obtained matrix on the set
of positive, semi-definite matrices (an approach reminiscent
of the one defined in [4]). The first step aims at finding
matrix-threshold pairs with small loss, whereas the second
step ensures the fact that the obtained matrix is positive,
semi-definite and hence defines a valid generalized cosine
similarity.

Let Cτ ⊂ R
n2+1 be the set of all matrix-threshold pairs

having zero loss on example(xτ , x′
τ , yτ):

Cτ = {(A, b) ∈ R
n2+1 : lτ (A, b) = 0}

We then defineCa as the set of all admissible matrix-
threshold pairs:

Ca = {(A, b) ∈ R
n2+1 : A ≥ 0,−1 + γ ≤ b ≤ 1 − γ}

The update step of our algorithm is thus based on two
projections:

1) First, project the current matrix-threshold pair(Aτ , bτ)
on Cτ . The matrix threshold pair thus obtained is
denoted by(Aτ̂ , bτ̂),

2) Then project(Aτ̂ , bτ̂) onto Ca to get(Aτ+1, bτ+1)

We now review these two projections.

A. Projection ontoCτ

The set of matrix-threshold pairs having zero loss on(x, x′)
can be rewritten as:

Cτ = {(A, b) ∈ R
n2+1 : y[

xtAx′
√

xtAx
√

x′tAx′
− b] ≥ γ}

Let us introduce the following two quantities, which will
allow us to define a simple projection:

1

R−1
= min[xtAx, x′tAx′]

1

R+1
= max[xtAx, x′tAx′]

We have:

R+1(x
tAx′) ≤ xtAx′

√
xtAx

√
x′tAx′

≤ R−1(x
tAx′)

By subtractingb from all terms and multiplying byy, we
get:

y[R+1(x
tAx′) − b] ≤ y[

xtAx′
√

xtAx
√

x′tAx′
− b]

≤ y[R−1(x
tAx′) − b]

SubstitutingA to y[xtAx′

√
xtAx

√
x′tAx′

− b], we arrive at:

{

R+1(x
tAx′) − b ≤ A ≤ R−1(x

tAx′) − b if y = 1
R−1(x

tAx′) − b ≤ A ≤ R+1(x
tAx′) − b if y = −1

Hence, matrix-threshold pairs(A, b) such that:

(R+1(x
tAx′) − b) ≥ γ ∧ (b − R−1(x

tAx′) ≥ γ

will have zero loss. The two inequalities correspond to the
two different types of data we are dealing with: similar
examples(y = +1), and dissimilar examples(y = −1).
Using the aforementioned inequalities, we can define two
subsets ofCτ on which the current matrix-threshold pair
should be projected according to the value ofy:

C′+
τ = {(A, b) ∈ R

n2+1 : R+1(x
tAx′) − b ≥ γ} if y = 1

C′−
τ = {(A, b) ∈ R

n2+1 : −R−1(x
tAx′) + b ≥ γ} if y = −1

which can be conveniently rewritten:

C′y
τ = {(A, b) ∈ R

n2+1 : yRy(xtAx′)−yb ≥ γ}, y ∈ {−1, +1}

The orthogonal projection of(Aτ , bτ) (the current matrix-
threshold pair) onC′y

τ , i.e. the closest element from(Aτ , bτ)
in C′y

τ , takes the form:






Aτ̂ = Aτ + ya(xx′t), with a ∈ R, yRy(x
tAτ̂x′) − yb = γ

bτ̂ = bτ + ya

where

a =
γ − yRy(x

tAτx′) + yb

Ry(||x||2||x′||2)

B. Projection ontoCa

In order to describe the projection ontoCa, we can note that
Aτ+1 is the projection ofAτ̂ onto the set of all positive,
semi-definite matrices, andbτ+1 the one ofbτ̂ onto the set
b ∈ R : −1 + γ ≤ b ≤ 1 − γ.

In order to projectAτ̂ onto the set of all positive,
semi-definite matrices, we use the decomposition,Aτ̂ =
∑

j λjuju
T
j , where λj and uj are the eigenvalues and

eigenvectors of the matrixAτ̂ . The matrix Aτ+1 is the
projection of Aτ̂ onto the set of PSD matrices (see for
example [13]). Knowing the eigenvalues and eigenvectors
of Aτ̂ , we can writeAτ+1 as:

Aτ+1 =
∑

j,λj>0

λjuju
T
j

If the matrixAτ̂ is already symmetric, we use symmetric
Householder reduction to convert it into a tridiagonal matrix
followed by QR transformation. On the contrary, we convert
it to Hessenberg form before converting to real Schur form.
These forms make it easier to find the eigenvalues and the
eigenvectors. Template Numerical ToolkitTNT1 was used to
find the eigenvalues and eigenvectors for the projections. Al-
ternatively, one can also use Lanczos method [13] along with
symmetric tridiagonal QR algorithm or bisection method to
find the eigenvalues and the eigenvectors ofAτ̂ .

