Algorithms for Computing Approximate Repetitions in Musical Sequences

Emilios Cambouropoulos1*, Maxime Crochemore2**, Costas S. Iliopoulos3***, Laurent Mouchard4†, and Yoan J. Pinzon3

1 Austrian Research Institute for Artificial Intelligence, Schottengasse 3, 1010 Wien, Austria
2 Institut Gaspard Monge, Université de Marne-la-Vallée, 77454 Marne-la-Vallée CEDEX 2, France.
3 Dept. Computer Science, King’s College London, London WC2R 2LS, England, and School of Computing, Curtin University of Technology, GPO Box 1987 U, WA.
4 LIFAR - ABISS, Université de Rouen, 76821 Mont Saint Aignan, France, and School of Computing, Curtin University of Technology, GPO Box 1987 U, WA.

\textbf{Abstract.} Here we introduce two new notions of approximate matching with application in computer assisted music analysis. We present algorithms for each notion of approximation: for approximate string matching and for computing approximate squares.

\textbf{Keywords:} String algorithms, approximate string matching, dynamic programming, computer-assisted music analysis.

\textbf{C.R. Categories:} G.2.1 Combinatorics, F.2.2 Nonnumerical Algorithms and Problems

\section{Introduction}

This paper focuses on a set of string pattern-matching problems that arise in musical analysis, and especially in musical information retrieval. A musical score can be viewed as a string; at a very rudimentary level, the alphabet could simply

* Supported by the START programme Y99-INF, Austrian Federal Ministry of Science and Transport
** Partially supported by the C.N.R.S. Program “Génomes”
*** Partially supported by the EPSRC grant GR/J 17844.
† Partially supported by the C.N.R.S. Program “Génomes”
be the set of notes in the chromatic or diatonic notation, or the set of intervals
that appear between notes (e.g. pitch may be represented as MIDI numbers and
pitch intervals as number of semitones). Approximate repetitions in one or more
musical works play a crucial role in discovering similarities between different
musical entities and may be used for establishing “characteristic signatures”
(see [6]). Such algorithms can be particularly useful for melody identification
and musical retrieval.

Both exact and approximate matching techniques have been used for a variety
of musical applications (see overviews in McGettrick [23] ; Crawford et al [6];
Rolland et al [28]; Cambouropoulos et al [4]). The specific problem studied in
this paper is pattern-matching for numeric strings where a certain tolerance is
allowed during the matching procedure. This type of pattern-matching has been
considered necessary for various musical applications and has been used by some
researchers (see, for instance, Cope [5]). A number of efficient algorithms will be
presented in this paper that tackle various aspects of this problem.

Most computer-aided musical applications adopt an absolute numeric pitch
representation (most commonly MIDI pitch and pitch intervals in semitones; du-
ration is also encoded in a numeric form). The absolute pitch encoding, however,
may be insufficient for applications in tonal music as it disregards tonal quali-
ties of pitches and pitch-intervals (e.g. a tonal transposition from a major to a
minor key results in a different encoding of the musical passage and thus exact
matching cannot detect the similarity between the two passages). One way to
account for similarity between closely related but non-identical musical strings is
to use what will be referred to as δ-approximate matching (and γ-approximate
matching). In δ-approximate matching, equal-length patterns consisting of in-
tegers match if each corresponding integer differs by not more than δ- e.g. a
C-major $\{60, 64, 65, 67\}$ and a C-minor $\{60, 63, 65, 67\}$ sequence can be matched
if a tolerance $\delta = 1$ is allowed in the matching process (γ-approximate matching
is described in the next section). Two simple musical examples that illustrate
the usefulness of the proposed pattern-matching techniques are presented in Ap-
pendices I and II.

Exact repetitions have been studied extensively. The repetitions can be either
concatenated with the original substring or they may overlap or they may not.
Algorithms for finding non-overlapping repetitions in a given string can be found
in [1, 8, 15, 21, 18, 26] and algorithms for computing overlapping repetitions can
be found in [3, 13, 14, 25]. A natural extension of the repetitions problem is to
allow the presence of errors; that is, the identification of substrings that are
duplicated to within a certain tolerance k (usually edit distance or Hamming
distance). Moreover, the repeated substring may be subject to other constraints:
it may be required to be of at least a certain length, and certain positions in it
may be required to be invariant.

