Characterizing the duration and association patterns of wireless access in a campus

Maria Papadopouli
Department of Computer Science
University of North Carolina at Chapel Hill
USA
maria@cs.unc.edu

Haipeng Shen
Department of Statistics & Operations Research
University of North Carolina at Chapel Hill
USA
haipeng@email.unc.edu

Manolis Spanakis
Institute of Computer Science
FORTH
Greece
spanakis@ics.forth.gr

Abstract: Our goal is to characterize the access patterns in a IEEE802.11 infrastructure. This can be beneficial in many domains, including coverage planning, resource reservation, supporting location-dependent applications and applications with real-time constraints, and producing models for simulations. We conducted an extensive measurement study of wireless users and their association patterns on a major university campus using the IEEE802.11 wireless infrastructure. We characterized and analyzed the wireless access pattern based on several parameters such as mobility, session and visit durations. We show that the mobility and building type affect the session and visit durations. As the mobility increases, the visit duration tends to decrease stochastically. The opposite happens in the case of the session duration. Moreover, there exist different stochastic orders among visit durations of different building types when conditioning on session mobility. A family of BiPareto distributions can model the visit and session duration.

1. Introduction

IEEE802.11 networks are becoming widely available in universities, corporations, and residential areas to provide wireless Internet access. Such networks are also increasingly being deployed in airports, hospitals, shopping centers, and other public areas. The deployment of the wireless infrastructure in all these environments impacts the way users access the information. For how long is a wireless client associated with an access point (AP)? What is the duration of its continuous wireless access to the Internet and for how long does it stay disconnected? What is its AP trajectory as the device roams through the wireless infrastructure? How do association patterns of different types of clients (with respect to the device, usage pattern, location, setting, mobility) differ?

Currently, most of the simulation studies on wireless networks and protocols consider simplistic association and mobility patterns for the wireless users. There are a few studies on the mobility and association patterns in cellular networks. However, the rapid deployment of the IEEE802.11 infrastructures in various environments triggers new applications and services, that in turn, generate a richer set of traces for analysis. There is a need for more realistic models of user communication and association patterns. This can be beneficial in capacity planning, administration and deployment of wireless infrastructures, protocol design for wireless applications and services, and their performance analysis.

The key issue that drives this study is the characterization of the continuous wireless access and user mobility pattern. For that, we define the session of a client to identify the continuous associations of this client to the wireless infrastructure. A session consists of a sequence of visits (one or more) without any disconnection between these consecutive visits. We characterize the session based on its mobility. Specifically, each session can be described by a trajectory to a sequence of APs and the duration spent at each AP. Each client may have one or more sessions.

Both application and infrastructure designers can exploit the trajectory and duration estimations to support caching, prefetching, graceful handoffs, resource reservation, and capacity planning at APs. Access points, proxies, and servers can use the estimation of their clients’ visit duration and next association to prepare the handoff, share clients or traffic load with each other, and ensure a better quality of service characteristics.

This research extends our earlier study [8], the studies by Kotz and Essien [10], Balachandran et al. [4], Tang and Baker [13], and Balazinska and Castro [5] by focusing more closely on the association and mobility patterns of individual clients rather than on the entire population of mobile clients and in a finer time granularity. We monitor the behavior of each wireless user with respect to its association patterns and carry out user-behavior analysis more accurately. We focus on the analysis and modeling of session and visit durations, and apply our methodology on extensive wireless traces.

We show that as the session mobility increases, the visit duration tends to decrease stochastically. The opposite happens in the case of the session duration. This distinction between visit and session durations gives new insights into the wireless access characteristics. Moreover, there exist different stochastic orders among visit durations of different building types when conditioning on session mobility. The mobile sessions tend to be “imbalanced” with respect to their visit durations. A family of BiPareto distribution can model approximately the visit and session durations. As an example, we parametrized the stationary session duration using the BiPareto distribution. Finally, we propose a new set of metrics to describe a session and characterize its mobility, transient nature, and spatial properties. These contributions nicely tie with our earlier results that model the trajectory of the sequence of APs as a markov-chain and predicting with high probability (86%) the AP of the next association of a client [8].

