Threshold condition for global existence and blow-up to a radially symmetric drift–diffusion system

Carlos Conca\(^{a,b}\), Elio Espejo\(^{c,\ast}\)

\(^{a}\) Departamento de Ingeniería Matemática (DIM) and Centro de Modelamiento Matemático (CMM), Universidad de Chile (UMI CNRS 2807), Casilla 170-3, Correo 3, Santiago, Chile

\(^{b}\) Institute for Cell Dynamics and Biotechnology: a Centre for Systems Biology, University of Chile, Santiago, Chile

\(^{c}\) Millennium Institute for Cell Dynamics and Biotechnology, University of Chile, Santiago, Chile

ABSTRACT

For a class of drift–diffusion systems Kurokiba et al. \cite{Kurokiba2006} proved global existence and uniform boundedness of the radial solutions when the \(L^1\)-norm of the initial data satisfies a threshold condition. We prove in this letter that this result prescribes a region in the plane of masses which is sharp in the sense that if the drift–diffusion system is initiated outside the threshold region of global existence, then blow-up is possible: suitable initial data can be built up in such a way that the corresponding solution blows up in a finite time.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A mathematical model for particles interacting via the gravitational potential is the following system of PDE’s:

\[
\begin{align*}
\partial_t n - \Delta n + \nabla \cdot (n \nabla \psi) &= 0 & t > 0, x \in \mathbb{R}^2 \\
\partial_t p - \Delta p - \nabla \cdot (p \nabla \psi) &= 0 & t > 0, x \in \mathbb{R}^2 \\
-\Delta \psi &= -(p - n) & x \in \mathbb{R}^2 \\
\psi(0, x) &= n_0(x) \geq 0, \quad p(0, x) = p_0(x) \geq 0 & x \in \mathbb{R}^2.
\end{align*}
\]

(1)

The initial value problem (1) is one of the most representative systems of the so-called drift–diffusion models. Kurokiba and Ogawa proved in \cite{Kurokiba2006} for system (1) local well-posedness, positiveness of the variables \(n\) and \(p\), mass conservation and the following blow-up result.

Theorem 1 (Blow-up in Finite Time). Let \(s > 1\) and

\[L^s_2(\mathbb{R}^2) = \{f \in L^1_{\text{loc}}(\mathbb{R}^2); (1 + |x|^2)^{s/2} f(x) \in L^2(\mathbb{R}^2)\}.\]

Let \(n_0\) and \(p_0\) be given in \(L^s_2(\mathbb{R}^2)\) with \(n_0, p_0 \geq 0\) everywhere, and satisfying

\[
\frac{\left(\int_{\mathbb{R}^2} (n_0 - p_0) \, dx\right)^2}{\int_{\mathbb{R}^2} (n_0 + p_0) \, dx} > 8\pi.
\]

(2)

Then the solution of (1) blows up in a finite time.
The possibility of having global existence in time for system (1) whenever
\[\frac{\int_{\mathbb{R}^2} (n_0 - p_0) \, dx}{\int_{\mathbb{R}^2} (n_0 + p_0) \, dx} < 8\pi \] was suggested by Kurokiba and Ogawa in [1] and it was partially proved by Kurokiba et al. in [2]. Specifically, they proved in particular the following.

Theorem 1 (Existence of Blow-up). Let \(s > 1 \). Suppose that the initial data \(n_0 \) and \(p_0 \in L_s^2(\mathbb{R}^2) \cap L^\infty(\mathbb{R}^2) \) are positive radially symmetric functions. If
\[n_0 \|_{L^1(\mathbb{R}^2)}, \quad p_0 \|_{L^1(\mathbb{R}^2)} < 8\pi, \] then the corresponding radially symmetric solution \((n(t), p(t))\) exists globally in \(C(0, \infty; L^2_s(\mathbb{R}^2)) \). Moreover, there exists a constant \(C \) such that
\[\sup_{t \geq 0} \| n(t) \|_{L^\infty(\mathbb{R}^2)} \leq C, \quad \sup_{t \geq 0} \| p(t) \|_{L^\infty(\mathbb{R}^2)} \leq C. \]

However, condition (3) results not to be sufficient to guarantee global existence as was proved by Espejo et al. in [3]. The aim of this letter is to show that although condition (3) does not represent a sufficient condition for global existence in time, the condition of global existence (4) is optimal (in the radial case). Precisely, we show that if \(\theta_1 \) and \(\theta_2 \) are arbitrary positive parameters satisfying
\[\theta_1 > 8\pi \quad \text{or} \quad \theta_2 > 8\pi, \] then initial data \(n_0 \) and \(p_0 \) can be constructed in such a way that
\[\theta_1 = \int_{\mathbb{R}^2} n_0 \, dx, \quad \theta_2 = \int_{\mathbb{R}^2} p_0 \, dx, \] and system (1) blows up.

