Integrating descriptions of knowledge management learning activities into large ontological structures: A case study

Miguel-Ángel Sicilia a,*, Miltiadis Lytras b, Elena Rodríguez c, Elena García-Barriocanal a

a Department of Computer Science, Polytechnic School, University of Alcalá, Ctra. Barcelona km. 33.6, 28871—Alcalá de Henares, Madrid, Spain
b Department of Management Science and Technology, ELTRUN—The Research Center, Athens University of Economics and Business, 47A Evelpidon Str., 113 62 Athens, Greece
c Computer Science Studies, Open University of Catalonia, Avda. Tibidabo 39-43 08035, Barcelona, Spain

Received 3 February 2005; received in revised form 3 February 2005; accepted 14 April 2005
Available online 16 May 2005

Abstract

Ontologies have been recognized as a fundamental infrastructure for advanced approaches to Knowledge Management (KM) automation, and the conceptual foundations for them have been discussed in some previous reports. Nonetheless, such conceptual structures should be properly integrated into existing ontological bases, for the practical purpose of providing the required support for the development of intelligent applications. Such applications should ideally integrate KM concepts into a framework of common-sense knowledge with clear computational semantics. In this paper, such an integration work is illustrated through a concrete case study, using the large OpenCyc knowledge base. Concretely, the main elements of the Holsapple and Joshi KM ontology and some existing work on e-learning ontologies are explicitly linked to OpenCyc definitions, providing a framework for the development of functionalities that use the built-in reasoning services of OpenCyc in KM activities. The integration can be used as the point of departure for the engineering of KM-oriented systems that account for a shared understanding of the discipline and rely on public semantics provided by one of the largest open knowledge bases available.

© 2005 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: msicilia.garciab@uah.es (M.-A. Sicilia), mdl@eltrun.gr (M. Lytras), mrodriguezgo@uoc.edu (E. Rodríguez), elena.garciab@uah.es (E. García-Barriocanal).

0169-023X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
1. Introduction

The discipline of Knowledge Management (KM) has evolved and matured in the last decade, resulting in a considerable amount of models, tools and technologies. Diverse perspectives on KM make the field somewhat scattered and even diverging [3], although it can be said that it exists a shared view in several KM concepts related to organizational learning, and also in practical approaches like communities of practice, as pointed out by Scholl et al. [17]. This diversity of perspectives has fostered recent efforts oriented towards unifying concepts and providing integrative theoretical foundations for KM. In that direction, the ontology of Holsapple and Joshi (H&J) [5] describes fundamental KM concepts and axioms, and several other authors have also provided integrative views of the diverse perspectives on KM for specific elements. For example, Kakabadse et al. [6] provide a taxonomy of knowledge models, and Abou-Zeid [1] provides a multi-layer comprehensive reference model for KM.

In addition, the supporting technologies for socialization, externalization, combination and internalization of knowledge are available and can be applied to build KM solutions of a diverse kind [12]. Formal ontologies [4] have been proposed and applied as the backbone of KM systems [11], and even ontologies specific to certain KM domains exist—e.g. for software development organizations [13]. This has happened probably due to the fact that they provide a formal way to specify semantics of KM artifacts, and they also allow for the development of intelligent tools for knowledge sharing and reuse. Nonetheless, there is a significant effort associated to the engineering of a KM formal ontology, so that reuse becomes a key issue in practical situations in which an organization decides to engage in ontology-based KM.

A significant amount of reuse in terminological structures and tools can be achieved by building KM systems on top of existing large terminological bases like OpenCyc. OpenCyc is the open source version of the Cyc Knowledge Base [9], which contains over one hundred thousands atomic terms, and is provided with an associated efficient inference engine. Cyc uses as its underlying definition language a variant of predicate calculus called CycL, and it attempts to provide a comprehensive upper ontology of “commonsense” knowledge. OpenCyc contains many formal definitions that are useful in the development of KM support systems, including basic supporting elements like time and date, descriptions of organizational and customer-related terms, agent-based communication and descriptions of events and activities. These fundamental definitions and the available inferencing, querying and development tools provided by OpenCyc conform a basic framework for the implementation of ontology-based approaches to KM.

