Publications

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68(+) -cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68(+) cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways.
    Cancer Medicine 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-3, an endogenous glycan-binding protein, plays essential roles during microbial infection by modulating innate and adaptive immunity. However, the role of galectin-3 within the CD4(+) CD25(+) Foxp3(+) T regulatory (TREG )-cell compartment has not yet been explored. Here we found, in a model of Leishmania major infection, that galectin-3 deficiency increases the frequency of peripheral TREG cells both in draining lymph nodes and sites of infection. These observations correlated with an increased severity of the disease, as shown by increased footpad swelling and parasite burden. Galectin-3-deficient (Lgals3(-/-) ) TREG cells displayed higher CD103 expression, showed greater suppressive capacity and synthesized higher amounts of IL-10 compared with their wild-type (WT) counterpart. Furthermore, both TREG cells and T effector (TEFF ) cells from Lgals3(-/-) mice showed higher expression of Notch1 and the Notch target gene Hes-1. Interestingly, Notch signaling components were also altered in both TREG and TEFF cells from uninfected Lgals3(-/-) mice. Thus, endogenous galectin-3 regulates the frequency and function of CD4(+) CD25(+) Foxp3(+) TREG cells and alters the course of Leishmania major infection.
    European Journal of Immunology 04/2013; · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monocyte migration into tissues, an important event in inflammation, requires an intricate interplay between determinants on cell surfaces and extracellular matrix (ECM). Galectin-3 is able to modulate cell-ECM interactions and is an important mediator of inflammation. In this study, we sought to investigate whether interactions established between galectin-3 and ECM glycoproteins are involved in monocyte migration, given that the mechanisms by which monocytes move across the endothelium and through the extravascular tissue are poorly understood. Using the in vitro transwell system, we demonstrated that monocyte migration was potentiated in the presence of galectin-3 plus laminin or fibronectin, but not vitronectin, and was dependent on the carbohydrate recognition domain of the lectin. Only galectin-3-fibronectin combinations potentiated the migration of monocyte-derived macrophages. In binding assays, galectin-3 did not bind to fibronectin, whereas both the full-length and the truncated forms of the lectin, which retains carbohydrate binding ability, were able to bind to laminin. Our results show that monocytes migrate through distinct mechanisms and selective interactions with the extracellular matrix driven by galectin-3. We suggest that the lectin may bridge monocytes to laminin and may also activate these cells, resulting in the positive regulation of other adhesion molecules and cell adhesion to fibronectin.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans produces a complex glycosphingolipid called phospholipomannan (PLM), which is present on the cell-wall surface of yeast and shed upon contact with host cells. The glycan moiety of PLM is composed of β-mannosides with degrees of polymerization up to 19 in C. albicans serotype A. PLM from serotype B strains displays a twofold decrease in the length of the glycan chains. In this study we compared the proinflammatory activities of PLMs purified from C. albicans serotype A and serotype B strains and from a bmt6Δ mutant of C. albicans, whose PLM is composed of short truncated oligomannosidic chain. We found that PLMs activate caspase-1 in murine macrophage cell line J774 independent of the glycan chain length although IL-1β secretion is more intense with long glycan chain. None of the tested PLMs stimulate ROS production, indicating that caspase-1 activation may occur through a ROS-independent pathway. On the other hand, only long-chain oligomannosides present on PLM from serotype A strain (PLM-A) are able to induce TNF-α production in macrophages, a property that is not affect by blocking endocytosis through latrunculin A treatment. Finally, we demonstrate that soluble and not cell surface-bound galectin-3, is able to potentiate PLM-A-induced TNF-α production in macrophages. PLMs from C. albicans serotype B and from bmt6∆ mutant are not able to induce TNF-α production and galectin-3 pretreatment does not interfere with this result. In conclusion, we show here that PLMs are able to evoke a proinflammatory state in macrophage, which is in part dependent on their glycosylation status. Long-glycan chains favor interaction with soluble galectin-3 and help amplify inflammatory response.