We find it worth pointing out that the blow-up result of Theorem 1 is valid even in the non-radial case; meanwhile Theorem 2 holds true only under radially symmetric conditions on the initial data. As already mentioned, condition (4) involves the constant \(8\pi \) which results to be sharp. The problem of finding a similar optimal threshold condition under non-radial initial conditions remains open. Threshold-type conditions for a similar system, mainly for the Keller–Segel model of two species with non-radial initial conditions, are currently being investigated by Conca et al. (see [4], for example).

Notation. We denote \(M_1(r, t) = \int_{B(0, r)} n \, dx = 2\pi \int_0^r n \rho \, d\rho \), \(M_2(r, t) = \int_{B(0, r)} p \, dx = 2\pi \int_0^r p \rho \, d\rho \), \(\theta_1 = \int_{\mathbb{R}^2} n_0 \, dx \) and \(\theta_2 = \int_{\mathbb{R}^2} p_0 \, dx \). In terms of \(M_1 \) and \(M_2 \), system (1) reduces to
\[\begin{align*}
\partial_t M_1 &= \frac{r}{\partial r} \left(1 \quad \frac{1}{r} \frac{\partial M_1}{\partial r} \right) - \frac{M_2 - M_1}{2\pi r} \frac{\partial M_1}{\partial r}, \\
\partial_t M_2 &= \frac{r}{\partial r} \left(1 \quad \frac{1}{r} \frac{\partial M_2}{\partial r} \right) + \frac{M_2 - M_1}{2\pi r} \frac{\partial M_2}{\partial r}.
\end{align*} \]

2. Optimization of the blow-up condition

In order to simplify system (5) we prove first that under suitable conditions on the initial data, then either \(M_1 \leq M_2 \) or \(M_1 \geq M_2 \). This result will allow us to reduce our analysis to only one equation and then obtain our main result concerning blow-up.

Theorem 3 (Mass Comparison). Suppose that the initial data \(n_0, p_0 \in L_s^2(\mathbb{R}^2) \cap C^2(\mathbb{R}^2) \) of (1) are positive radially symmetric functions. If
\[M_1(0, r) = \int_{\mathbb{R}^2} n_0 \, dx \geq \int_{\mathbb{R}^2} p_0 \, dx = M_2(0, r), \] then for any solution in \(C([0, T); L^2_s(\mathbb{R}^2)) \cap C([0, T); C^2(\mathbb{R}^2)) \),
\[M_1(t, r) \geq M_2(t, r). \]

Proof. The idea of the proof is to formulate a suitable parabolic equation in the variable \(R := \int_0^r n - p \rho \, d\rho \) and then apply the maximum principle to show that \(R \geq 0 \). With this end in mind, we first define the following variables:
\[v(t, x) = n(t, x) + p(t, x) \]
\[w(t, x) = n(t, x) - p(t, x). \]
It follows that \((v, w)\) satisfies the following parabolic–elliptic system:

\[
\begin{align*}
\partial_t v - \Delta v + \nabla (v \nabla \psi) &= 0 & t > 0, & x \in \mathbb{R}^2 \\
\partial_t w - \Delta w + \nabla (v \nabla \psi) &= 0 & t > 0, & x \in \mathbb{R}^2 \\
-\Delta \psi &= w & x \in \mathbb{R}^2 \\
v(0, x) &= n_0(x) + p(x), & w(0, x) &= n_0(x) - p_0(x).
\end{align*}
\]

We change now to polar coordinates and integrate on \((0, r)\). Denoting \(S = \int_0^r v \rho d\rho, R = \int_0^r w \rho d\rho\) and using \(v = \frac{1}{r} \int_0^r v \rho d\rho = \frac{1}{r} \frac{\partial S}{\partial r}\) and \(w = \frac{1}{r} \int_0^r w \rho d\rho = \frac{1}{r} \frac{\partial R}{\partial r}\) we get after simplifying the following reduced system:

\[
\begin{align*}
\partial_t S - r \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial S}{\partial r} \right) - \frac{1}{r} \frac{\partial R}{\partial r} R &= 0 \\
\partial_t R - r \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial R}{\partial r} \right) - \frac{1}{r} \frac{\partial S}{\partial r} R &= 0.
\end{align*}
\]

(7) (8)