Furthermore, efficient algorithms for computing the approximate repetitions
are also directly applicable to molecular biology (see [11, 17, 24]) and in particular
in DNA sequencing by hybridization ([27]), reconstruction of DNA sequences
from known DNA fragments (see [29,30]), in human organ and bone marrow
transplantation as well as the determination of evolutionary trees among distinct species ([29]).

Another type of repetition that is used in computer assisted music analysis is that of finding evolutionary chains: given a string \(t \) (the “text”) and a pattern \(p \) (the “motif”), find whether there exists a sequence \(u_1 = p, u_2, \ldots, u_\ell \) occurring in the text \(t \) such that \(u_{i+1} \) occurs to the right of \(u_i \) in \(t \) and \(u_i \) and \(u_{i+1} \) are “similar” for \(1 \leq i < \ell \) (i.e. they differ by a certain number of symbols). In [9] and [7] algorithms for overlapping and non-overlapping evolutionary chains were presented and several variants of the problem were studied: computing the longest chain, computing the chain with the least number of errors.

The paper is organised as follows. In the next section we present some basic definitions for strings and background notions for approximate matching. In Section 3 we present an algorithm for \(\delta \)-approximate (the first notion of approximation) pattern matching. In section 4 we present an algorithm for \(\delta, \gamma \)-approximate (the second notion of approximation) pattern matching. In section 5 we present algorithms for computing all \(\delta \) and \(\{\delta, \gamma\} \)-approximate squares in a given text. Finally in Section 6 we present our conclusions and open problems.

2 Background and basic string definitions

A string is a sequence of zero or more symbols from an alphabet \(\Sigma \); the string with zero symbols is denoted by \(\epsilon \). The set of all strings over the alphabet \(\Sigma \) is denoted by \(\Sigma^* \). A string \(x \) of length \(n \) is represented by \(x_1 \ldots x_n \), where \(x_i \in \Sigma \) for \(1 \leq i \leq n \). A string \(w \) is a substring of \(x \) if \(x = uww \) for \(u, v \in \Sigma^* \); we equivalently say that the string \(w \) occurs at position \(|u| + 1 \) of the string \(x \). The position \(|u| + 1 \) is said to be the starting position of \(w \) in \(x \) and the position \(|w| + |u| \) the end position of \(u \) in \(x \). A string \(w \) is a prefix of \(x \) if \(x = wu \) for \(u \in \Sigma^* \). Similarly, \(w \) is a suffix of \(x \) if \(x = uw \) for \(u \in \Sigma^* \).

The string \(xy \) is a concatenation of two strings \(x \) and \(y \). The concatenations of \(k \) copies of \(x \) is denoted by \(x^k \). For two strings \(x = x_1 \ldots x_n \) and \(y = y_1 \ldots y_m \) such that \(x_{n-i+1} \ldots x_n = y_1 \ldots y_i \) for some \(i \geq 1 \), the string \(x_1 \ldots x_{n-i+1}y_{i+1} \ldots y_m \) is a superposition of \(x \) and \(y \). We say that \(x \) and \(y \) overlap.

Let \(x \) be a string of length \(n \). A prefix \(x_1 \ldots x_p \), \(1 \leq p < n \), of \(x \) is a period of \(x \) if \(x_i = x_{i+p} \) for all \(1 \leq i \leq n-p \). The period of a string \(x \) is the shortest period of \(x \). A string \(y \) is a border of \(x \) if \(y \) is a prefix and a suffix of \(x \).

Let \(\Sigma \) be an alphabet of integers and \(\delta \) an integer. Two symbols \(a, b \) of \(\Sigma \) are said to be \(\delta \)-approximate, denoted \(a =_{\delta} b \) if and only if

\[
|a - b| \leq \delta
\]

We say that two strings \(x, y \) are \(\delta \)-approximate, denoted \(x =_{\delta} y \) if and only if

\[
|x| = |y|, \text{ and } x_i =_{\delta} y_i, \; \forall i \in \{1..|x|\}
\]

(2.1)
Let γ be an integer. Two strings x, y are said to be γ-approximate, denoted $x \approx y$ if and only if
\[|x| = |y|, \text{ and } \sum_{i=1}^{\frac{|x|}{\gamma}} |x_i - y_i| < \gamma \] (2.2)

Furthermore, we say that two strings x, y are $\{\gamma, \delta\}$-approximate, denoted $x \approx^{\gamma,\delta} y$, if and only if x and y satisfy conditions (2.1) and (2.2).