Process-orientation is at the essence of KM [7] since KM activities are in fact part of business processes. In consequence, ontological approaches to KM should pay a special attention to activities as the dynamic part of KM systems. Here we are especially concerned with the concrete class of knowledge processes that result in learning activities, but other kinds of activities could be modelled in a similar way. Our interest in learning activities is directly related to learning processes as

\[1 \text{http://www.opencyc.org/}\]
those that are supported by current e-learning standardized technology [10], for which some OpenCyc previous integration work has been described elsewhere [18,19]. The provision of knowledge representations integrating KM and e-learning standards has been also pointed out as an important research direction [20].

This paper describes the main integration points of the H&J ontology into the formal structure of OpenCyc. The result is by itself an artefact ready as a data model for intelligent applications of KM that explicitly build on common models of KM. In consequence, this represents an advance for the engineering of these kinds of systems, since with previous approaches the ontologies were either not comprehensive (since they were not based on commonly agreed models) or ad hoc in their scope and their provision of computational semantics. In addition, the work described here explicitly links learning object-related notions [23] to KM concepts, representing an additional advantage due to the increasing emphasis on metadata-based reuse of learning resources.

The rest of this paper is structured as follows. In Section 2, the main integration issues for KM processes within OpenCyc are described. Then Section 3 describes how learning activities are modelled inside the same framework as a concrete kind of KM activity, emphasizing on the integration of existing e-learning standards into the more general framework of KM. Finally, conclusions and future research directions are provided in the last section.

2. Integrating knowledge processes in OpenCyc

The recent work of Holsapple and Joshi [5] has resulted in a KM ontology providing a shared view of KM, developed collaboratively by a panel of over 30 KM practitioners and researchers. This ontology provides a foundation for explicit representations of the variety of artifacts and processes that play a role in the discipline of Knowledge Management, and as such, it can be used as a source for Semantic Web approaches to KM. The Holsapple and Joshi general-purpose KM ontology (H&J ontology for short) is described in terms of definitions and axioms. Definitions start with a letter “D”, while axioms begin with a letter “A”. Both are followed by a component acronym and a number. The component acronym represents the different components identified in H&J ontology, i.e. Knowledge Management Conduct (KMC), Knowledge Manipulation Activities (KMA), Knowledge Resources (KR), and Knowledge Management Influences (KMI). Definitions and axioms are showed in this paper enclosed in square brackets for reference purposes.

2.1. Basic definitions

The definition of KM in H&J ontology “An entity’s systematic and deliberate efforts to expand, cultivate, and apply available knowledge in ways that add value to the entity [. . .]” [DKMC1] requires the early definition of “entities” capable of engaging in KM, which are considered to include at least individuals, organizations, collaborating organizations and nations, as stated in [DKMC2-5]. The term #$Organization in OpenCyc covers all such entities (including

2 The '#' prefix is the CycL convention for constants.

3 Technically, a #$Person is not an #$Organization but a specific kind of #$Agent, but this can be avoided by considering personal KM as carried out by a single-person organization.
nations as \$GeopoliticalEntity instances and collaborations as defined by the \$subOrganizations predicate. The definition of \$Organization further restricts membership by the presence of certain relationships between organization members. Each instance of \$Organization can undertake projects, enter into agreements and own property. Such view on organizations is consistent to that of H&J ontology, and is able to model both informal and legally constituted organizations (\$LegalCorporation).