    PLoS ONE 01/2013; 8(12):e84771. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monocyte migration into tissues, an important event in inflammation, requires an intricate interplay between determinants on cell surfaces and extracellular matrix (ECM). Galectin-3 is able to modulate cell-ECM interactions and is an important mediator of inflammation. In this study, we sought to investigate whether interactions established between galectin-3 and ECM glycoproteins are involved in monocyte migration, given that the mechanisms by which monocytes move across the endothelium and through the extravascular tissue are poorly understood. Using the in vitro transwell system, we demonstrated that monocyte migration was potentiated in the presence of galectin-3 plus laminin or fibronectin, but not vitronectin, and was dependent on the carbohydrate recognition domain of the lectin. Only galectin-3-fibronectin combinations potentiated the migration of monocyte-derived macrophages. In binding assays, galectin-3 did not bind to fibronectin, whereas both the full-length and the truncated forms of the lectin, which retains carbohydrate binding ability, were able to bind to laminin. Our results show that monocytes migrate through distinct mechanisms and selective interactions with the extracellular matrix driven by galectin-3. We suggest that the lectin may bridge monocytes to laminin and may also activate these cells, resulting in the positive regulation of other adhesion molecules and cell adhesion to fibronectin.
    ISRN inflammation. 01/2013; 2013:259256.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-3 (Gal-3) is a glycan-binding protein highly expressed in several tumors, including brain neoplasms. This protein has been demonstrated to be correlated with adverse prognosis in some tumor types. However, the role of Gal-3 in pediatric posterior fossa tumors (PPFTs) has not yet been fully addressed. The goals of this study were to evaluate Gal-3 expression in a series of PPFTs and verify whether this expression is related to patient outcome. Gal-3 expression was analyzed by immunohistochemistry in 42 cases of surgically resected primary PPFTs. Surgeries were performed in our institution from January 2003 to December 2006. Tumor samples consisted of 21 pilocytic astrocytomas (PAs), 13 medulloblastomas, 4 ependymomas, 2 diffuse cerebellar astrocytomas, and 2 atypical teratoid/rhabdoid tumors (AT/RTs). All PAs and ependymomas strongly showed Gal-3 expression, whereas no immunostaining was observed in medulloblastomas and diffuse astrocytomas. In AT/RTs, Gal-3 expression was conspicuous but heterogeneous, being mainly observed in rhabdoid cells. Concerning the Gal-3 expressing tumors, no relationship was observed between the degree of expression and patient survival. Gal-3 was strongly expressed in reactive astrocytes, normal endothelial cells, and macrophages in the adjacent non-neoplastic brain parenchyma. Interestingly, the endothelial cells in the tumor bulk of PAs lacked Gal-3 expression. Gal-3 is differentially expressed in PPFTs, but its expression shows no correlation with patient outcome. However, the evaluation of Gal-3 is helpful in establishing a differential diagnosis among PPFTs, especially between PAs and diffuse astrocytomas, and in some circumstances between medulloblastomas and AT/RTs.
    Child s Nervous System 02/2011; 27(2):253-7. · 1.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oropouche virus (OROV), of the family Bunyaviridae, is the second most frequent arbovirus causing febrile disease in Brazil. In spite of this, little is known about pathogenesis of OROV infection. This report describes an experimental model of OROV in golden hamster (Mesocricetus auratus). Following subcutaneous inoculation of OROV, over 50% of the animals developed disease characterized by lethargy, ruffled fur, shivering, paralysis, and approximately one third died. Animals were sacrificed on days 1, 3, 5, 8 and 11 post-inoculation to collect tissue samples from brain, heart, liver, lung, spleen, muscle and blood for virus titration, histology and OROV immunohistochemistry. OROV was detected in high titers in blood, liver and brain, but not in the other organs. Histopathology revealed meningoencephalitis and hepatitis, with abundant OROV antigen detected in liver and brain. Diffuse galectin-3 immunostaining in brain and liver supports microglial and Kupfer cells activation. This is the first description of an experimental model for OROV infection and should be helpful to study pathogenesis and possibly to test antiviral interventions such as drugs and vaccine candidates.
