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Abstract 

In this paper, we develop a process control approach to detect linear trends in the process 

mean. A statistic based on the deviation between the target mean and the expected mean 

of the process is used in the development of the new approach. The statistic is shown to 

have a Chi-square distribution. The approach is described and its performance is 

compared with Cumulative Sum (CUSUM), Exponentially Weighted Moving Average 

(EWMA), and Shewhart charts in detecting linear trends in the process mean. The results 

indicate that proposed approach is effective in detecting small to large trends. We also 

investigate the run length properties of the proposed approach under linear trends and 

compare its values with simulation results. 

Finally, we analyze the performance of the proposed approach in detecting the time when 

a drift occurs in the process and compare it with CUSUM and EWMA estimators. The 

results show that the proposed approach is more effective in detecting drift time for 

moderate and large trends.  
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1. Introduction 

One of the most important problems in quality engineering is the detection of the shift in 

the process mean which occurs in different ways. The mean may increase/decrease 

suddenly and stays at the new value or it may increase/decrease gradually in a linear or a 

nonlinear fashion. The shift in the process mean may cause significant losses in product 

quality. Therefore, it is important to detect the shift as soon as it occurs and provide 

corrective actions in order to eliminate or minimize future occurrences of similar shifts. 

The traditional statistical quality control procedure is based on using standard Shewhart 

charts for detecting moderate to large process shifts while the Cumulative Sum 

(CUSUM) and the Exponentially Weighted Moving-Average (EWMA) charts are 

commonly used for small shift detection [Aerne et al.(1991), Montgomery (1997)]. 

 
Originally, the Shewhart control chart is used with only one rule to signal that there may 

be a problem with the process being monitored. The basic X - chart has a center line and 

three-sigma limits on either side of the center line. The chart signals an out of control 

condition if any observed X value falls beyond the three-sigma limits. Shewhart (1931) 

chooses three-sigma limits to prevent a large number of false alarms being signaled by 

the chart and ensures that 99.73% of the observations are within the normal process. It is 

well known, however, that this chart is insensitive to small shifts in the process mean. 

One method of overcoming this problem is to use the “supplementary run rules”. These 

rules are introduced by the Western Electric Company (1956). The power function of 

several combinations of these rules is derived by Wheeler (1983) and the rules are further 

investigated using a Markov chain approach by Champ and Woodall (1987). Davis and 

Woodall (1988) study the performance of the control chart trend rules under linear shift 
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and concluded that it is ineffective in detecting a trend in the process mean. Their 

reasoning is that if the drift in process mean is large, then the observed points will almost 

certainly reach the control limits before the trend rule can generate a signal. If the drift is 

small, then the natural variation in the process makes the probability of five or six 

consecutive slopes having the same sign very small. 

Based on a modification of the Markov chain method developed by Brook and Evans 

(1972), Bissell (1984) computes the performance of CUSUM charts under linear drifts in 

the process mean. However, the in-control average run lengths are not accurate, and the 

application of the results is limited due to rounding errors. Gan (1991, 1992, 1996) 

presents an accurate numerical method based on an integral equation for computing the 

average run length (ARL) of CUSUM and EWMA charts under linear trends, also a 

design procedure to determine the appropriate parameters of CUSUM and EWMA charts 

is provided. The results are accurate and comparable to those obtained using Monte Carlo 

simulation. 

 

In this paper we propose a process control procedure to detect linear trends in the process 

mean based on a statistic which evaluates the deviation between the target mean and the 

expected mean of the process. Section 2 describes the process model for a process subject 

to linear trend in the process mean. The moving window procedure used to calculate the 

chart statistic is introduced in section 3 followed by the derivation of the chart statistic in 

section 4. The run length calculation for the proposed approach is presented in section 5. 

In section 6, we investigate the effect of the window size on the autocorrelation of the 

chart statistic. Simulation results are presented in section 7 for the performance of the 
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proposed approach in detecting linear trends, designing the proposed control chart, and 

identifying the drift time.  

 

2. Process Model 

We consider a process in which individual observations are collected at fixed intervals of 

time. When the process is in the state of statistical control, observations are assumed to 

be normally and independently distributed from a normal distribution with a known mean 

0µ  and known variance . In the out-of-control state, the mean of the process is 

subjected to a linear trend. The amount of trend is

2
0σ

timeunit /0βσ where β  is unknown. 