3 δ-Approximate Pattern Matching

The problem of δ-approximate pattern matching is formally defined as follows: given a string $t = t_1 \ldots t_n$ and a pattern $p = p_1 \ldots p_m$ compute all positions j of t such that
\[p \approx^\delta t[j..j + m - 1] \]

The algorithm is based on the $O(1)$-time computation of the “Delta states” $DState_j, j \in \{1..n\}$ by using bit operations under the assumption that $m \leq w$, where w is the number of bits in a machine word. The basic steps of the algorithm are as follows:

1. First we compute the “Delta table” DT: we set $DT(\alpha) = r$, where α denotes a symbol occurring in t and $r = r_1 \ldots r_m$ is a binary word with r_i equal to 1 if $|\alpha - p_i| \leq \delta$, otherwise r_i is equal to 0 for $i \in \{1..m\}$.
2. Let $LeftShift$ be a bit-wise operation that shifts the bits of a binary word by one position to the left. We define
\[DState_j = (LeftShift(DState_{j-1}) \text{ OR } 1) \text{ AND } DT[t_j] \] (3.1)
for $j=1 \ldots n$ and $DState_0 = 0$; hence this procedure is called “SHIFT-AND”. Once we have computed the DT table, we can use it to compute the $DState_j$ for $j=1 \ldots n$, using the recursive formula (3.1).
3. We say that there is a δ-approximate match (or simply δ-match) at position $j - m + 1$ if and only if the m-th bit of $DState_j$ is 1 or equivalently if and only if $DState_j$, is greater or equal to 2^{m-1} when it is viewed as a decimal integer.

Example. For $\Sigma = \{1, \ldots, 9\}$ let us consider $p=3,4,6,2$, $t=3,4,6,2,8,2,4,5,7,1$ and $\delta=1$. In the preprocessing table, $DT(\alpha)$ denotes the positions where $|\alpha - p_i| \leq \delta$. For example, $DT[3] = 1011$ because $|3 - p_i| \leq 1$ for $i = 1, 2, 4$.

The table below evaluates $DState_j$ using the relation (3.1). For example,
\[
DState_4 = (LeftShift(DState_3) \text{ OR } 1) \text{ AND } DT[t_4] \\
= (LeftShift(0100) \text{ OR } 1) \text{ AND } DT[2] \\
= (1000 \text{ OR } 1) \text{ AND } 1001 \\
= 1001 \text{ AND } 1001 \\
= 1001
\]
which implies that there is a match starting at position 1 of t, since the 4-th bit of \(DState_4\) is 1.

A \(\delta\)-approximate match occurs at position \(j - m + 1\) of \(t\) if \([DState_j]_{10} \geq 2^{m-1}\), where \([DState_j]_{10}\) denotes the \(DState_j\) as a decimal integer. Therefore, there is one match ending at position 4 of \(t\) (\([3,4,6,2]\)) and another one at position 10 of \(t\) (\([4,5,7,1]\)) since \([DState_4, DState_{10}] \geq 2^3\).

3.1 Pseudo-code

Fig. 1 gives a complete specification of the algorithm. In the line 3 we have the preprocessing phase which compute the \(DT\) table. In line 6 we use the recursive formula to compute the \(DStates\). Finally, in line 7 we apply the matching criteria to see whether there is a \(\delta\)-approximate match or not.

3.2 Running time

Assuming that the pattern length is no longer than the memory word size of the machine (thus \(O(1)\) size), the time complexity of the preprocessing phase is \(O(n)\) (since we need to evaluate \(DT\) only for the symbols that occur in \(t\)) and the time complexity of the searching phase in \(O(n)\). Figure 2 shows the timing \(^1\) for different text sizes.