    Virus Research 01/2011; 155(1):35-41. · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-3 is involved both in facilitating detachment of cells from primary tumour sites and favouring cancer cell adhesion and survival to anoikis in the blood stream. The mechanisms behind these apparently contradictory roles of the lectin have not yet been resolved. In order to investigate possible interplays between galectin-3 and its ligands underlying their role in the metastatic process, we examined mucin-1 (MUC1) and epidermal growth factor receptor (EGFR), well-known galectin-3 ligands, as well as galectin-3-binding site expression in a series of spontaneous canine malignant mammary tumours (CMMT) and a metastatic CMMT cell line. Despite the fact that CMMT cells expressed MUC1 and EGFR homogeneously over their plasma membrane, intravascular tumour cells, positive for galectin-3, expressed MUC1 and EGFR in a more focal membrane localization. Moreover, MUC1 overexpression in primary CMMT was present in parallel with down-regulation of galectin-3. Furthermore, in the CMT-U27 cell line, galectin-3 knock-down led to increased MUC1 expression, while MUC1 knock-down led to down-regulation of the lectin. Finally, removal of sialic acid from both CMMT and CMT-U27 xenograft samples exposed galectin-3-ligands throughout the tumour tissue, whereas these ligands were only present in galectin-3-positive invading cells in untreated samples. Interestingly indeed, we show that in vessel-invading cells, there is interaction between galectin-3 and the T antigen in vivo. We therefore hypothesized that loss of galectin-3 and sialylation-related masking of its ligands, in conjunction with their overexpression in specific tumour cell subpopulations, are crucial in regulating adhesive/de-adhesive events in the progression and invasive capacity of metastatic cells.
    The International journal of developmental biology 01/2011; 55(7-9):823-34. · 2.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-3 (Gal 3) is a glycan-binding protein that can be secreted by activated macrophages and mast cells at inflammation sites and plays an important role in inflammatory diseases caused by Bacteria and their products, such as lipopolysaccharides (LPS). Although it is well established that Gal 3 can interact with LPS, the pathophysiological importance of LPS/Gal 3 interactions is not fully understood. Data presented herein demonstrate for the first time that the interaction of Gal 3, either via its carbohydrate binding C-terminal domain or via its N-terminal part, with LPS from different bacterial strains, enhances the LPS-mediated neutrophil activation in vitro. Gal 3 allowed low LPS concentrations (1 µg/mL without serum, 1 ng/mL with serum) to upregulate CD11b expression and reactive oxygen species (ROS) generation on human neutrophils in vitro and drastically enhanced the binding efficiency of LPS to the neutrophil surface. These effects required LPS preincubation with Gal 3, before neutrophil stimulation and involved specific Gal 3/LPS interaction. A C-terminal Gal-3 fragment, which retains the lectin domain but lacks the N-terminal part, was still able to bind both to Escherichia coli LPS and to neutrophils, but had lost the ability to enhance neutrophil response to LPS. This result emphasizes the importance of an N-terminus-mediated Gal 3 oligomerization induced by its interaction with LPS. Finally we demonstrated that Balb/C mice were more susceptible to LPS-mediated shock when LPS was pretreated with Gal 3. Altogether, these results suggest that multimeric interactions between Gal 3 oligomers and LPS potentiate its pro-inflammatory effects on neutrophils.
    PLoS ONE 01/2011; 6(10):e26004. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-3 is a glycan-binding protein that mediates cell-cell and/or cell-extracellular matrix (ECM) interactions. Although galectin-3 is implicated in the progression of various types of cancers, the mechanisms by which galectin-3 enhances metastasis remain unclear. In order to elucidate the role of galectin-3 in the complex multistage process of cancer metastasis, we examined galectin-3 and galectin-3-binding site expression in a series of 82 spontaneous canine mammary tumors (CMT) and two CMT cell lines. Benign CMT tumors exhibited strong nuclear/cytoplasmic galectin-3 immunostaining, whereas malignant CMT tumors and metastases exhibited dramatically decreased galectin-3 expression with the majority of the immunostaining confined to the cytoplasm. Interestingly, intravascular tumor cells overexpressed galectin-3 regardless of their location. CMT-U27 xenografts displayed the same pattern of galectin-3 expression found in spontaneous malignant CMT. In parallel with the downregulation of galectin-3, malignant CMT displayed an overall loss of galectin-3-binding sites in the ECM and focal expression of galectin-3-binding sites mainly detected in intravascular tumor cells and endothelium. Furthermore, loss of galectin-3-binding sites was correlated with the downregulation of GLT25D1, a β (1-O) galactosyltransferase that modifies collagen, and upregulation of stromal galectin-1. Finally, GLT25D1 mRNA expression was strikingly downregulated in malignant CMT-U27 compared with the benign cell line, and its expression was further decreased in a galectin-3 knockdown CMT-U27 cell line. We therefore hypothesized that the loss of galectin-3-binding sites in the ECM in conjunction with the overexpression of galectin-3 in specific tumor cell subpopulations are crucial events for the development of mammary tumor metastases.