The observations collected from the out-of-control process follow a normal distribution at 

time t (where t is measured after the shift) with a mean t00 βσµ +  and variance .  In 

other words,  

2
0σ

 

),(~ 2
00 σµNy   in-control state 

),(~ 2
000

* σβσµ tNyt +  out-of-control state 

                              

3. Window Procedure 

A moving window of size  is used to calculate the value of the proposed chart statistic 

along the data set. Hence, there is an overlap in the moving windows of 

n

1−n  

observations. 
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The chart issues an out-of-control signal when the statistic reaches a certain threshold.  

Figure 1 shows the window procedure (window size=25) of a process with 0µ = 10 and 

= 1 and its trend occurs at time t = 50. The slope of the trend line is 0.25. 2
0σ
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Figure 1. Window procedure for a process under linear trend 

 

4. Derivation of the Proposed Statistic 

The proposed control chart is developed to detect linear trends in the process mean. The 

chart uses a linear regression model to fit observations in a moving window of size n. The 

expected value for the process mean at the end of a window j is defined as 

 

         (1) njjnj tβαµ ˆˆˆ +=
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where jα̂  and  are the least squares estimates for the linear regression model in 

window j. 

jβ̂

The difference between target process mean and expected process mean at the end of 

window j; time ; is distributed as follows nt
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by normalizing (2), we obtain a standard normal distribution  
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Squaring the standard normal distribution in equation (3), a chi-square distribution with 

one degree of freedom is obtained. 
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The upper control limit for the proposed chart is calculated as follows 

 

( ) αµµχ ==> 0
2
1 / tUCLP        (5) 

 

where α  is the probability of type-I error.  

Based on 0027.0=α , the UCL=8.999 and the in-control 

370.3700027.0
11 === αARL .  

 

5. Run Length Calculation under Linear Trend 

We use Markov chain to calculate run length properties as discussed in Bissell (1984). In 

the case of linear trend, the distribution function, and hence the transition matrix, changes 

over time. The Markov chain transition matrix representation of Chi-square control chart 

is given below. In each case the row labels refer to states at observation and the 

column headings to states at observation i . 

1−i

 

 Clear Signal 

Clear 1-PA PA

Signal 0 1 

Figure 2. Transition matrix for Chi-square control chart 
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For an in-control process; PA is the probability of a violation of the action limit (UCL) for 

Chi-square distribution. For an out-control process with an accumulated shift in the mean 

equals to δ (in units of standard deviation); PA is the probability of a violation of the 

action limit for non-central Chi-square distribution with a non-central parameter equal to 

. 2δ

 

( ),2
1 UCLPPA >= χ    for in-control 

[ ],)( 22
1 UCLPPA >= δχ   for out-of-control 

 

For a non-homogeneous transition matrix, we use to represent the transition 

matrices deduced for the first, second, etc. observations. In general, the cumulative 

probability of a signal on or before the ith observation will be the (1,2)nd element in the 

product. 

. , , 21 etcPP

PPP i. . . ..21  

 

Individual terms of the run length probability distribution are then obtained by 

subtraction of successive cumulative probabilities. 

Consider a Chi-square control chart with 0027.0=α , and linear trend σβσ 1= . Then 

for the first observation (the process is in-control) the probability of violating the control 

limits is and the transition matrices are as follows 0027.0=AP

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
0027.09973.01P
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At the second observation, σ1 shift gives 0227.0=AP  
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The cumulative probability of a signal by observation 2 is 0.0255. Subtracting the (1,2)nd 

element of P1 gives 0.0228 as the probability of the signaling at observation 2. 

When the probability distribution has been evaluated, the average run length and the 

variance are computed as follows 
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The approximate values for the average and standard deviation of run length distribution 

for the Chi-square control procedure are shown in Table 1. 
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Table 1. Average run length and standard deviation of Chi-square control procedure 

βσ  ARL Standard deviation 
0 370.37 369.87 

0.25 9.23 2.75 
0.5 5.46 1.60 
0.75 4.03 1.14 
1.0 3.25 0.91 
1.25 2.76 0.77 
1.5 2.42 0.68 
1.75 2.16 0.62 
2.0 1.96 0.55 

 

These values of the run length characteristics are obtained under the independence 

assumption of the chart statistic, which is inappropriate especially for large window sizes. 