C. Algorithm

We denote the algorithm based on the above method as
gCosLA for Generalized Cosine Learning Algorithm. The
update rule consists of projecting the matrixA onto the set
of PSD matrices. For each example (in the form of a pair),
the loss is calculated based on the similaritysA. The update
is performed only in case the loss is greater than zero.

gCosLA - Training

Input: training set of the form(x, x′, y), of n vectors inR
p,

number of epochsM ; b represents the threshold

Output: list of (p × p) matrices((A1, b1), · · · , (Aq, bq))

Initialization t = 1, A1 = I (identity matrix),b = 0, γ > 0
RepeatM times (epochs)

for i = 1, · · · , n

get triplet(x, x′,±1) ∈ Rn × Rn

lτ (A, b) = max{0, y(b − sA(x, x′)) + γ}
if (lτ (A, b) > 0)

1
R+1

= max[(xtAx), (x′tAx′)]
1

R−1
= min[(xtAx), (x′tAx′)]

a =
γ−yRy(xtAτ x′)+yb

Ry(||x||2||x′||2)
Aτ̂ = Aτ + ya(xx′t)

Aτ+1 =
∑

j,λj>0 λjuju
T
j (whereλj anduj are

1Can be obtained from http://math.nist.gov/tnt/index.html

the eigenvalues and eigenvectors of matrixAτ̂)
bτ̂ = bτ + ya

if (bτ̂ > 0)

bτ+1 = min(bτ̂ , 1 − γ)

else
bτ+1 = max(bτ̂ ,−1 + γ)

The above algorithm assumes that the data is separable. In
the case where the data is inseparable, the loss becomes
non-zero, which can be dealt with by introducing a new
parameterγ1 which is used to decrease the previously
introduced marginγ (this affects only the projection onto
Cτ , the projection ontoCa being left unchanged). The set
Cτ thus becomes:

Cτ = {(A, b) ∈ R
n2+1 : y[

xtAx′
√

xtAx
√

x′tAx′
− b]

≥ γ − γ1}

Settingβ = γ − γ1 leads to:

C′y
τ = {(A, b) ∈ R

n2+1 : yRy(xtAx′)+yb ≥ β}, y ∈ {−1, +1}

This finally yields the modified value fora:

a =
β − yRy(x

tAτx′) + yb

Ry(||x||2||x′||2)
However, the rest of the algorithm remains the same.

IV. A NALYSIS

The following theorem provides a loss bound for the algo-
rithm gCosLAin the separable case. It assumes the existence
of a PSD matrixA which separates the data in a strict sense,
as well as the existence of an upper bound on the scalar
product between all basic instance pairs. The inseparable
case is treated in exactly the same way by replacing the
positive real numberγ with an arbitrary real number, not
necessarily positive,β.

Theorem 1: Let(x1, x
′
1, y1), · · · (xτ , x′

τ , yτ), · · · be a se-
quence of examples. For any PSD matrixA, let:

1

R−1
= min[xi

tAxi, x
′
i
t
Ax′

i], 1 ≤ i

and
1

R+1
= max[xi

tAxi, x
′
i
t
Ax′

i], 1 ≤ i

Assume that there exists a positive, semi-definite matrixA,
a real numberb and a positive real numberγ such that:

(R+1(x
tAx′) − b) ≥ γ ∧ (b − R−1(x

tAx′) ≥ γ

Using the notations introduced previously, letR ∈ R
+ be

an upper bound such that:

Ry||x||2||x′||2 ≤ R, y ∈ {−1, +1}

Then the following bound holds for anyM ≥ 1:

M
∑

τ=1

(lτ (A, b))2 ≤ R
(

||A − I||22 + (b)2
)

A proof of theorem 1 can be established along the same
lines as the proof of the loss bound provided for thePOLA
algorithm in [4]. As it is mainly technical, we omit it here.
In [4], the only requirement made is the fact that the data
should lie in a sphere of radiusR. This requirement is
translated in the case of a generalized cosine similarity
by the fact that the scalar product between data points,
normalized by its maximum or minimum values, is bounded.
This leads to a stricter notion of separation. It however
allows one to rely on simple projections.