1This work was partially supported by the IBM Corporation under an IBM Faculty Award 2003/2004 grant.
Section 2 describes briefly the wireless infrastructure and our techniques for acquiring the data. Section 3 focuses on the session generation and its features for characterizing the mobility and access patterns. In Section 4, we present our measurements and provide insight about the associations and movement of users on the campus. In Section 5, we summarize our main results and discuss future work.

2. Wireless infrastructure

The UNC wireless infrastructure provides coverage for nearly every building in the 729-acre campus and includes a diverse academic environment.

The majority (232) of the access points (APs) on campus were configured to send syslog events to a server in our department between 12:00:00 am on February 10, 2003 and 11:59:59 pm on April 27, 2003. During this tracing period, we recorded 8,158,341 syslog events for 7,694 clients, and 222 APs distributed among 75 buildings. A client is a device that communicates with the campus wireless infrastructure and is identified by a unique id based on its anonymized MAC address. In our earlier work [8], we describe in detail how clients communicate with APs, the events that allow us to log the clients’ activities, and the measures taken to ensure privacy.

The campus primarily uses Cisco Aironet 350 802.11 access points (APs) in a VLAN to provide the wireless network service [2]. An AP generates log messages for IEEE802.11 MAC level events, which indicate when a user associates, authenticates, deauthenticate, or disassociates with the AP. The majority of APs on campus were configured to send this data via syslog messages to a syslog server in our department. The messages sent by the APs are detailed in [10, 8].

In addition to each AP’s unique IP address, we maintain information about the building the AP is located in, its type, and its coordinates. The possible building types are academic, administrative, athletic, business, dining, library, residential, and theatre. We have map coordinates for each corner of most buildings. This allows us to estimate the centroid of each of these buildings. For the buildings that we do not have exact coordinates, we estimate their coordinates by visually inspecting a campus map and calculating the distance between the center of the building and the center of a building with known coordinates, and then scaling that distance according to the map’s scale.

3. Session generation

The syslog messages are ordered based on their timestamp (i.e., the time when they are received from the server in our department). Our parser reads these syslog (“info-type”) messages [1] sequentially for each client, interprets each event with respect to the Cisco documentation [1], creates some state information for each client, and generates each client’s transitions from one AP to another or to its disconnection from the infrastructure. Its main task is to construct the visits and sessions for each client.

3.1. Session generation process

The parser maintains for each client a state array that indicates the state of the client with respect to each AP in the infrastructure. This state corresponds to the IEEE802.11 state variables, namely state 1 or “unauthenticated, unassociated”, state 2 or “authenticated, unassociated”, and state 3 or “authenticated and associated” (page 22, IEEE802.11b, 1999 Edition [9]). We also introduce the state -1 or “undefined” state which is the initialization state for each client’s state array. The parser also maintains the current state of a client that indicates the AP, if any, with which the client is currently associated. As the parsing of the syslog trace proceeds, the parser updates each client’s current state and state array. It also maintains a status information that indicates whether or not these transitions are consistent with the IEEE802.11 state diagram[9]. For example, when we receive a deauthentication event from an AP i and the i-th entry is the state 2, the i-th entry changes to state 1 with a “successful deauthentication” status. At the beginning of the tracing period, the session generation process assumes that each client has no visits or sessions, and initializes all the entries of their state arrays to the undefined state. The first visit of a session starts with the first association message after a period of disconnection or the start of the tracing period. Each of the remaining visits (if any) in the sequence are triggered by a (re)association event. Essentially, the visits in a session represent the continuous roaming of the client. The session generator completes a visit when it receives any of the following events, namely, a (re)association, a deauthentication from the current AP, a disassociation from any AP, or reaches the end of the tracing period. The (re)association event (of the list above) extends the sequence of visits, and therefore the session, by one additional visit. Its timestamp indicates the start of the new visit and the completion of the previous visit. All the other events (in that list) complete the current visit and terminate the session (i.e., the current visit becomes the last visit of the session). Their timestamps mark the end of the current visit and session. A period of disconnection for that client follows until the receipt of a new (re)association event from an AP that will start a new visit (i.e., the first visit of a new session) or the end of the trace. The status of each visit indicates whether or not the event that terminated that visit and initiated a transition (i.e., a new visit in the session or the completion of the session) is a successful transition. To be a successful transition, it must conform to the IEEE802.11 state transition diagram and not introduce any conflict or inconsistency with the states that the session generator maintains for that client. When the session generator parses a disassociation event for a client from an AP different from the current state of that client, it generates an unsuccessful transition. Similar outcome has an association event, if prior to that, the AP that sent it (e.g., j) has state 1 or -1 in the state array of that client. The session generator extends the session by creating a