By hypothesis in \(t = 0\) we have \(R \geq 0\) and \(R = 0\) on \(r = 0\), in addition the coefficient of \(R\) is negative. By means of the change of variables \(R = R^e\) in (8) we get

\[
\partial_t R - r \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial R^e}{\partial r} \right) + \left(-\frac{1}{r} \frac{\partial R}{\partial r} - 1 \right) R^e = 0.
\]

Now if the minimum of \(R^e\) were negative at this point we would have \(\partial_t R^e \leq 0, \frac{\partial R}{\partial r} = 0\) and \(\frac{\partial^2 R}{\partial r^2} \geq 0\) and therefore

\[
\partial_t R^e - r \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial R^e}{\partial r} \right) = \partial_t R - \frac{\partial^2 R}{\partial r^2} + \frac{1}{r} \frac{\partial R}{\partial r} \leq 0 \quad \text{and} \quad (-\frac{1}{r} \frac{\partial R}{\partial r} - 1) R^e > 0 \quad \text{getting a contradiction with (8).}
\]

It follows that \(R^e \geq 0\) and consequently \(R \geq 0\). Using that

\[
R = \int_0^r w \rho d\rho = \int_0^r (n - p) \rho d\rho \\
= \frac{1}{2\pi} \left(\int_{B(0,r)} n \rho d\rho - \int_{B(0,r)} p \rho d\rho \right) = \frac{1}{2\pi} (M_1 - M_2)
\]

we conclude that

\[
M_1 \geq M_2.
\]

(9)

Therefore, variables \(M_1\) and \(M_2\) are comparable. \(\Box\)

The following result was proved in [[3], Th. 3] and it plays an essential role for our considerations. For the sake of completeness we outline the proof here.

Theorem 4 (Conditions for the Boundedness of \(p\)). Suppose that the initial data \(n_0, p_0 \in L^2(\mathbb{R}^2) \cap C^2(\mathbb{R}^2)\) of (1) are positive radially symmetric functions. If the initial data of (1) satisfy

\[
n(r, 0) \geq p(r, 0),
\]

(10)

then for any solution in \(C([0, T]; L^2(\mathbb{R}^2)) \cap C([0, T]; C^2(\mathbb{R}^2))\) there exists a constant \(C\) such that

\[
p(r, t) \leq C \quad \forall t > 0, x \in \mathbb{R}^2.
\]

Proof. From (5) and (9) it follows that

\[
\partial_t M_2 \leq r \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial M_2}{\partial r} \right).
\]

(11)

At the time \(t = 0\), the variable \(p_0\) is bounded for some constant \(C\), then we have \(M_2(r, 0) = \frac{1}{2\pi} \int_{B(0,r)} p_0 \rho d\rho \leq \frac{1}{2\pi} C \int_{B(0,r)} \rho d\rho = C^2\). Introducing the transformation \(\overline{M}(r, t) = M_2(r, t) - C^2\), it follows from (11) that \(\overline{M}\) satisfies

\[
\begin{align*}
\partial_t \overline{M} &\leq \frac{\partial^2 \overline{M}}{\partial r^2} - \frac{1}{r} \frac{\partial \overline{M}}{\partial r} \\
\overline{M}(r, 0) &\leq 0, \quad \overline{M}(0, t) = 0, \quad \overline{M}(r, t) \leq 0.
\end{align*}
\]

(12)

Thus the maximum principle yields

\[
\overline{M}(r, t) = M_2(r, t) - C^2 \leq 0
\]
and, hence, $M_2(r, t) = 2\pi \int_0^r p\rho d\rho \leq Cr^2$. Using regularity theory for parabolic equations (see [5]), we then obtain the bound $p = \frac{1}{r} \frac{\partial M_2}{\partial r} \leq C$, for a suitable constant $C > 0$. □

The last theorem will allow us to simplify system (5) and apply the moments technique (see, e.g. [6–8]) to prove blow-up. This final result shows that in the radial case condition (2) for blow-up can be improved and even more it shows that conditions (4) for global existence (2) are optimal.

Theorem 5 (Finite Time of Existence for p). Suppose that the initial data $n_0, p_0 \in L^2(\mathbb{R}^2) \cap C^2(\mathbb{R}^2)$ are positive radially symmetric functions and that the inequality $n(r, 0) \geq p(r, 0)$ is satisfied. If

$$\frac{\theta_1}{2\pi} (8\pi - \theta_1) + Cm_1(0) < 0, \quad (13)$$

where

$$\theta_1 = \int_{\mathbb{R}^2} n_0 \, dx, \quad \theta_2 = \int_{\mathbb{R}^2} p_0 \, dx,$$

is fulfilled, then we have $T_{\text{max}} < \infty$, where T_{max} is the maximum time of existence of solution n.