As the inseparable case can be treated in exactly the same
way, by directly replacing the positive scalarγ by β, a
scalar not necessarily positive, one can see that the condition
imposed is not really restrictive, and leads to an algorithm
with an explicit bound on the loss function.

V. EXPERIMENTAL VALIDATION

We used nine different datasets to assessgCosLA which
are part of the UCI database ([14]), namely,Ionosphere,
Iris, Wine, Balance, Soybean (Small), Glass Identification,
Pima Indians Diabetes BUPA liver Disordersand Letter
Recognition. These are standard collections which have been
used by different research communities (machine learning,
pattern recognition, statistics etc.). The information about
the datasets is summarized in the table I.

In order to create pairs of examples, we found 5 nearest
neighbors for each example from the class it belongs to.
Additionally, the same number of nearest neighbors from
different classes was also found. We used a batch version of
gCosLA, based on the approach described by [15], based on

the average of the different matrices learnt:A =

∑

n

l=1
Al

n
.

We futhermore used two classification rules: the standard
kNN rule and a symmetric version of it which consists
in computing thek-nearest neighbors in each class and in
selecting the class with the highest overall similarity.

5-fold nested cross-validation was used to learn the matrix
sequence(A1, · · · , An) for all of the datasets. The number
of iterations and the number of matrices to be used was also
learnt. As already stated, in a sequence of hypothesis, the last
q elements may be more interesting than the earlier ones. In
order to determine the optimum number of epochs and the
value ofq, a validation set was used. Another validation set
was employed to determine the best value ofβ. 20 percent of
the data was used for test purpose for each of the dataset. Of
the remaining data, 70 percent was used for learning whereas
15 percent each for the two validation sets. It was observed
that for each dataset, the best value ofβ is different. A
greedy strategy was used, by generating a large number of

matrices and ultimately selecting the one which produces
maximum accuracy on the first validation set.

Combining the prediction rules mentioned above, with our
algorithm, we get four different possibilities for comparison:

1) Standardk-NN rule with the cosine similarity by
replacingA matrix by the Identity matrix. This rule is
refered to askNN-cos,

2) Standardk-NN rule with the similarity, based on the
general cosine as in the equation 1, learned with the
algorithmgCosLA. This method is termed askNN-A,

3) The symmetric prediction rule with the cosine simi-
larity havingA = I, which we call asSkNN-cos,

4) Symmetric prediction rule with the similarity, based
on the general cosine given in the equation 1, learned
with gCosLA. This method appears asSkNN-A.

Unless otherwise stated, we used a binary version of
gCosLA, in which a sequence of matrices is learned for
each class (one vs others), and assessed the quality of a
given method with its average accuracy (i.e. the accuracy
averaged over the different classes).

A. Overall Results

We compared the four methods we retained on all of our
collections. The comparison betweengCosLAand cosine is
given in table II. It is pertinent to mention here that we
give only the best results obtained over k=1 and k=3. We
can see thatgCosLAperforms much better than cosine on
Balance(gain of 1.7%),Wine (gain of 2.4%),Ionosphere
(gain of 3.6%) andLiver (better by 4.5%). The performance
of all of the methods is comparable forIris, Letter, Soybean
andGlass. We can also observe that the symmetric version
of kNN perform better than the standardkNN. Furthermore,
it can be noted thatSkNN-Amethod along withgCosLA
algorithm has the best accuracy.

B. Comparison with previous approaches

We give here a detailed comparison between our approach
and several state of the art methods. The first two learn
similarity [7], [9] whereas the next three are interested
in learning distances with kNN algorithm [2], [16], [5].
The algorithms are: Similarity Learning AlgorithmSiLA,
Similarity Learning with Neural NetworkSNN, Information
Theoretic Metric LearningITML, Maximally Collapsing
Metric LearningMCML, Large Margin Nearest Neighbor
LMNN and a multiclass version of SVMs.SiLA [9] also
learns a similarity matrix which can be diagonal, symmetric
or asymmetric. However, the normalization is independant
of the similarity matrix learnt. They have used voted per-
ceptron of [17] which cannot be used in our case. The
similarity used inSNN is always positive, unlikegCosLA,
owing to the use of sigmoidal function.ITML uses an
information-theoretic approach based on Stein’s loss to learn
the Mahalanobis metric, where it imposes constraints on
the distances between examples, constraints that can be

Iris Wine Balance Ionosphere Glass Soybean Pima Liver Letter

Learning ex. 84 100 350 196 120 26 430 193 11200
Validation ex. 36 43 150 81 52 12 185 83 4800
Test ex. 30 35 125 70 42 9 153 69 4000
Classes 3 3 3 2 6 4 2 2 26
Features 4 13 4 34 9 35 8 6 16