\(^2\)When a deauthentication event from a different than the current AP is received, the client state with that AP becomes “deauthenticated” but the event is ignored in the session generation.
The disconnection must take place with the same AP as the current state of that client prior to this point. The visit duration corresponds to the period from the start of the visit until its completion. The session duration is the sum of all the durations of the visits in that session. We merge the consecutive (re)associations of a client with the same access point during a session. Each new merged visit has as duration the sum of the durations of all the (re)associations that compose this merged visit. Throughout the following Sections, we refer to a “merged visit” simply as “visit”.

3.2. Conditions for well-defined sessions

We have a large set of sessions (235,885) and would like to focus our analysis on those with the most reliable session information. Unreliable information can be mainly due to syslog packet losses, sporadic AP failures, partial knowledge about the configuration or IEEE802.11 implementation of the AP or client, or events that may have happened before or after the tracing period but we cannot verify. We decided to select the well-defined sessions and focus our analysis mainly on them. A session is well-defined when it satisfies certain criteria regarding its completion and inter-AP and inter-building transitions. We describe these conditions in the following paragraphs.

3.2.1. Completion conditions

A session must have finished before the end of the tracing period. This condition is necessary to compute accurate session durations. The disassociation event that completes a session (of a client) must come from the same AP as the current state of that client prior to this disassociation. The disconnection must take place with a disassociated or deauthenticated event with the reason “Successful” or “Sender is Leaving (has left) ESS”. When a session comes to an end with a deauthenticated “Inactivity” event, we consider the session to be not well-defined. Although, most of the APs’ inactivity period has been set to 30 min, we found sessions that ended due to inactivity with an invalid duration. Since we analyze the duration of visits and sessions, we decided to filter out these sessions that ended with a deauthentication due to inactivity event.

3.2.2. Inter-AP transition condition

In order for a session to satisfy the transition condition, during the time that the session generator forms each transition of the session, the client status and its state array should “reflect” (re)associations that comply to the IEEE802.11 state diagram. As mentioned in Section 3.1., the parser maintains some status information for each visit that indicates whether or not the transition to the next visit satisfies this requirement.

3.2.3. Inter-building transition condition

We found some sessions that cover very large inter-building distances (a few were even above 2,000 ft). Given the transmission range specifications, these transitions cannot be valid. We speculate that in such case, the syslog server did not receive all the events properly; otherwise, the session generator would have formed either more visits for that session (with shorter inter-building transitions) or even multiple sessions. With the support of an accurate positioning or tracking system, we could have validated the distances of all inter-building transitions. However, its deployment is costly and would have complicated our experiments in several ways. Given the lack of such mechanism, it becomes difficult and tedious to detect the invalid transitions. Finally, we decided to consider invalid all these sessions that have an inter-building transition with euclidean distance above 460 ft. The threshold was computed based on the transmission range specifications in [14] and our estimation that a typical maximum distance between any point in a building of the campus and its centroid is around 100 ft.