The effect of the window size on the autocorrelation of the chart statistic is discussed in 

the following section. 

 

6. Effect of Window Size 

Since every two consecutive windows are overlapped by n-1 observations, we study the 

effect of window size on the independence among the values of the chart statistic. 

Simulation is used to generate a data set of 1000 observation and to apply the  

procedure with different window sizes for n = 3,5,7, and 10. Then, autocorrelation 

coefficient is calculated at different lags. The results as shown in Table 2, indicate that 

the values of statistic are autocorrelated and the values of autocorrelation coefficient 

increase with the increase in window size. It is found that the autocorrelation coefficients 

for the window of size three are within the 95% acceptable limits. These results are 

validated by conducting three different tests for Randomness to test the hypothesis that 

the series is random (Number of runs above and below median, Number of times that the 

2χ

2χ
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sequence goes up or down, the third test is Box-Pierce test which is based on the sum of 

squares of the first 24 autocorrelation coefficients). Only the  chart with window of 

size three passes the Randomness tests above due to its smaller autocorrelation 

coefficient. 

2χ

 

Table 2. Autocorrelation coefficients at different window sizes 

n Lag Autocorrelation Std. Error Lower 95% 
Limit 

Upper 95% 
Limit 

1 0.041676 0.031654 -0.06204 0.062042 
2 0.077507 0.031709 -0.06215 0.062149 3 
3 -0.02302 0.031899 -0.06252 0.06252 
1 0.287373 0.031686 -0.0621 0.062104 
2 0.030135 0.034203 -0.06704 0.067037 5 
3 0.012691 0.03423 -0.06709 0.067089 
1 0.449741 0.031718 -0.06217 0.062166 
2 0.14369 0.03759 -0.07368 0.073675 7 
3 0.024914 0.038139 -0.07475 0.074751 
1 0.54532 0.031766 -0.06226 0.06226 
2 0.266994 0.040115 -0.07862 0.078625 10 
3 0.125652 0.04187 -0.08206 0.082064 

 

7. Simulation Results  

In this section, we analyze the performance of the proposed approach for the detection of 

linear trends and investigate its capability for the drift time identification under different 

linear trend rates. Monte Carlo simulation is used to perform these studies. 

In all simulation studies, observations 1 to 50 are randomly generated from a normal 

distribution with mean 10.0 and standard deviation 1.0. Starting from observation 51, 

observations are randomly generated from a normal distribution with mean 

( )β500.10 −+ t  (where ) and standard deviation 1.0 until the control chart issues a 

signal. This procedure is repeated 10,000 times for each value of 

50>t

β . This scenario is 
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repeated with same randomly generated data to analyze the performance of the different 

control charts under different trend rates. Shewhart X-chart ( σ3 ), CUSUM (K=0.25, 

H=8), and EWMA (L=2.7,λ =0.1) charts are compared with control chart with 

window sizes 3, 5 and 20. The parameters of these charts are set such that the control 

charts have almost equivalent performances based on the in-control average run length 

value 370.  

2χ

 The threshold values for the control chart with windows 3, 5 are set to 8.99, while the 

threshold value for the control chart with window 20 is set to 7.65, since its in-control 

ARL is significantly higher than other charts due to the large window size. 

2χ

2χ

 

7.1. Trend Detection Performance Analysis 

We simulate the process and calculate the ARL for the different control charts under 

different linear trend rates. The simulation results show that there is an agreement 

between the simulation results and the analytical results (Tables 3 and 4) for small size 

windows. Moreover, the in-control ARL increases with the increase of window size. 

Decreasing the window size of the  control chart increases the ability to detect large 

trend rates while increasing the window size increases the ability to detect small trend 

rates. 