    Glycobiology 11/2010; 20(11):1341-52. · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular galectin-3 participates in the control of B2 lymphocyte migration and adhesion and of their differentiation into plasma cells. Here, we analyzed the role of galectin-3 in B1-cell physiology and the balance between B1a and B1b lymphocytes in the peritoneal cavity. In galectin-3(-/-) mice, the total number of B1a lymphocytes was lower, while B1b lymphocyte number was higher as compared to wild-type mice. The differentiation of B1a cells into plasma cells was associated with their abnormal adhesion and location on the mesentery. The B220 and CD43, constitutively expressed by B1 lymphocytes, were respectively up- and downregulated in galectin-3(-/-) mice. Mononuclear cells were strongly adhered to the mesenteric membranes of both CD43(-/-) and galectin-3(-/-) mice, but in contrast to CD43(-/-) mice, the accumulation of B1 cells in peritoneal membranes in galectin-3(-/-) mice was accompanied by their functional differentiation into plasma cells. We have shown that in the absence of galectin-3, B1-cell differentiation into plasma cells is favored and the dynamic equilibrium of B1-cell populations in the peritoneum is maintained through a compensatory increase in B1b lymphocytes.
    Glycobiology 09/2009; 19(11):1248-58. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma gondii is a widely distributed obligatory intracellular parasite that causes severe disease to the fetus when transmitted during pregnancy. Drugs used to avoid congenital transmission have shown side effects, and their efficacy is controversial. The most widely used treatment for acute toxoplasmosis during pregnancy is pyrimethamine plus sulfadiazine, which has several side effects. In this work, we tested the efficacy of azithromycin in reducing congenital transmission of T. gondii in the large vesper mouse, Calomys callosus, a rodent. Females of C callosus were inoculated perorally with 20 cysts of ME49 strain of T. gondii on the day of fertilization, and fetuses were collected from the 15th to the 19th day of gestation. Azithromycin (300 mg/kg), in association with pyrimethamine (100 or 50 mg/kg) plus sulfadiazine (100 or 75 mg/kg) and folinic acid (15 mg/kg) (SPAf), or vehicle, were administered orally on different days after infection. Brain and ocular tissues were removed and processed for immunohistochemistry using a polyclonal antibody against T. gondii, or were processed for parasite DNA quantification. Toxoplasma gondii was detected in the brains of all females and in fetuses' eyes of C. callosus treated with SPAf. On the other hand, in females treated with azithromycin, there was a reduction of T. gondii in the brains of mothers, and no parasites were detected in eyes of fetuses, indicating that azithromycin may represent an alternative treatment for toxoplasmosis during pregnancy.
    Journal of Parasitology 08/2009; 95(4):1005-10. · 1.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The D-mannose binding lectin ArtinM from Artocarpus integrifolia, previously known as KM+ and artocarpin, is considered a stimulant of Th1-type immunity, which is able to confer resistance to some intracellular pathogens. In addition, ArtinM induces neutrophil migration by haptotaxis through simultaneous interactions of its carbohydrate recognition domains (CRDs) with glycans expressed on the extracellular matrix and the neutrophil surface. In the present study, we have expanded the characterization of ArtinM as a neutrophil activator. Exposure of neutrophils to ArtinM for 15 min resulted in tyrosine phosphorylation of intracellular proteins, a process that was selectively inhibited by d-mannose or mannotriose. Shortly after stimulation, neutrophils secreted high levels of LTB(4) and underwent shedding of L-selectin from their surface. Exposure to ArtinM enhanced neutrophil functions, such as respiratory burst and zymozan and Listeria monocytogenes phagocytosis. In addition, ArtinM-stimulated neutrophils displayed increased CXCL-8 secretion and TLR2 gene transcription. These results demonstrate that ArtinM is able to induce potent neutrophil activation, a feature that should be strongly considered in the assessment of the lectin capacity to confer resistance against infections.