4 \(\{\delta, \gamma\}\)-Approximate Pattern Matching

The problem of \(\{\delta, \gamma\}\)-approximate pattern matching is formally defined as follows: given a string \(t = t_1 \ldots t_n\) and a pattern \(p = p_1 \ldots p_m\) compute all positions

\(^1\) Using a SUN Ultra Enterprise 300MHz running Solaris Unix.
1. procedure Shift-And(p, t, δ) { $n = |t|$, $m = |p|$ }
2. begin
3. $DT_i[\alpha] \leftarrow \begin{cases} 1 & \text{if } |\alpha - p_i| \leq \delta \\ 0 & \text{otherwise} \end{cases}$ \quad $\forall i \in \{1..m\}$, \forall $\alpha \in \Sigma$
4. $DState_0 \leftarrow 0$
5. for $j \leftarrow 1$ to n do
6. $DState_j \leftarrow (LeftShift(DState_{j-1}) \text{ OR } 1) \text{ AND } DT[t_j]$
7. if $DState_j \geq 2^{m-1}$ then write $j-m+1$
8. od
9. end

Fig. 1. The Shift-And Procedure.

In order to solve this problem we first make use of the Shift-And algorithm to find the δ-approximate matches of the pattern p in t. Once we find a δ-approximate match we want to know whether it is also a γ-approximate match. To do so, we seek to compute successive “Delta States” $DState_j$ and “Gamma States” $GState_j$ in $O(1)$ time using bit operations under the assumption that $m \leq w$ where w is the number of bits in a machine word. The main steps of the algorithm are as follows:

1. We need to compute the “Delta Table” DT as we did before and the “Gamma Table” GT table; we set $GT(\alpha) = r$, where α denotes a symbol in the alphabet and $r = r_1 \ldots r_m$ is a word with r_i equal to $|\alpha - p_i|$ if $|\alpha - p_i| \leq \delta$, otherwise r_i is equal to 0 for $i \in \{1..m\}$. Each r_i, $i \in \{1..m\}$ is stored as a binary number of d bits where $d = \lceil \log(\delta \times m) \rceil$.
2. Let $LeftShift$ be a bit-wise operation that shifts the bits of a binary word one position to the left and $RightShift$ shifts the bits of a binary word d positions to the right. Once we have computed the DT and GT tables, we can use them to compute the $DState_j$ and $GState_j$ for $j=1 \ldots n$, using the
recursive formulas

\[D_{State_j} = (LeftShift(D_{State_{j-1}}) \text{ OR } 1) \text{ AND } DT[t_j] \] (4.1)

\[G_{State_j} = RightShift(G_{State_{j-1}}, d) + GT[t_j] \] (4.2)

We also need to define the seeds \(D_{State_0} = 0 \) and \(G_{State_0} = 0 \). We call this procedure “SHIFT-PLUS” because we use the “shift” and “plus” operators to compute each new state.

3. We say that there is a match (\(\{ \delta, \gamma \} \)-approximate match) at position \(j-m+1 \) if and only if the \(m \)-th bit of \(D_{State_j} \) is 1 and the \(m \)-th block of \(d \) bits taken as an integer is \(\leq \gamma \).

Example. For our example let \(\Sigma = \{1, \ldots, 9\} \), the pattern \(p = 3, 4, 6, 2, \) the text \(t = 3, 4, 6, 2, 8, 2, 4, 5, 7, 1 \), \(\delta = 1 \) and \(\gamma = 3 \). We will use blocks of size 3 \((d = 3) \) to store the \(|\alpha - p_i| \) values where \(|\alpha - p_i| \leq \delta \). For example, \(GT[3] = 000 100 000 100 \) because \(|3 - p_i| \leq 1 \) for \(i=1,2,4 \) and the differences are 0,1,1 respectively. (see left hand table of table 3).

| \(\delta \) | 0 1 1 0 0 0 1 0 1 | \(\gamma \) | 0 1 1 0 1 1 0 0 0 |
|---|---|---|
| \(\delta \) | 0 0 0 0 0 0 0 0 0 | \(\gamma \) | 0 0 0 0 0 0 0 0 0 |
| \(\delta \) | 0 0 1 0 0 0 0 0 0 | \(\gamma \) | 0 0 0 0 0 0 0 0 0 |
| \(\delta \) | 0 0 0 0 0 0 0 0 0 | \(\gamma \) | 0 0 0 0 0 0 0 0 0 |
| \(\delta \) | 0 0 0 1 0 0 0 0 0 | \(\gamma \) | 0 0 0 0 0 0 0 0 0 |
| \(\delta \) | 0 0 0 0 0 0 0 0 0 | \(\gamma \) | 0 0 0 0 0 0 0 0 0 |
| \(\delta \) | 0 0 0 0 0 0 0 0 0 | \(\gamma \) | 0 0 0 0 0 0 0 0 0 |
| \(\delta \) | 0 0 0 0 0 0 0 0 0 | \(\gamma \) | 0 0 0 0 0 0 0 0 0 |
| \(\delta \) | 0 0 0 0 0 0 0 0 0 | \(\gamma \) | 0 0 0 0 0 0 0 0 0 |

Table 3. The left hand side table is the “Gamma Table” \(GT \) and the right hand side table is the table for finding \(\{\gamma, \delta\} \)-approximate matches.