2χ

It is also shown that the  chart with different window sizes outperforms the CUSUM, 

EWMA and the Shewhart chart at the entire range of trend rates being studied. For 

example,  chart with window size 20 outperforms other charts in the range from 0.1 to 

0.5 while  chart with window size 5 outperforms other charts in the range from 0.5 to 

2χ

2χ

2χ
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2.0. Window size 3 outperforms other charts in the range from 0.75 to 2.0. Thus, it can be 

seen that regardless of the magnitude of the trend, the proposed control chart procedure 

detects the trend in the process mean faster than the well-known charts being compared. 

Also, it should be noted that the autocorrelation between consecutive windows helps to 

increase the in-control ARL without delaying the out-of-control ARL performance. 

 

Table 3. Simulation results for different trend rates using the charts 2χ

 2χ  
C*=8.99, n*=3 

2χ  
C*=8.99, n*=5 

2χ  
C*=7.65, n*=20 

βσ  ARL StdDev ARL StdDev ARL StdDev 
0 379.138 379.053 400.927 397.016 373.458 354.652 

0.10 17.445 5.590 16.140 5.140 12.860 3.478 
0.25 8.538 3.236 7.964 2.739 7.623 1.798 
0.5 5.027 2.087 4.745 1.661 5.260 1.171 

0.75 3.672 1.667 3.575 1.266 4.250 0.918 
1.0 2.939 1.452 2.973 1.093 3.660 0.790 

1.25 2.492 1.321 2.606 0.994 3.265 0.710 
1.5 2.190 1.236 2.342 0.946 2.977 0.647 

1.75 1.963 1.170 2.134 0.897 2.756 0.589 
2.0 1.816 1.121 1.972 0.839 2.579 0.572 

 C: Threshold value for the chart 2χ
   n: Window size 

 

Table 4. Simulation results for CUSUM, EWMA, and X-Chart charts under linear trends 

 CUSUM 
H=8, K=0.25 

EWMA 
L=2.7,λ =0.1 

X-Chart 
3σ  

βσ  ARL StdDev ARL StdDev ARL StdDev 
0 368.333 354.861 365.749 359.791 372.789 374.847 

0.10 13.986 2.644 12.971 2.929 18.476 5.686 
0.25 8.560 1.385 7.738 1.508 9.275 2.687 
0.5 5.946 0.853 5.312 0.931 5.512 1.547 

0.75 4.827 0.661 4.279 0.726 4.050 1.118 
1.0 4.156 0.563 3.680 0.613 3.261 0.899 

1.25 3.729 0.497 3.271 0.554 2.763 0.760 
1.5 3.372 0.501 2.979 0.464 2.426 0.667 

1.75 3.102 0.374 2.782 0.451 2.171 0.610 
2.0 2.950 0.300 2.598 0.495 1.974 0.546 
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7.2. Design of Control Chart 2χ

Additional simulation runs are conducted to establish a relationship between the in-

control ARL and the threshold value (C) of the control chart with window size n=3, 5, 

and 20 using regression analysis. The in-control ARLs (ARL

2χ

0) are estimated at intervals 

of 0.25 in the range  with 10,000 simulation runs. Box-Cox power 

transformation method (see, Draper and Smith (1981)) is used to minimize the mean 

squared error of the linear regression model between the transformed response (ARL

105 ≤≤ C

0) 

and the threshold value (C). 

Box and Cox (1964) propose a parametric family of power transformations: 

 

 ( )
⎪⎩

⎪
⎨
⎧

=
≠−=

0for                  ,ln
0for        ,1

λ
λλ

λ

Y
YW  

  

This continuous family depends on a single parameter λ . We can use the data to estimate 

this parameter, as well as the vector of parameters β  in the model to be fitted, 

 

 εβ += XW  

 

Where W is the Box-Cox transformation of the response variable Y and X is the regressor 

variable. 