    Immunology letters 04/2009; 123(1):14-20. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is recent evidence that galectin-3 participates in immunity to infections, mostly by tuning cytokine production. We studied the balance of Th1/Th2 responses to P. brasiliensis experimental infection in the absence of galectin-3. The intermediate resistance to the fungal infection presented by C57BL/6 mice, associated with the development of a mixed type of immunity, was replaced with susceptibility to infection and a Th2-polarized immune response, in galectin-3-deficient (gal3(-/-)) mice. Such a response was associated with defective inflammatory and delayed type hypersensitivity (DTH) reactions, high IL-4 and GATA-3 expression and low nitric oxide production in the organs of infected animals. Gal3(-/-) macrophages exhibited higher TLR2 transcript levels and IL-10 production compared to wild-type macrophages after stimulation with P. brasiliensis antigens. We hypothesize that, during an in vivo P. brasiliensis infection, galectin-3 exerts its tuning role on immunity by interfering with the generation of regulatory macrophages, thus hindering the consequent Th2-polarized type of response.
    PLoS ONE 02/2009; 4(2):e4519. · 3.53 Impact Factor
  • Source
    PLoS ONE 01/2009; 4(2). · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-3 is a β-galactoside-binding lectin implicated in the fine-tuning of innate immunity. Rhodococcus equi, a facultative intracellular bacterium of macrophages, causes severe granulomatous bronchopneumonia in young horses and immunocompromised humans. The aim of this study is to investigate the role of galectin-3 in the innate resistance mechanism against R. equi infection. The bacterial challenge of galectin-3-deficient mice (gal3−/−) and their wild-type counterpart (gal3+/+) revealed that the LD50 for the gal3−/− mice was about seven times higher than that for the gal3+/+ mice. When challenged with a sublethal dose, gal3−/− mice showed lower bacteria counts and higher production of IL-12 and IFN-γ production, besides exhibiting a delayed although increased inflammatory reaction. Gal3−/− macrophages exhibited a decreased frequency of bacterial replication and survival, and higher transcript levels of IL-1β, IL-6, IL-10, TLR2 and MyD88. R. equi-infected gal3+/+ macrophages showed decreased expression of TLR2, whereas R. equi-infected gal3−/− macrophages showed enhanced expression of this receptor. Furthermore, galectin-3 deficiency in macrophages may be responsible for the higher IL-1β serum levels detected in infected gal3−/− mice. Therefore galectin-3 may exert a regulatory role in innate immunity by diminishing IL-1β production and thus affecting resistance to R. equi infection.
    European Journal of Immunology 09/2008; 38(10):2762 - 2775. · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Macrophage-derived Neutrophil Chemotactic Factor (MNCF) has been characterized as a dexamethasone-resistant neutrophil chemotactic lectin produced by rat macrophages. This study was undertaken to evaluate different MNCF cellular sources and investigate the mechanisms by which MNCF overcomes the anti-inflammatory actions of dexamethasone. The mouse macrophage-like cell line P388D1 and thioglycollate-elicited mouse macrophages were studied regarding their capacity to release MNCF. Neutrophil migration assays were performed in vivo and in vitro, in either the presence or absence of extracellular matrix glycoproteins (ECM). Mouse and P388D1 macrophages release a lectin that reproduces the activities of rat MNCF. The ability of MNCF to induce neutrophil adhesion and haptotaxis is enhanced through its interaction with laminin and fibronectin. These properties are not inhibited by dexamethasone. Together, our results suggest that dexamethasone-resistant neutrophil migration induced by MNCF occurs probably because of its interactions with ECM.