The right hand table above shows the computation of the \(D_{States} \) and the \(G_{States} \) using (4.2). For example,

\[G_{State_9} = RightShift(000010010000.3) + 000000100000 \]
\[= 0000000110010 + 000000100000 = 000000110010 \]

We already know that there are two \(\delta \)-approximate matches ending at positions 4 and 10 of \(t \). Now we can use the last three bits of \(G_{State_4} \) and \(G_{State_10} \) to find out the values of \(\gamma \), which are 0 and 4 respectively. (see right hand table of Fig. 3).

4.1 Pseudo-code

Fig. 3 below gives a complete description of the algorithm. In the lines 3 and 4 are the preprocessing phase which compute the \(DT \) table and \(GT \) table respectively.
In lines 8 and 9 we compute the next $DState$ and $GState$ respectively. Finally, in line 10 we apply the matching criteria to see whether there is a match or not.

1. procedure Shift-Plus(p, t, δ, γ) { $n = |t|, m = |p|$ }
2. begin
3. $DT_i[\alpha] \leftarrow \begin{cases} 1 & \text{if } |\alpha - p_i| \leq \delta, \forall i \in \{1..m\}, \forall \alpha \in \Sigma \\ 0 & \text{otherwise} \end{cases}$
4. $GT_{i-d...d-i}[\alpha] \leftarrow \begin{cases} |\alpha - p_i| & \text{if } DT_i[\alpha] = 1, \forall i \in \{1..m\}, \forall \alpha \in \Sigma \\ 0 & \text{otherwise} \end{cases}$
5. $DState_0 \leftarrow 0$
6. $GState_0 \leftarrow 0$
7. for $j \leftarrow 1$ to n do
8. $DState_j \leftarrow (\text{LeftShift}(DState_{j-1}) \text{ OR } 1) \text{ AND } DT[t_j]$
9. $GState_j \leftarrow (\text{RightShift}(GState_{j-1}, d) \text{ + } GT[t_j])$
10. if $DState_j \geq 2^{m-1}$ AND $GState_{dm-d...dm-1} \leq \gamma$ then write $j-m+1$
11. od
12. end

Fig. 3. The Shift-Plus Algorithm.

4.2 Running time

Assuming that $\delta \times m \leq 2^d - 1$ the time complexity of the preprocessing phase is $O(\delta \times m + |\Sigma|)$ and the time complexity of the searching phase is $O(n)$, thus independent from the alphabet size and the pattern length. Figure 4 shows the timing for different text sizes.

Fig. 4. Timing curves for the Shift-Plus Algorithm.
5 Computing Approximate Squares

The problem of computing all δ-approximate squares is formally defined as follows: given a string $t = t_1 \ldots t_n$ and an integer δ, compute all positions j of t for which there exists a word u of length m such that

$$t[j..j + m] \delta u \quad \text{and} \quad t[j + m + 1..j + 2m] \delta u$$

where u is said to be the root of the square.

The problem of computing all $\{\delta, \gamma\}$-approximate squares is formally defined as follows: given a string $t = t_1 \ldots t_n$ and two integers δ and γ, compute all positions j of t for which there exists a word u of length m such that

$$t[j..j + m] \delta,\gamma u \quad \text{and} \quad t[j + m + 1..j + 2m] \delta,\gamma u$$

where u is said to be the root of the square.

When we look for a square we will run into two possibilities: the root does or does not occur necessarily in the string.

5.1 Consider an approximate square such that the root occurs in the square

The diagonal $\text{diag}(i)$ corresponds to the pair of positions $(j, j + i)$ and therefore to the candidates for squares of length $2i$. There exists an approximate square of length $2i$ at position j if there exists a run of values not greater than δ of length at least i on the diagonal $\text{diag}(i)$ starting at position j.