The equation of the fitted model for the control chart with window size n=3 is 2χ

 

( ) CARLBoxCox 121.91412.1600 +=  
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Where 

 

( ) 99503.0

00496.0
0

0 768.16600496.0
1

1 −×
−

+=
ARL

ARLBoxCox  

 

Thus, to obtain a value of C for the control chart for a given ARL2χ 0, an approximate 

value of C would be 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−
+−= − 99503.0

00496.0
0

768.16600496.0
1

412.159
1216.91
1ˆ ARL

C  

 

The R-Squared statistic of this model indicates that the model as fitted explains 

99.9983% of the variability in ARL0.  The correlation coefficient equals 0.999991, 

indicating a relatively strong relationship between the variables. Figure 2 shows the 

relationship between the observed and predicted values of the ARL0 from the regression 

model. 
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Figure 2. Observed and predicted values of the ARL0 for control chart with n=3 2χ

 

For the control chart with window size n=5, the regression model that describes the 

relationship between ARL

2χ

0 and C is 

 

( ) CARLBoxCox 1989.952.2830 +=  

where 

( ) 01562.1

01562.0
0

0 593.18301562.0
11 −

−

×−
−

+=
ARLARLBoxCox  

 

The C value of the control chart for a given ARL2χ 0 can be approximated by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−

−
+−= −

−

01562.1

01562.0
0

593.18301562.0
1

2.282
1989.95
1ˆ ARL

C  

 

 16



The R-Squared statistic of the regression model indicates that the model as fitted explains 

99.9919% of the variability in ARL0. The correlation coefficient equals 0.99996, 

indicating a relatively strong relationship between the variables. The relationship between 

the observed and predicted values of ARL0 is shown in figure 3.  
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Figure 3. Observed and predicted values of the ARL0 for control chart with n=5 2χ
 

Finally, for the control chart with window size n=20, the relationship between ARL2χ 0 

and C is described by the following regression model 

 

( ) CARLBoxCox 276.15765.7140 +=  

where 

( ) 97623.0

02376.0
0

0 419.34602376.0
1

1 −×
−

+=
ARL

ARLBoxCox  

 

The expression of the C value for a given ARL0 can be approximated by 

 17



 

⎟⎟
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+−= − 97623.0

02376.0
0

419.34602376.0
1

65.713
276.157

1ˆ ARL
C  

 

The R-Squared statistic and the correlation coefficient of the regression model are 

99.9607% and 0.999804 respectively, indicating a relatively strong relationship between 

the variables.  The relationship between the observed and predicted values of ARL0 for a 

window size 20 is shown in figure 4.  
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Figure 4. Observed and predicted values of the ARL0 for control chart with n=20 2χ
 

To check the performance of the regression models for predicting the threshold value 

of the control chart at n=3, 5, and 20, we calculate C at different values of ARLĈ 2χ ˆ 0 

(ARL0=100, 250, 350, and 500) and then estimate the actual ARL0 by simulation. The 

results of table 5 indicate that Box-Cox power transformation method can accurately 

approximate the ARL0 of the control chart. 2χ
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Table 5. Estimation of the ARL0 by using Box-Cox power transformation method 

  
100 250 350 500 

Ĉ  6.556 8.231 8.848 9.504 n=3 
ARL0 99.261 248.705 349.803 498.787 

Ĉ  6.331 8.102 8.746 9.425 n=5 
ARL0 100.447 246.620 353.017 505.068 

Ĉ  4.797 6.779 7.518 8.307 n=20 
ARL0 102.519 246.450 350.620 507.764 

 

7. 3. Time Detection Performance Analysis 

Timeτ  at which a trend starts can be estimated by applying the proposed approach since 

the value of the proposed statistic increases monotonically when a trend occurs. We 

compare the performance of the proposed method with CUSUM and EWMA estimators. 

 

7.3.1. Chi-square Change Point Estimation Procedure 

a)  control chart issues an out-of-control signal when the chart value at the Tth 

window; ; exceeds the UCL 

2χ

2

T
χ⎡ ⎤⎣ ⎦

b) The time of the drift occurrence is identified by counting the number of  

     consecutive periods since the chart values are monotonically increasing 

 

( ){ }2
2 2 2 2 2

1 1
ˆ : ,   1,.... 1 ,  

t t i i T
t i t T

χ
τ χ χ χ χ χ

+ +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ≥ < = + − ≥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ UCL  

                (6) 
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A  control chart with UCL=7.65 and window size 20 is used to apply the estimator 

in the10,000 simulation runs. 