    Inflammation Research 10/2007; 56(9):368-76. · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All organisms living under aerobic atmosphere have powerful mechanisms that confer their macromolecules protection against oxygen reactive species. Microorganisms have developed biomolecule-protecting systems in response to starvation and/or oxidative stress, such as DNA biocrystallization with Dps (DNA-binding protein from starved cells). Dps is a protein that is produced in large amounts when the bacterial cell faces harm, which results in DNA protection. In this work, we evaluated the glycosylation in the Dps extracted from Salmonella enterica serovar Typhimurium. This Dps was purified from the crude extract as an 18-kDa protein, by means of affinity chromatography on an immobilized jacalin column. The N-terminal sequencing of the jacalin-bound protein revealed 100% identity with the Dps of S. enterica serovar Typhimurium. Methyl-alpha-galactopyranoside inhibited the binding of Dps to jacalin in an enzyme-linked lectin assay, suggesting that the carbohydrate recognition domain (CRD) of jacalin is involved in the interaction with Dps. Furthermore, monosaccharide compositional analysis showed that Dps contained mannose, glucose, and an unknown sugar residue. Finally, jacalin-binding Dps was detected in larger amounts during the bacterial earlier growth periods, whereas high detection of total Dps was verified throughout the bacterial growth period. Taken together, these results indicate that Dps undergoes post-translational modifications in the pre- and early stationary phases of bacterial growth. There is also evidence that a small mannose-containing oligosaccharide is linked to this bacterial protein.
    Microbial Cell Factories 02/2007; 6:11. · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In attempts to investigate the role of galectin-3 in innate immunity, we studied galectin-3-deficient (gal3-/-) mice with regard to their response to Toxoplasma gondii infection, which is characterized by inflammation in affected organs, Th-1-polarized immune response, and accumulation of cysts in the central nervous system. In wild-type (gal3+/+) mice, infected orally, galectin-3 was highly expressed in the leukocytes infiltrating the intestines, liver, lungs, and brain. Compared with gal3+/+, infected gal3-/- mice developed reduced inflammatory response in all of these organs but the lungs. Brain of gal3-/- mice displayed a significantly reduced number of infiltrating monocytes/macrophages and CD8+ cells and a higher parasite burden. Furthermore, gal3-/- mice mounted a higher Th1-polarized response and had comparable survival rates on peroral T. gondii infection, even though they were more susceptible to intraperitoneal infection. Interestingly, splenic cells and purified CD11c+ dendritic cells from gal3-/- mice produced higher amounts of interleukin-12 than cells from gal3+/+ mice, possibly explaining the higher Th1 response verified in the gal3-/- mice. We conclude that galectin-3 exerts an important role in innate immunity, including not only a pro-inflammatory effect but also a regulatory role on dendritic cells, capable of interfering in the adaptive immune response.
    American Journal Of Pathology 07/2006; 168(6):1910-20. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Host cell invasion by Toxoplasma gondii is tightly coupled to the apical release of micronemal proteins (MIC). In this work, we evaluated the protective effect encountered in C57BL/6 mice immunized with MIC1 and MIC4 purified from soluble tachyzoite antigens by affinity to immobilized lactose. The immunized mice presented high serum levels of IgG1 and IgG2b specific antibodies. MIC1/4-stimulated spleen cells from immunized mice produced IL-2, IL-12, IFN-gamma, IL-10, but not IL-4, suggesting the induction of a polarized Th1 type immune response. When orally challenged with 40 cysts of the ME49 strain, the immunized mice had 68% fewer brain cysts than the control mice. Immunization was associated with 80% survival of the mice challenged with 80 cysts, contrasting with 100% mortality of the non-immunized mice in the acute phase. In this phase, there was much lower parasitism in the lungs and small intestine of the immunized mice, and they did not exhibit the early-stage signs of intestinal necrosis, which was clearly detected in the control mice. Our data demonstrate that MIC1 and MIC4 triggered a protective response against toxoplasmosis, and that these antigens are targets for the further development of a vaccine.
    Microbes and Infection 05/2006; 8(5):1244-51. · 2.92 Impact Factor

20 Following View all

33 Followers View all