For example, consider $\text{diag}(2)$ (see table 4) and $\delta = 1$. We are trying to locate runs of length at least 2 containing only values not greater than $\delta = 1$. We obtain:

<table>
<thead>
<tr>
<th>Position</th>
<th>Square</th>
<th>Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>$(2,3,1,4)$</td>
<td>$(2,3)$ or $(1,4)$</td>
</tr>
</tbody>
</table>

For this example we only have a δ-approximate square starting at position 14 which root can be either $(2,3)$ or $(1,4)$. Note that the roots certainly occur in the square.

5.2 Consider an approximate square such that the root does not occur necessarily in the string

We say that there exists an approximate square of length $2i$ at position j if there exists a run of values not greater than 2δ of length at least i on the diagonal $\text{diag}(i)$ starting at position j. In other words, we are using 2δ instead of δ.

For example, consider $\text{diag}(2)$ (see table of Fig. 4) and $\delta = 1$. We are trying to locate runs of length at least 2 containing only values not greater than $2\delta = 2$. We obtain:
Table 4. Table for computing approximate squares.

<table>
<thead>
<tr>
<th>Position</th>
<th>Square</th>
<th>Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(-1,7,-1,-5)</td>
<td>(0,-6)</td>
</tr>
<tr>
<td>9</td>
<td>(-5,3,-3,1)</td>
<td>(-4,2)</td>
</tr>
<tr>
<td>12</td>
<td>(1,1,2,3)</td>
<td>(1,2) or (2,2)</td>
</tr>
<tr>
<td>13</td>
<td>(1,2,3,1)</td>
<td>(2,1) or (2,2)</td>
</tr>
<tr>
<td>14</td>
<td>(2,3,1,4)</td>
<td>(1,3), (1,4), (2,3) or (2,4)</td>
</tr>
</tbody>
</table>

Furthermore, consider \(\text{diag}(3) \) and \(\delta = 1 \). We are trying to locate runs of length at least 3 containing only values not greater than \(2\delta = 2 \). We obtain:

<table>
<thead>
<tr>
<th>Position</th>
<th>Square</th>
<th>Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2,-3,-5,1,-7)</td>
<td>(-3,-2,-6)</td>
</tr>
<tr>
<td>6</td>
<td>(-7,1,-5,5,3,-3)</td>
<td>(-6,-2,-4)</td>
</tr>
<tr>
<td>12</td>
<td>(1,1,2,3,1,4)</td>
<td>(2,0,3), (2,1,3) or (2,2,3)</td>
</tr>
<tr>
<td>13</td>
<td>(1,2,3,1,4,5)</td>
<td>(0,3,4), (1,3,4) or (2,3,4)</td>
</tr>
</tbody>
</table>

In those cases where we want to consider a \(\{\delta, \gamma\}\)-approximate square we just check each \(\delta \)-approximate match to see if it is also a \(\{\delta, \gamma\}\)-approximate square.

In the last example we will like to consider \(\delta = 1 \) and \(\gamma = 4 \). This means that we are trying to locate runs of length at least 2 containing only values not greater than \(2\delta = 2 \) but with \(\gamma \leq 4 \). We obtain:

<table>
<thead>
<tr>
<th>Position</th>
<th>Square</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>(1,1,2,3,1,4)</td>
<td>(2,0,3), (2,1,3) or (2,2,3)</td>
</tr>
<tr>
<td>13</td>
<td>(1,2,3,1,4,5)</td>
<td>(0,3,4), (1,3,4) or (2,3,4)</td>
</tr>
</tbody>
</table>
5.3 Pseudo-code

Fig. 5 gives the algorithm that solves the δ-approximation square problem. Fig. 6 below gives the algorithm that solves the $\{\delta, \gamma\}$-approximation square problem.

1. procedure DeltaSquares(t, δ) \{ $n = |t|$ \}
2. begin
3. for diag ← 2 to $n/2$ do
4. \hspace{1em} i ← 0; dsum ← 0
5. \hspace{1em} for j ← diag to n do
6. \hspace{2em} diff ← $|t[i] - t[j]|$
7. \hspace{2em} if diff $\leq \delta$ then dsum ← dsum + 1
8. \hspace{2em} else dsum ← 0
9. \hspace{2em} if dsum \geq diag then write $j - 2 \times$ diag + 2
10. \hspace{2em} i ← i + 1
11. \hspace{1em} od
12. \hspace{1em} od
13. end

Fig. 5. The DeltaSquares Algorithm.