The concept of knowledge processor [DKMC10] as a member of an entity can be modelled by the concept of \$IntelligentAgent, which are by definition “capable of knowing and acting, and of employing their knowledge in their actions”. Humans are by logical definition intelligent agents and certain software pieces may also be, since they are not restricted to not being able to know [AKMC10]. The subtype \$MultiIndividualAgent fits the definition of collective agents [AKMC11]. The predicates \textit{knowsAbout} and \textit{knows} represent two alternatives for modelling available knowledge. The former is loose and may connect to any concept, while the latter is strict and requires representing justified beliefs as logical assertions belonging to the class \textit{ELSentence-Assertible}. These two differentiated epistemologies allow for defining both formal and informal knowledge, including tacit knowledge, which could also be modelled by diverse predicates like \textit{opinions}, \textit{biases} or \textit{hasEmotionAboutProposition}.

The following definitions summarize the main issues described so far.

Definition 1. \$Organization is assimilated to the concept of entity in [DKMC1-5], and represents a group of \$IntelligentAgents that are Knowledge Processors [DKMC9, DKMC10].

Definition 2. The different kinds of KM [DKMC2-5] are modelled by the specializations of \$Organization. Some important ones are yet described in \textit{OpenCyc}, e.g. \$Business or \$LegalGovernmentOrganization.

Definition 3. Knowledge in agents can be modelled with various facets by \textit{OpenCyc} predicates like \textit{knows}, \textit{knowsAbout}, \textit{opinions} or \textit{expects}.

The varying effectiveness of knowledge processors for certain tasks [AKMC7-9] is related to the concept of KMA that is described in the following sub-section.

The definition of Knowledge as “that which is conveyed by usable representations” [DKMC6] can be integrated in \textit{OpenCyc} by considering this usable representations [AKMC2] as information bearing things, i.e. “Each instance of \textit{InformationBearingThing} (or “IBT”) is an item that contains information (for an agent who knows how to interpret it)”. The knowledge representation types described in [AKMC1] are similar to some \textit{OpenCyc} subclasses like \textit{SoundInformationBearingThing} or \textit{VisualInformationBearingThing}, and the type of the contents is properly represented by \$IBTContentType, which allows a flexible modelling of representation specs. The concept of knowledge artifact [DKR6] has been omitted here, since its definition only refers to a knowledge representation, and does not provide any further function or utility.

Definition 4. \$InformationBearingThing instances represent usable knowledge representations able of conveying knowledge [DKMC6]. \$IBTContentType can be used to model diverse formats and representations, including MIME types, kinds of internal reports and others.
Then, the central notion of KM [DKMC1] can be defined in terms of the set of KMA initiated deliberately by an entity to create value. Nonetheless, the definition in H&J ontology is not precise enough to make directly useful its inclusion in OpenCyc.

The broad concept of resource [DKMC7] is properly represented by the predicate \texttt{resource-Available}, that connects \texttt{Agents} (and in consequence, entities as described above) with instances of \#\$\texttt{SomethingExisting}, which encompass not only tangible things but also intangibles like agreements or obligations. Their inherent temporal nature directly capture the change dimension stated in [AKMC5]. Human, material, knowledge and financial resources [AKMC4] can be accommodated as subclasses of \#\$\texttt{SomethingExisting}.

\textbf{Definition 5.} Resources available to entities [DKMC7] are represented implicitly by that linked to agents through the predicate \texttt{resourceAvailable}.

Knowledge representations represented by IBTs are a kind of knowledge resource that is easily identifiable (they are content knowledge resources according to [DKR2]), but other knowledge resources that are part of the organization itself [DKR1] require further modelling. Concretely, competencies following the schema described by Sicilia in [22] have been integrated as an extended schema covering the predicates \texttt{capableOf} and \texttt{skillCapableOf}.

The integration of the basic KM concepts described enables the use of at least the following OpenCyc model aspects in KM-supporting applications:

- The variety of Knowledge Representations can be modelled by \texttt{IBT} and related classes, resulting in a categorized repository of resources, eventually including fine-grained descriptions of knowledge items and competencies.
- The behavior of knowledge processors inside the organization can be modelled in detail by means of the part of OpenCyc dealing with \texttt{Agent} interactions, e.g. modelling individual and organizational \texttt{goals}, knowledge (\texttt{knows}) and actions (\texttt{performedBy}).
- Organizational structure can be modelled by the \texttt{Organization} term, and \texttt{Business} in case of profit-oriented organizations. The predicates \texttt{subOrganization} and \texttt{parentCompany} can be used to model units and aggregates, respectively.