3.3. Session and client classification

Sessions that visit only one AP are called stationary and have zero length AP-paths. Mobile sessions are the ones that have at least one inter-building transition. Sessions without any inter-building transitions can be stationary or ones that only visited APs in a single building. Unless otherwise stated, in this paper, we use the term session mobility as the number of inter-building transitions. Fig. 1 shows how the mobile sessions are distributed among clients. The mobile sessions correspond to only a small percentage of the total sessions for most of the clients. We have classified the wireless clients based on their inter-building mobility, duration at each building, and frequency of their sessions in the trace. Depending on the inter-building mobility, we define as short-range clients the clients that always have zero-length building path sessions but may visit multiple buildings on different sessions, as stationary clients the subset of the short-range clients that visit APs in only one building throughout the entire trace, and as mobile clients the clients that visit two or more different buildings in the same session in at least one of their
sessions. We have 4,115 clients that contributed with 141,653 well-defined sessions. The 24% of them are mobile and the 69% of them have stationary sessions and no mobile sessions. 75% of all clients are short-range clients (i.e., had only sessions, each session with visits in a single building) whereas 20% of them have associated with only one AP throughout the tracing. All the results in our analysis in the following Sections are based on the well-defined sessions unless otherwise stated.

4. Measurements and analysis

4.1. Session duration

Balachandran et al. [4] considered a conference setting with four APs and modeled user session durations under minute resolution level. They found that the sessions have durations that can be modeled by a General Pareto distribution with a shape parameter less than 1. The users have a behavioral pattern that revolves around the conference schedule with the longest duration to be three hours. Our current academic setting is completely different from their conference setting. In our study, we categorize the sessions according to user mobility, and classify them as stationary and mobile. The mobile sessions can be further divided into those with a transition between two buildings (“one-edge”) and all the others with transitions to several pairs of buildings (“multiple-edge”). Stationary sessions are sessions with “zero-edge”. As the number of edges increases, the client is considered to be more mobile. We started by first computing the session duration medians and found them to be 9, 18, and 34 min, respectively. Fig. 2(a) presents the log-log plots of the complementary cumulative distribution function (CCDF) of the session duration for these three types of well-defined sessions, respectively. The numbers in the brackets indicate how many sessions are used to derive the empirical CCDFs. It shows that there exists a stochastic order among the three types of sessions except in the tails. The CCDF for stationary session duration is uniformly smaller than that for one-edge mobile session duration, which is uniformly smaller than multiple-edge mobile session duration. This means that stationary sessions are stochastically shorter than mobile sessions. As the session mobility increases, the session duration increases as well stochastically. A random variable X is stochastically larger than another random variable Y if $P(X > t) \geq P(Y > t)$ for every t and $P(X > t) > P(Y > t)$ for some t [7]. Fig. 2(a) also considers all sessions excluding the ones that ended with a deauthentication due to inactivity message (a subset of the well-defined sessions). As in the case of the well-defined sessions, mobile sessions excluding the ones completed with a deauthentication due to inactivity are stochastically longer than the corresponding stationary ones (“Mobile w/o deauth due to inactivity” vs. “Stationary w/o deauth due to inactivity”).

The “hollow” in the well-defined mobile sessions (in the interval $[10^3, 10^4]$), Fig. 2(a) does not exist in the set of sessions that include all mobile sessions except the ones ended with deauthentication due to inactivity. We found that it is introduced by a group of four clients that exhibit a certain distinct behaviour. They have mobile sessions that violate the valid transitions condition, and have very long AP and building paths with (mean, median) equal to (131, 30) and (6.5, 3), respectively. Also, a very large number of these sessions had visits in three certain dorms. On these log-log plots, a CCDF of the form $x^{-\alpha}$ would appear as a straight line with slope $-\alpha$. The CCDF of the stationary session duration (“stationary w/o deauth due to inactivity” in Fig. 2(a)) has two nearly linear regimes. After observing this, we propose to model the stationary session duration using a BiPareto distribution, whose CCDF is given by

$$P(X > x) = \alpha \left(\frac{x^{\frac{1}{k+c}}}{1+e} \right)^{-\beta}, \ x \geq k.$$