Table I
CHARACTERISTICS OF DATASETS

kNN-cos kNN-A(SiLA) kNN-A(gCosLA) SkNN-cos SkNN-A (SiLA) SkNN-A (gCosLA)

Soybean 1.0 0.994 1.0 0.989 0.989 1.0
Iris 0.987 0.987 0.987 0.982 0.987 0.989
Letter 0.997 0.962 0.994 0.997 0.962 0.995
Balance 0.959 0.979 0.986 0.969 0.983 0.986
Wine 0.905 0.916 0.933 0.909 0.916 0.933
Ionosphere 0.871 0.911 0.907 0.871 0.911 0.907
Glass 0.902 0.902 0.905 0.902 0.902 0.905
Pima 0.652 0.647 0.664 0.665 0.678 0.665
Liver 0.632 0.609 0.691 0.658 0.609 0.703

Table II
RESULTS FOR ALL COLLECTIONS

relaxed for finding an admissible solution.MCML uses a
conditional distribution over data points which reflects the
fact that, ideally, points in the same class should have a
high conditional probability (the class is collapsed), whereas
points from different classes should have a low one (e.g. 0).
Looking for the probability distribution which minimizes
the Kullback-Leibler divergence with the ideal distribu-
tion leads to a convex optimization problem, the solution
of which involves computing the eigen-decomposition of
the probability matrix.LMNN proposes the use of semi-
definite programming for learning a Mahanalobis distance
that ensures a separation with a certain margin between
the examples. To compare our method based ongCosLA
with previous approaches, we used a multiclass version and
computed the global accuracy. The results of this comparison
are given in table III. We compare the methods on three UCI
datasets common to all of the approaches.

ComparinggCosLAwith SiLA, we can see that forBal-
anceand Wine, gCosLAnot only outperformedSiLA but it
also required much fewer iterations for convergence. The
performance forgCosLAis on par with that ofSiLAon Iris.
We also compared the binary version ofgCosLAwith that
of SiLA (part of table II).gCosLAperformed significantly
better thanSiLA on Wine (93.3% vs 91.6%),Liver (70.3%
vs 60.9%) andLetter (99.5% vs 96.2%) data sets with both
kNN-A and SkNN-A. Furthermore, we can observe that the
performance ofgCosLAis on par withSiLA for the rest of
the datasets. HowevergCosLAconverged faster as compared
with SiLA for all of these datasets.

While comparinggCosLA with SNN, we note that our
method outperformedSNN for Balanceand Iris. However

for Wine, SNN has got a better performance as compared
with our algorithm. The primary reason for this is thatSNN
was able to down-weigh an influential attribute forWine
whereas our method was unable to do so, since we do not
perform feature selection whileSNNdoes so.

gCosLAperformed much better thanMCML and Multi-
class SVMfor all of the three collections considered. Our
method also outperformedLMNN and ITML on two out
of three data sets, namelyBalanceand Iris. However they
performed better thangCosLAon Wine because they were
able to down-weigh an influential attribute likeSNN.

VI. CONCLUSION

We have developed in this paper an algorithm,gCosLA, to
learn generalized cosine similarity measures, for both online
and batch modes. Because generalized cosine similarities
are based on scalar products, they involve bilinear forms
defined by positive, semi-definite matrices. However, the
normalization introduced in the cosine similarity prevents
one from directly re-using algorithms previously introduced
for learning say Mahalanobis distances, also based on PSD
matrices. We have followed in this work the approach
defined in [4], which consists in first finding an appropriate
matrix and then projecting it on the set of PSD matrices,
which we have adapted to the particular form of generalized
cosine similarities, and more particularly to the fact that
such measures are normalized. We have then experimentally
tested our algorithm on several standard collections from the
UCI database.

We also compared the binary version ofgCosLA with
that of SiLA. The performance ofgCosLA is significantly

gCosLA (kNN-A) SiLA (kNN-A) SNN MCML LMNN ITML Multiclass SVM

Balance 0.976 0.952 0.879 0.925 0.916 0.920 0.922
Wine 0.880 0.863 0.951 0.837 0.974 0.974 0.801
Iris 0.973 0.982 0.934 0.967 0.953 0.961 0.956

Table III
DIFFERENT SIMILARITY AND METRIC LEARNING ALGORITHMS ON UCI DATASETS

better than that ofSiLA on Wine (93.3% vs 91.6%),Liver
(70.3% vs 60.9%) andLetter (99.5% vs 96.2%) data sets
with both kNN-A and SkNN-A. Furthermore, we observed
that the performance ofgCosLAis on par withSiLA for the
rest of the data sets. HowevergCosLAconverged faster as
compared withSiLA for all of these datasets.