\subsection*{2.2. Knowledge-manipulation activities}

H&J ontology describes KM activity in terms of the manipulation of knowledge representation by processors [DKMC11]. The recognizable kinds of knowledge manipulation are referred to as Knowledge Manipulation Activity (KMA) [DKMC12]. Activities in OpenCyc are represented as \#\$\texttt{Actions}, which are a collection of \#\$\texttt{Events} carried out (\texttt{doneBy}) by a “doer”. This generic concept of action can be specialized to represent KMA executions by restricting them to be carried out by intelligent agents. The predicate \texttt{ibtUsed} can be used to represent the knowledge representations manipulated by KMA. In addition, since KM activities are deliberate, it is better to use the subclass \#\$\texttt{PurposefulAction} and the predicate \texttt{performedBy}.

\textbf{Definition 6.} KMA executions can be represented as instances of \#\$\texttt{PurposefulAction}, \texttt{performedBy} an \#\$\texttt{IntelligentAgent} and using (\texttt{ibtUsed}) \#\$\texttt{IBT} representing knowledge resources.
The concept of KM Episode [DKMC15-16] represents executions of KMAs possibly by a collection of processors. These can be modelled by configurations of Actions as modelled by \$Action-Predicate, which can be used by the Cyc planner to reason about events and dynamics.

Definition 7. KM episodes of an arbitrary complexity can be modelled by \$Action-Predicates and related elements.

Nonetheless, KMA types and KM episode types are generic “templates” characterizing concrete executions. They can be represented as collections of \$PurposefulActions and of \$ComplexActionPredicates, respectively.

Definition 8. \$KMA is introduced as a class with KMA instances represented as \$PurposefulActions. Collections of \$ComplexActionPredicates are used to model types of KM episodes, containing interacting KMAs.

The Knowledge flows concept [DKMA1] defines “the transfer of knowledge from one instance of a KMA to another instance”. It can be represented by explicitly asserting the outcomes of KMA. The generic eventOutcomes predicate can be used. More specific situation changes, for example, chained activities, can be represented by the postSituation and postEvents predicates.

Influences in KM [DKMC13] are loosely defined as “factors that can affect resources, processors and processes”. Even though this concept is important to model KM events, the forces and outcomes or influences are not detailed in the paper presenting H&J ontology [5], so that they have not been included in the integration described in this paper. A kind of influence that is yet represented in OpenCyc is agent-to-agent influences (influencesAgent).

Knowledge needs or objectives are another important issue in modelling KMA and KM episodes. Predicates goals and subGoals in OpenCyc can be used to express future-oriented sentences representing agent goals. Since entities and processors are particular kinds of agents, these assertions can be used both for organizational and for individual objectives. Desires and expectations can be expressed by their own predicates, clearly differentiating them from concrete objectives.

Definition 9. Goals for entities and processors with respect to knowledge can be expressed through the goals predicate in logical form. The objectives of KMAs can be considered as the goals of the processors involved in them.

The different types of KMA described by H&J ontology [AKMA1], i.e. knowledge acquisition, selection, generation, assimilation, and emission, can be considered as sub-categories of \$KMA depending on their purpose and results. Knowledge Acquisition [DKMA3] and Selection [DKMA4] are typically instances of \$SelectingSomething events, that can be further decomposed in research or evaluating steps. The difference between them is that the former acts on the organization’s external environment, while the later identifies knowledge within the organization. Knowledge assimilation [DKMA5] is essentially connected to learning as described in the following section. Knowledge generation [DKMA6] deals with knowledge derivation, it can be modeled as instances of \$CreationEvent, representing the outcomes with the outputs-Created predicate. Finally, Knowledge Emission [DKMA7] is related to knowledge projection to the external environment. \$DistributionEvent can be used to model such emissions.
The above activity-related definitions enable an implicit definition of the concept of KM as the set of all the KMA inside an organization. This definition should be complemented with a view on strategic actions (somewhat entailed from [DKMC1]: “systematic and deliberate efforts”) and some higher-level view on KM as an aggregated behavior or conduct, as considered in definitions of learning organizations [14]. The predicate controls allows for the definition of subordination relations that may be used to model the flow of control from an organization’s objectives to their constituents agents. Since organizations are actually agents, they have goals and also intentions (intends).