$k > 0$ is the minimum value of a BiPareto random variable, which is a scale parameter. The CCDF initially decays as a power law with exponent $\alpha > 0$. Then, in the vicinity of a breakpoint $k#1$ (with $c > 0$), the decay exponent gradually changes to $\beta > 0$. The parameters (α, β, c and k) can be estimated via maximum likelihood. Saniee et al. [12] provide more details on the BiPareto distribution and its estimation method. We fitted the BiPareto distribution to the stationary session duration, and the parameters are estimated to be (0.05, 0.76, 867.64, 1) using the maximum likelihood method. Fig. 2(b) plots the empirical log-log CCDF superimposed by the theoretical log-log CCDF of the fitted BiPareto distribution. The two linear regimes are also highlighted. The two CCDF closely follow each other with a coefficient of determination R^2 of 0.99. The major difference appears in the tails, which only concerns 1% of the sessions. One possible explanation for this discrepancy is due to censoring caused by our data collection period. Because of this, we did not get to observe those stationary sessions that are longer than the collection period. Otherwise, those long session durations will bring the tail closer to the BiPareto tail. We also tried several other common parametric distributions such as Lognormal, Weibull and Gamma. The BiPareto gives a much better fit than the others. The fit becomes even better, if we aggregate the durations into minute resolution level which could be fitted with a BiPareto with parameters (0.34, 1.37, 258.94, 1).

The log-log CCDFs for mobile sessions also exhibit two linear regions except the tails starting from 3 hours. We propose to truncate the mobile session durations at 3 hours and model them using a truncated BiPareto distribution. The truncation percentage is about 9%. The fitted parameters for the mobile session durations (0.02, 1.42, 1633.42, 1) (as shown in Fig. 2(c)).

4.2. Visit duration

The visits can be grouped into three categories according to the sessions they belong, namely, stationary, one-edge mobile, and multiple-edge mobile. Fig. 3(a) compares the log-log CCDFs of durations for these three types of visits. In all Figs. 3, the numbers in brackets are the number of visits in each category. As one can see, there again exists a stochastic order among them. As the session mobility increases, the visit duration tends
to decrease stochastically. The result is exactly opposite to what one sees in Fig. 2(a) for the session durations. This stochastic order also holds when conditioning on building types. In stationary sessions, the visit duration matches with the session duration. Therefore, the visit durations of stationary sessions can be modeled by a BiPareto distribution (as discussed in Section 4.1.). Based on visual inspection of the log-log CCDF, in plots not shown here, the BiPareto distribution can also be used to model visit durations in stationary sessions for several building types. As for the visits in mobile sessions, a truncated BiPareto distribution seems reasonable after one truncates the visit durations at 3 hours.

4.3. Visit durations vs. building type

Since visits occur at different buildings, we are interested in finding if there is any relationship between the building type and visit duration. Fig. 3(b) shows the log-log CCDFs of visit durations in stationary sessions at several types of building. The figure indicates an increasing stochastic order among dining halls, libraries and dormitories, and also among classrooms, libraries and dormitories (except in the tails, where the variability is high). The orders are also true for stationary session durations. Because stationary sessions and visits in stationary sessions are essentially the same. This stochastic order is consistent with the expected user duration in these environments. In addition, the vast majority of the stationary sessions lasts 1.5 hours or less. As for the visits in mobile sessions, as shown in Fig. 3(c), visits in classrooms, dining halls, and libraries are very similar, while there is an increasing order among dormitories, classrooms, (dining halls, libraries), clinics, and theaters (except in the tails). Users that leave their wireless-enabled laptop on continuously in their office contribute to the very long stationary sessions.

4.4. Distribution of visit durations within a session

Earlier, we modeled the session and visit durations. In this section, we focus on the distribution of the duration across different visits within a session. Are most of the sessions composed of relative short visits? Are the visits well-balanced? Does the first visit differ statistically from the last?

First, we distinguish the sessions that tend to be composed of relative short durations. Based on the visit duration at each building involved in a session, we identify the transient sessions as the ones that do not have any visits to a building that last more than \(w \) min. Fig. 4(a) illustrates the distribution of transient sessions for different time period \(w \) varying from 1 min to 30 min. We also distinguished the sessions based on the mobility. The lower mobility sessions are the ones with only one inter-building transition. The higher mobility sessions are the ones with two or more interbuilding transitions. As expected, when the threshold increases the fraction of transient sessions also increases. However, it is interesting to observe that for low thresholds (e.g., 1 min or 5 min), mobile sessions tend to be less transient than the rest. Fig. 4(b) reveals a clustering of clients based on their per-
percentage of transient sessions. Notice that more than 20% of the clients have a very high percentage (above 90-th percentile) of sessions in which all their visits last 30 min or less. For those sessions with multiple visits, one interesting question is if the first visit differs statistically from the last visit. Our analysis shows that they look very similar statistically and both of them are stochastically shorter than visits in stationary sessions.