2χ 2χ

 

7.3.2. CUSUM Change Point Estimation Procedure 

The CUSUM estimator procedure proposed by Page (1954) is summarized for a CUSUM 

chart with parameters K and H as follows 

a) CUSUM statistics are 

 

( )[ ]+
−

+ ++−= 10,0max iti CKyC µ      (7) 

( )[ ]−
−

− +−−= 10,0max iti CyKC µ      (8) 

      where the starting values are  000 == −+ CC

 

b) CUSUM chart issues an out-of-control signal when  or  exceeds the 

control limit H 

+
iC −

iC

b) If , the time of the drift occurrence is identified by counting the 

number of consecutive periods since is greater than zero. The same 

procedure is used when . The change point estimate using CUSUM 

chart to identify the change point 

HCi ≥+

+
iC

HCi ≥−

τ  can be expressed as 

 

 ( ){ }HCTtiHCCt TitCUSUM ≥−+=<<≤= ±±±  ,1,....1 0 ,0:τ̂   (9) 
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A CUSUM control chart with parameters K=0.25, and H=8 is used in simulating 10,000 

runs. 

 

7.3.3. EWMA Change Point Estimation Procedure 

A similar approach to the CUSUM estimator is proposed by Nishina (1992) to use 

EWMA control charts to identify the change point in a process. The EWMA estimator is 

summarized for an EWMA chart with parameters λ  and L as follows 

a) EWMA statistics  at time t is defined as tE

 

( ) 11 −−+= ttt EyE λλ        (10) 

        where 10 ≤< λ  and 00 µ=E   

b) EWMA chart issues an out-of-control signal when Et exceeds the control 

limits  

 

( ) ( )[ ]t
t LUCL 2

0 11
2

λ
λ

λσµ −−
−

+=      (11) 

( ) ( )[ ]t
t LLCL 2

0 11
2

λ
λ

λσµ −−
−

−=      (12) 

 

c) If , the time of the shift occurrence is identified by counting the 

number of consecutive periods since E

tt UCLE ≥

t exceeds the standard mean 0µ . The 

EWMA estimator for the change point τ  can be expressed as 
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( ){ }TTiitEWMA UCLETtiUCLEEt ≥−+=<<≤=  ,1,....,1  ,:ˆ 00 µµτ  (13) 

 

An EWMA control chart with parameters L=2.7, andλ =0.1 is used to apply the CUSUM 

estimator in the10,000 simulation runs. 

 

The simulation results for the different drift time estimators are shown in tables 6 and 7. 

Table 6 shows the expected value of the deviation  and its standard error for different 

trend rates. The deviation  is the difference between the estimate of drift time 

d

d τ̂ and the 

actual drift time ( 50)=τ ; i.e., ττ −= ˆd . 

 

Table 6. Simulation results for the estimates of drift time  

2χ  
Estimator 

CUSUM 
Estimator 

EWMA 
Estimator 

 
  β  

( )dE  Std. 
error 

( )dE
 

Std. 
error 

( )dE
 

Std. 
error 

0.1 9.46 0.040 -2.70 0.110 -0.63 0.101 
0.2 4.92 0.027 -4.54 0.105 -2.53 0.097 
0.3 3.15 0.021 -5.28 0.104 -3.32 0.095 
0.4 2.21 0.018 -5.68 0.103 -3.72 0.094 
0.5 1.64 0.016 -5.94 0.103 -3.99 0.094 
0.6 1.25 0.015 -6.10 0.102 -4.18 0.093 
0.7 0.98 0.014 -6.22 0.102 -4.32 0.093 
0.8 0.78 0.013 -6.31 0.102 -4.42 0.093 
0.9 0.63 0.013 -6.40 0.102 -4.51 0.092 
1.0 0.50 0.012 -6.46 0.102 -4.59 0.092 

 

The results show that on average the  estimator is more efficient than CUSUM and 

EWMA estimators in detecting the drift time for trend rates greater than 0.2. Also, it can 

be seen that the standard error of the proposed estimator is significantly smaller than the 

standard error of the other estimators. 

2χ
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The estimated probability of drift time detection within n observations from the actual 

drift time is shown in table 7, where ( )np ≤−ττ̂ˆ  is the estimated probability that the 

absolute difference between τ̂  and τ is less than or equal n. 