The integration of the KMA-related concepts described enables the use of at least the following OpenCyc model aspects in KM-supporting applications:

- The sequence of steps for complex KM activities can be generated by planners, simply using the available OpenCyc machinery about complex actions.
- Knowledge objectives can be expressed in logical form through goal predicates, thus providing an explicit representation for KM-related behavior.

3. Integrating learning activities

Learning in H&J ontology is defined as “a process whereby knowledge resources are modified; an outcome of a KM episode involving change in the state of an entity’s knowledge” [DKMC17]. This definition entails that learning is considered as a (positive) change in one or several IBTs, or in some specific cases, in the knowledge attributed to one or several agents inside the organization.

Although the term Learning is defined in OpenCyc as “the collection of all events, brief or extended, in which an agent is acquiring information or know-how”, this definition by itself do not supports measurement and subsequent assessment of learning activities. A notion of discrete learning event needs to be introduced to accomplish such goals. The differential account of its definition is consistent with current approaches to contract-based learning object design [21], if they are considered to be knowledge assimilation processes [DKMA5].

Definition 10. Discrete learning events can be characterized as the difference in the extent of the knows predicate of an agent after the execution of a concrete KMA. This can be expressed by referring to each know-related item through a learntIn predicate (a specialized inverse of eventOutcomes).

Current approaches to Web-based learning are based on the concept of learning object, for which several definitions have been proposed. Reusability is considered to be an essential characteristic of the concept of learning object as the central notion for modern digital learning content design. For example, Polsani [16] includes reuse in his definition of learning object as “an independent and self-standing unit of learning content that is predisposed to reuse in multiple instructional contexts”, and Wiley [23] also mentions the term in his learning object definition “any

4 This view of learning objects as facilitators of assimilation of knowledge has been criticized as too narrow elsewhere, e.g. [2]. Nonetheless, it is still the most common view, and other functions can be accommodated in the future.
digital resource that can be reused to support learning”. Existing work has dealt with the integration of that concept in OpenCyc [18,19] taking into account e-learning standards [10]. Fig. 1 provides an overview of the main mappings proposed.

In the context of KM, learning is considered the outcome of a KM process, so that learning objects become elements in it.

Definition 11. Learning objects are concrete kinds of knowledge representations oriented specifically to learning.

Learning objects are considered as resources inside activities of any arbitrary complexity [8]. Since KMA are provided with detailed definitions, the structure of KMA can be assimilated to activities, eventually adding some concepts related to specific theories of learning, e.g. constructivists or socio-cultural approaches [15].

The integration of the learning technology concepts described enables the use of at least the following OpenCyc model aspects in KM-supporting applications:

- Learning activities’ outcomes can be represented inside the ontology, enabling measurement and assessment.
- Learning objects are considered as a specific kind of knowledge representation used in KM processes, and their contribution to learning as such can be measured and assessed.
- Many of the aspects covered in learning object metadata can be assimilated (and in some cases, make more formal) to existing OpenCyc definitions as described in [18].