We have also compared a multiclass version of our
algorithm with other state of the art approaches onBalance,
Iris andWine(only 3 datasets were chosen since these were
common to all methods). ComparinggCosLA with SiLA,
we can see that forBalanceand Wine, gCosLAnot only
outperformedSiLA but it also converged very rapidly. The
performance forgCosLA is on par with that ofSiLA on
Iris but nevertheless,gCosLA is faster. While comparing
gCosLAwith SNN, we note that our method outperformed
SNNfor Balanceand Iris. However forWine, SNNhas got
a better performance as compared with our algorithm. The
primary reason for this is thatSNNwas able to down-weigh
an influential attribute forWine whereas our method was
unable to do so, since we do not perform feature selection
while SNNdoes so. Our method also outperformedLMNN
andITML on two out of three data sets, namelyBalanceand
Iris. However they performed better thangCosLAon Wine
because they were able to down-weigh an influential attribute
like SNN. gCosLAperformed much better thanMCML and
Multiclass SVMfor all of the three collections considered.

Since dot products can be easily expressed with kernels,
gCosLAcan be extended to employ kernels, which we plan
to investigate in the future. Feature selection can also be
incorporated to improve the performance of our algorithm.

REFERENCES

[1] L. Baoli, L. Qin, and Y. Shiwen, “An adaptive k-nearest
neighbor text categorization strategy,”ACM Transactions on
Asian Language Information Processing (TALIP), 2004.

[2] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon,
“Information-theoretic metric learning,” inProceedings of the
24th International Conference on Machine Learning, 2007.

[3] L. R. M. Diligenti, M. Maggini, “Learning similarities for text
documents using neural networks,” inProceedings of IAPR
– TC3 International Workshop on Artificial Neural Networks
in Pattern Recognition (ANNPR), 2003.

[4] S. Shalev-Shwartz, Y. Singer, and A. Y. Ng, “Online and batch
learning of pseudo-metrics,” inICML ’04: Proceedings of
the twenty-first international conference on Machine learning.
New York, NY, USA: ACM, 2004.

[5] K. Q. Weinberger and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,”Journal of
Machine Learning Research, vol. 10, pp. 207–244, Feb 2009.

[6] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and
L. Cazzanti, “Similarity-based classification: Concepts and
algorithms,”Journal of Machine Learning Research, vol. 10,
pp. 747–776, March 2009.

[7] S. Melacci, L. Sarti, M. Maggini, and M. Bianchini, “A neural
network approach to similarity learning,” inANNPR, ser.
Lecture Notes in Computer Science, L. Prevost, S. Marinai,
and F. Schwenker, Eds., vol. 5064. Springer, 2008, pp. 133–
136.

[8] M. Peterson, T. Doom, and M. Raymer, “Ga-facilitated knn
classifier optimization with varying similarity measures,” in
Evolutionary Computation, 2005. The 2005 IEEE Congress
on, vol. 3, Sept. 2005, pp. 2514–2521 Vol. 3.

[9] A. M. Qamar, É. Gaussier, J.-P. Chevallet, and J.-H. Lim,
“Similarity learning for nearest neighbor classification,” in
ICDM, 2008, pp. 983–988.

[10] J.-P. Bao, J.-Y. Shen, X.-D. Liu, and H.-Y. Liu, “Quick asym-
metric text similarity measures,”International Conference on
Machine Learning and Cybernetics, 2003.

[11] M. Grabowski and A. Szałas, “A technique for learning
similarities on complex structures with applications to ex-
tracting ontologies,” inProceedings of the 3rd Atlantic Web
Intelligence Conf. 2005, ser. LNAI. Springer Verlag, 2000.

[12] A. Hust, “Learning Similarities for Collaborative Information
Retrieval,” in Proceedings of KI 2004 workshop ”Machine
Learning and Interaction for Text-Based Information Re-
trieval”, TIR-04, September 2004, pp. 43–54.

[13] G. Golub and C. V. Loan,Matrix Computations (2nd ed.).
John Hopkins University Press, 1989.

[14] A. Asuncion and D. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[15] O. Dekel and Y. Singer, “Data-driven online to batch conver-
sions,” in NIPS, 2005.

[16] A. Globerson and S. Roweis, “Metric learning by collapsing
classes,” inNIPS, 2005.

[17] Y. Freund and R. E. Schapire, “Large margin classification
using the perceptron algorithm,”Mach. Learn., vol. 37, no. 3,
1999.