Proof. Let $m_1(t) = \int_{\mathbb{R}^2} |x|^2 n(x, t) \, dx$. Multiplying the first equation of (1) by $|x|^2$ and integrating the resulting relation over \mathbb{R}^2, we obtain

$$\partial_t \int_{\mathbb{R}^2} n |x|^2 \, dx = \int_{\mathbb{R}^2} |x|^2 \Delta n \, dx - \int_{\mathbb{R}^2} |x|^2 \, \nabla \cdot (n \nabla \psi) \, dx. \quad (14)$$

From Green’s identity we get

$$\partial_t \int_{\mathbb{R}^2} n |x|^2 \, dx = \int_{\mathbb{R}^2} (\Delta |x|^2) n \, dx - \int_{\mathbb{R}^2} |x|^2 \, \nabla \cdot (n \nabla \psi) \, dx = 4 \int_{\mathbb{R}^2} n \, dx + 2 \int_{\mathbb{R}^2} x \cdot \nabla \psi \, dx.$$

From $\frac{\partial \psi}{\partial r} = \frac{M_2 - M_1}{2\pi}$ and the identity for radial symmetric functions $x \cdot \nabla \psi = r \frac{\partial \psi}{\partial r}$ we get

$$\int_{\mathbb{R}^2} n (x \cdot \nabla \psi) \, dx = 2\pi \int_0^\infty nr \frac{\partial \psi}{\partial r} \, rdr = 2\pi \int_0^\infty n \left(\frac{M_2 - M_1}{2\pi} \right) \, rdr = \frac{1}{2\pi} \int_0^\infty M_2 nrdr - \int_0^\infty M_1 nrdr. \quad (15)$$

From Theorem 4 we know that p is bounded. Thus we obtain the estimate $M_2 \leq Cr^2$. It follows from (15) that

$$\int_{\mathbb{R}^2} n (x \cdot \nabla \psi) \, dx \leq C \int_0^\infty nr^3 \, dr - \frac{1}{2\pi} \int_0^\infty M_1 \frac{\partial M_1}{\partial r} \, dr = \frac{C}{2\pi} \int_{\mathbb{R}^2} n |x|^2 \, dx - \frac{1}{4\pi} \theta_1^2.$$

From (14) it follows that

$$\frac{d}{dt} m_1(t) \leq 4\theta_1 + 2 \left(-\frac{1}{4\pi} \theta_1^2 \right) + Cm_1(t)$$

$$= 4\theta_1 - \frac{1}{2\pi} \theta_1^2 + Cm_1(t)$$

$$= \frac{\theta_1}{2\pi} (8\pi - \theta_1) + Cm_1(t).$$

Suppose

$$\frac{\theta_1}{2\pi} (8\pi - \theta_1) + Cm_1(0) < 0.$$

In consequence,

$$0 \leq m_1(t) < m_1(0) + \left(\frac{\theta_1}{2\pi} (8\pi - \theta_1) + Cm_1(0) \right) t.$$
Thus there exists $T_0 \in (0, \infty)$ such that
$$m_1(t) \to 0 \quad \text{as} \quad t \to T_0.$$
Therefore $T_{\text{max}} \leq T_0 < \infty$. □

In a similar way we obtain the following result.

Theorem 6 (Finite Time of Existence for n). Suppose that the initial data n_0 and $p_0 \in C_0^\infty(\mathbb{R}^2)$ and $p(r, 0) \geq n(r, 0)$.

If
$$\frac{\theta_2}{2\pi} (8\pi - \theta_2) + Cm_2(0) < 0,$$
where
$$\theta_1 = \int_{\mathbb{R}^2} n_0 \, dx \quad \text{and} \quad \theta_2 = \int_{\mathbb{R}^2} p_0 \, dx,$$
is fulfilled, then we have $T_{\text{max}} < \infty$, where T_{max} is the maximum time of existence of solution p.

Theorems 5 and 6 show that if θ_1 and θ_2 are arbitrary positive parameters satisfying
$$\theta_1 > 8\pi \quad \text{or} \quad \theta_2 > 8\pi,$$
then we can construct initial data n_0 and p_0 such that
$$\theta_1 = \int_{\mathbb{R}^2} n_0 \, dx, \quad \theta_2 = \int_{\mathbb{R}^2} p_0 \, dx,$$
and system (1) blows up. For example, take n_0, p_0 satisfying (6) with $\theta_1 = \int_{\mathbb{R}^2} n_0 \, dx > 8\pi$ together with an initial moment $m_1(0)$ small enough such that inequality (13) holds, then Theorem 5 implies blow-up for system (1). Consequently, the optimal blow-up region should be the square found by Kurokiba et al. in [2].

References