4. Conclusions and future research directions

The integration of the main concepts of H&J ontology inside the OpenCyc knowledge base has been described, and such concepts have been formally linked to ontological definitions related to learning technology described elsewhere [18,19]. The definitions provided are linked to existing commonsense knowledge represented in OpenCyc, allowing the use of such knowledge in KM.
applications of a diverse kind. OpenCyc provides a significant amount of concept and predicate definitions that embody diverse aspects of KM, which can be extended and interpreted consistently to come up with a well-equipped knowledge representation for KM applications. Consequently, the practical contributions of the work described include both the pragmatic aspect of providing a knowledge representation for the development of applications, and also the conceptual insights on the ontological commitments that connect shared views of KM and learning resources with commonsense knowledge.

The mapping provided in this paper can be further extended and revised for concrete application profiles, and it is essentially intended to provide a concrete realization of an existing ontology of KM [5], thus sharing with it the objective of providing a foundation for systematic KM research study and practice.

The work described in this paper has still several open issues, notably the modelling of the context of knowing [AKMC2], the wide range of knowledge attributes [AKMC3], the details of the representation of KM conduct concept [DKMC19-20] and an account of projection definition in KM [DKMC18].

Future work should integrate detailed ontological views of competency considering explicitly work situations [22], which are required to provide support for automated or semi-automated knowledge gap analysis, and for linking such knowledge needs to the learning contents and activities that may eventually overcome them.

References

Miguel-Ángel Sicilia obtained a University degree in Computer Science from the Pontifical University of Salamanca in Madrid, Spain (1996) and a PhD from Carlos III University in Madrid, Spain (2002). In 1997 he joined an Object-Technology consulting firm, after enjoying a research grant at the Instituto de Automática Industrial (Spanish Research Council). From 1997 to 1999 he worked as Assistant Professor at the Pontifical University. Since 2000 to October 2003, he worked as a full-time lecturer at Carlos III University working actively in the area of adaptive hypermedia and e-learning systems. Currently, he works as a Associated Professor at the Computer Science Department, University of Alcalá (Madrid). His research interests are primarily semantic metadata, and learning technology, and he is editor of several journals in the areas.

Miltiadis Lytras (Ph.D., Department of Management Science and Technology, Athens University of Economics and Business—AUEB, MBA AUEB, B.Sc. Informatics AUEB) is the Editor in Chief of IJKL. He is a faculty member in the Computers Engineering and Informatics Department—CEID (University of Patras), Department of Business Administration—BMA (University of Patras) and in the Technology Education and Digital Systems Department—TED (University of Piraeus) and in the International MBA program of AUEB (http://www.i-mba.aueb.gr). Since 1998, he is a research officer in ELTRUN, the Research Center in the Department of Management Science and Technology at the Athens University of Economics and Business. His research focuses on semantic web, knowledge management and e-learning, with more than 50 publications in these areas. He has co-edited/co-edits, nine special issues in International Journals and has authored/edited six books, He is the founder of the Semantic Web and Information Systems Special Interest Group in the Association for Information Systems (http://www.sigssemis.org) and serves as the Editor in Chief of three international journals while he is associate editor or editorial board member in five more.
Elena Rodríguez is graduated in Computer Science by Universitat Politècnica de Catalunya in 1993. Since June 2001, she is a lecturer at the Universitat Oberta de Catalunya with a permanent position. Her current research interests include ontology engineering in the e-learning area devoted to the development of technology that applies Semantic Web to standard-based e-learning systems.

Elena García-Barriocanal obtained a university degree in Computer Science from the Pontifical University of Salamanca in Madrid (1998) and a Ph.D. from the Computer Science Department of the University of Alcalá. From September 1998 to February 1999 she worked as a lecturer in the Computer Languages and Information Systems Department of the Pontifical University, and in 1999 she joined the Computer Science Department of University of Alcalá as assistant professor. Starting from 2001, she is Associate Professor at Computer Science Department of the University of Alcalá and she is a member of the Information Engineering Research Group of this University. Her research interests mainly focus on topics related to the role of knowledge representation in fields like human–computer interaction and learning technologies; concretely she actively works on ontological aspects both in e-learning and in usability and accessibility. She supervises several Ph.D. works in those areas.