1. procedure DeltaGammaSquares(t, δ, γ) \{ $n = |t|$ \}
2. begin
3. for diag ← 2 to $n/2$ do
4. \hspace{1em} i ← 0; dsum ← 0; gsum ← 0
5. \hspace{1em} for j ← diag to n do
6. \hspace{2em} diff ← $|t[i] - t[j]|$
7. \hspace{2em} if diff $\leq \delta$ then
8. \hspace{3em} begin
9. \hspace{4em} dsum ← dsum + 1
10. \hspace{4em} gsum ← gsum + diff
11. \hspace{4em} end
12. \hspace{2em} end
13. \hspace{1em} else
14. \hspace{2em} begin
15. \hspace{3em} dsum ← 0; gsum ← 0
16. \hspace{2em} end
17. \hspace{1em} end
18. \hspace{1em} if dsum \geq diag AND gsum $\leq g$ then write $j - 2 \times$ diag + 2
19. \hspace{1em} i ← i + 1
20. \hspace{1em} od
21. end

Fig. 6. The DeltaGammaSquares Algorithm.
5.4 Running time

The complexity of these algorithms is easily seen to be $O(n^2)$. Figure 7 shows the timing for different text sizes.

![Figure 7](image)

Fig. 7. Timing curves for $\{\delta, \gamma\}$-approximate squares.

6 Conclusion and Open problems

The running time of the computation of δ-approximate squares can be reduced to $O(n \log n)$; A theoretical algorithm is presented in [16] that shadows the Main and Lorentz algorithm ([21]).

The following two problems are still open:

Problem 1. Given a string $t = t_1 \ldots t_n$ and two integers m and δ, compute all positions j of t, that there exists a string \hat{t} such that

$$t[j..j+m] \equiv^\delta \hat{t}$$

$$t[j+m+1..j+2m] \equiv^\delta \hat{t}$$

$$\ldots$$

$$t[j+\ell m+1..j+(\ell+1)m] \equiv^\delta \hat{t}$$

Problem 2 Given a string $t = t_1 \ldots t_n$ and three integers m, δ and γ, compute all positions j of t, that there exists a string \hat{t} such that

$$t[j..j+m] \equiv^\delta^\gamma \hat{t}$$

$$t[j+m+1..j+2m] \equiv^\delta^\gamma \hat{t}$$

$$\ldots$$

$$t[j+\ell m+1..j+(\ell+1)m] \equiv^\delta^\gamma \hat{t}$$
References

APPENDIX I

Melody from Mozart’s Sonata in A major

This melody may be represented as a string of pitch intervals (in number of semitones). If exact matching is employed, three identical instances of the search pattern are found (patterns a, c and f); the other 4 instances are not matched. If δ-approximate matching is employed for δ=1, then all seven instances depicted above are found.
Pitch Interval Pattern: \{5,-1,1,4,3,5,0\}
Pitch Interval String:
\{5,-1,1,4,3,5,0,-1,-2,-2,-2,5,-1,-2,-2,-2,5,-1,1,4,3,9,0,-2,-2,-1,1,4,-7,3,-1,-1,-1,2,-4,-12,
5,-1,1,4,3,5,0,-1,-2,-2,4,-7,2,1,-1,-2,5,3,5,1,1,4,3,5,0,-1,-2,2,4,-7,2,1,-1,-2,5,-2,-7,
5,-1,1,4,3,5,0,-1,-2,-2,5,-10,2,1,4,-9,2,2,3,-5,-7,5,-1,1,4,3,9,0,-2,-2,-3,-2,5,-10,2,1,4,-7,2,1,4,-12,2,1\}

APPENDIX II

Melody from Schumann’s *Träumerei*

This melody may be represented as a string of pitch intervals (in number of semitones). If exact matching is employed only 3 identical instances of the given pattern are found (patterns \(a, d\) and \(e\)); the other 3 instances are not matched. If \(\delta\)-approximate matching is employed for \(\delta=2\), then 4 instances are found (patterns \(a, c, d\) and \(e\)); for \(\delta=4\) all 6 instances depicted above are discovered (\(\gamma\)-approximate matching may be additionally applied to restrict \(\delta\)-approximate matching especially for larger \(\delta\) values and for larger melodic corpuses.