4.5. Individual durations within a session

Another method of investigating how the session time is distributed among its visits is to compute the percentage of the visits that have duration within an interval of the median visit of that session. We define as the similarity index of a session, the percentage of visits that are within a certain interval of their median (such as \([0.9\times\text{median}, 1.1\times\text{median}]\), where median is the median duration of the visits in that session). Fig. 4(c) reveals that sessions are pretty “imbalanced” with respect to the distribution of the visit duration. For example, more than 50% of the sessions have less than 10% of their visits in the 10% interval of the median duration of their session. Fig. 4(c) does not include the stationary sessions, since by definition, their similarity index is 100% (since they have only one visit). The difference between the “All Session” and “Mobile Sessions” is all these sessions with visits to two or more APs located at the same building. As expected, the larger the threshold is, the larger fraction of sessions with higher similarity index we have. We have shown that, the more mobile a session is, the longer its duration tends to be, with shorter visit durations. Given the low similarity index presented earlier, such sessions tend to have a small percentage of long visits and a short-visit majority. As a result, a more mobile session is less transient (harder for all visits to fall below a certain threshold). This indicates that all our results are consistent with each other.

4.6. Locality properties of clients

Earlier, we looked at the distribution and characteristics of the visit duration in a session. In addition, we wanted to know in a larger time scale where clients tend to spend most of their wireless time and what the locality properties of their roaming are. Is there any AP that the client visits more frequently or spends most of its time? We defined the (duration-based) homeAP of a client to be the AP (if any) at which this client spends a large percentage of its wireless access time. Similarly, the (number-of-visits-based) homeAP of a client is the AP (if any) that this client visits more frequently. We use a threshold for the percentage of wireless access time and number of visits that varies from 25% to 90%. Fig. 5 shows that the duration-based definition is more relaxed than the frequency-based. More than 50% of clients spend more than 75% of their time to a single AP whereas 30% of them visit more than 75% of the times the same AP.

5. Conclusions and future work

The main contributions of this paper are the models of visits and session periods. We propose a methodology for visit and session generation and their analysis with extensive data from the wireless infrastructure in a campus. We show that as the session mobility increases, the visit duration tends to decrease stochastically. This stochastic order still holds when conditioning on building types. The opposite happens in the case of the session duration. Moreover, there exist different stochastic orders among the visit durations of different building types when conditioning on the session mobility. We investigated the impact of mobility on the session and visit durations and distinguished several classes of access patterns and clients. The models of the access duration and
the next-AP (from our previous work) can be used in simulations to model more accurately the wireless user access. In addition, a wireless client may use these models for smoother handoffs (e.g., enabling a more efficient pre-authentication and pre-association process). A longer-term goal is to extend the study with traffic load information and explore the bandwidth requirements for different classes of clients and access patterns. Administrators can use these models to determine the optimal density of APs and also tune the QoS parameters at each AP. For example, depending on the expected duration and traffic load of the associated clients, an AP may decide about a new association request. This is critical for the support of voice over IP, augmented reality, virtual reality applications or games. Although currently the wireless network is underutilized, one can expect that in the near future, more applications with real-time constraints will use the IEEE802.11 infrastructure to communicate.

This research is a part of a comparative analysis study on wireless access patterns in various environments, such as a medical center, research institute, campus, and a public wireless network. We have obtained traces from the wireless infrastructure of several other universities and public networks. We are in the process of applying our analysis on them. We intend to capture the different features of their access patterns, find the dominant ones, and model them. As new wireless applications and services are deployed, reshaping the wireless arena, it would be interesting to observe and analyze the evolution of the wireless access in the spatial and temporal domain.

6. ACKNOWLEDGMENT

The authors would like to thank Francisco Chinchilla for his aid in the session generation and measurement analysis, and Dr. Diane Pozefsky for her feedback.

REFERENCES