 

Table 7. Estimated probability of detecting the actual drift time 

β   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
2χ  0.008 0.027 0.055 0.093 0.129 0.165 0.194 0.224 0.247 0.265 

CUSUM 0.067 0.102 0.130 0.152 0.170 0.190 0.204 0.218 0.229 0.241 ( )ττ =ˆp̂  
EWMA 0.048 0.068 0.084 0.101 0.114 0.127 0.144 0.159 0.173 0.187 

2χ  0.025 0.088 0.187 0.300 0.405 0.487 0.554 0.613 0.657 0.694 
CUSUM 0.184 0.273 0.336 0.377 0.407 0.425 0.435 0.440 0.444 0.444 ( )1ˆˆ ≤−ττp  
EWMA 0.136 0.199 0.250 0.297 0.336 0.372 0.405 0.432 0.461 0.484 

2χ  0.051 0.177 0.365 0.548 0.688 0.792 0.866 0.914 0.947 0.970 
CUSUM 0.305 0.431 0.500 0.530 0.541 0.543 0.541 0.537 0.533 0.530 ( )2ˆˆ ≤−ττp  
EWMA 0.231 0.339 0.422 0.490 0.539 0.573 0.600 0.614 0.624 0.628 

2χ  0.075 0.288 0.556 0.761 0.884 0.950 0.979 0.993 0.998 1.000 
CUSUM 0.418 0.552 0.600 0.607 0.604 0.600 0.595 0.591 0.587 0.585 ( )3ˆˆ ≤−ττp  
EWMA 0.331 0.483 0.582 0.634 0.661 0.672 0.676 0.676 0.675 0.674 

2χ  0.112 0.436 0.743 0.905 0.973 0.994 0.999 1.000 1.000 1.000 
CUSUM 0.523 0.646 0.665 0.659 0.651 0.647 0.643 0.640 0.637 0.634 ( )4ˆˆ ≤−ττp  
EWMA 0.437 0.614 0.686 0.711 0.714 0.712 0.710 0.708 0.707 0.706 

2χ  0.160 0.588 0.874 0.971 0.995 0.999 1.000 1.000 1.000 1.000 
CUSUM 0.610 0.703 0.702 0.693 0.686 0.682 0.678 0.676 0.673 0.671 ( )5ˆˆ ≤−ττp  
EWMA 0.536 0.701 0.745 0.745 0.741 0.737 0.735 0.733 0.732 0.731 

2χ  0.224 0.720 0.947 0.994       
CUSUM 0.679 0.738 0.728 0.719       ( )6ˆˆ ≤−ττp  
EWMA 0.628 0.764 0.773 0.768       

2χ  0.298 0.829 0.986 0.999       
CUSUM 0.730 0.764 0.752 0.743       ( )7ˆˆ ≤−ττp  
EWMA 0.704 0.800 0.796 0.790       

2χ  0.389 0.908 0.997 1.000       
CUSUM 0.772 0.785 0.774 0.767       ( )8ˆˆ ≤−ττp  
EWMA 0.765 0.822 0.813 0.808       

2χ  0.489 0.963 1.000 1.000       
CUSUM 0.805 0.802 0.792 0.785       ( )9ˆˆ ≤−ττp  
EWMA 0.813 0.837 0.828 0.823       

2χ  0.591 0.988 1.000 1.000       
CUSUM 0.827 0.818 0.809 0.803       ( )10ˆˆ ≤−ττp  
EWMA 0.846 0.850 0.841 0.837       
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The results indicate that the probability of detection of the proposed estimator 

significantly increases with the increase in the number of observations n. As a result, the 

proposed estimator is capable of detecting the true drift time within 5 observations with 

probability greater than 0.97 for 4.0>β  which is approximately 30% higher than the 

other estimators. 

 

8. Conclusions 

The performance of the proposed chart for detecting linear trends in process mean is 

investigated and compared with CUSUM, EWMA, and Shewhart charts. The 

comparisons reveal the effectiveness and the capability of Chi-square chart to deal with a 

wide range of trend magnitudes. Simulations are used to study the applicability of the 

new chart for detecting drift time in a process subject to a linear trend in process mean. 

Also, the ARL properties of Chi-square chart are investigated analytically using Markov 

chain approach. 
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