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Abstract

Chronic Fatigue Syndrome is a protracted illness condition (lasting even years) appearing with
strong flu symptoms and with complex, systemic, defaiances by the immune system.

Here we study the most widely accepted picture for its genesis, namely a persistent acute mononu-
cleosis infection, by means of non-equilibrium statistical mechanics techniques and we show how this
may drive the immune system toward an out-of-equilibrium metastable state (with long life-time) dis-
playing chronic activation of both humoral and cellular responses: a scenario with full inflammation
without a direct ”causes-effect” reason.

By exploiting a bridge with the neuronal scenario, we mirror killer lymphocytes TK and B-cells to
neurons and helper lymphocytes TH1 , TH2 to synapses, hence showing that -under minimal physical
assumptions- the immune system may experience the Pavlov conditional reflex phenomenon such
that if the exposition to a stimulus (EBV antigens) is too long, strong internal correlations among
B, TK , TH may develop ultimately resulting in a persistent activation even though the stimulus itself
is removed: Interestingly we found in literature several experimental findings which corroborate our
outcomes.

1 Introduction

The Chronic Fatigue Syndrome (CFS) refers to a clinical condition characterized by a persistent debil-
itating fatigue, neurological problems and a combination of flu-like symptoms (e.g. headache, tender
lymph nodes), ranging from at least 6 months up to several years [1, 2, 3, 4, 5, 6].
The estimated worldwide prevalence of CFS is 0.4% − 1% (meaning over 800000 people in the United
States and approximately 240000 in the UK) with a striking socio-economical impact: The average annual
total value of lost productivity in the United States is $9.1 billion [7]. Such numbers propel a continued
research to determine the cause and potential therapies for CFS, whose diagnosis is still symptom based
and whose origin remains elusive.
The resemblance of the CFS to a chronic form of acute infectious mononucleosis (AIM) has provoked
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investigation on whether this illness (whose etiologic agent is the Epstein-Barr virus, EBV), can prompt
a chronic immune reaction in the body.
In this work we try to deepen this point: By bridging between a neural system and an adaptive immune
system, we show that an associative learning phenomenon might underlie a transition from an AIM to
a CFS state. Our model focuses on the mutual interaction and regulation between B and T lympho-
cytes: when stimulated by a viral load (e.g. EBV antigens), they get activated (AIM phase); the active
phase is then supposed to relax to a quiescent state once the viral load ceases. Actually, we evidence
that, during such a relaxing stage, the collective behavior of the components of the system can yield
non-trivial phenomena: if the AIM phase takes a relatively long time to recover (with respect to the
timescale that sets the standard immune response), which is in turn related to the success of the EBV
to elude immunosurveillance, a strong correlation between the activation of B and T lymphocytes can
be accomplished. As a result, when the viral load has vanished and B cells remain activate for their
memory role, T cells can also maintain high concentration levels since they have “learnt” that active B
cells are associated to infection1. Therefore, as T cells display strongly inflammatory properties, we may
get a state of chronically active immune response (with CFS symptoms) despite the original infection is
no longer in course.

We stress that our approach, by applying basic concepts of statistical mechanics to immunology,
points out emerging possible mechanisms leading to the development of the CFS: Of course, we can not
attain the detailed interaction mechanisms which allow the phenomenon, but we can run the statistical
mechanics machinery and interpret its results in keeping with the immunobiological phenomenology found
in the literature 2 : Interestingly, as we will show, for this learning process to be properly fulfilled, T
cells need to bypass an helper signal from specialized lymphocytes and this has been recently evidenced
experimentally.

The paper is structured as follows: In Sec.2 we provide a basic background about EBV, CFS and
associative learning; these topics will be merged in Sec. 3 were we present our model. Then, in Sec.
4 we show our analysis and results. Finally, our conclusions and discussions are in Sec.5, while all the
mathematics involved is reported in the appendix.

2 Minimal background

In this section we provide a basic background about the main features concerning chronic fatigue syn-
drome, Epstein-Barr virus and classical conditioning, then, in the following sections we will merge such
concepts to get an interpretation for the emergence and establishment of the CFS.

Before proceeding, it is worth introducing the main agents of the adaptive immune system [8], which
will also constitute the effective agents in our modelization.

An immune response is generally triggered by the introduction into the body of an antigen, which
may have either exogenous or endogeneous origin (e.g. toxins, bacteria, viruses, cancerogen cells). For
instance, the genes of viruses that have infected a host cell can encode several proteins working as antigens.

B lymphocytes are the agents of the humoral (i.e. mediated by secreted antibodies) immune response.
B-cells can produce antibodies upon their full activation, which requires antigen recognition as well as a
signal from (antigen stimulated) TH cells. From activated B cells, specific for a given antigens, memory
cells are eventually formed; these are long-life cells able to respond quickly to a following exposure to the
same antigen.

T lymphocytes are the agents of cellular-mediated (i.e. not involving antibodies but directly cellular

1In this context there is no difference among activation trough division among plasma and memory cells [8] or trough
Couthino idiotipic/anti-idiotypic internal images [9, 10]; whatever signal would work finely.

2In a very simplified parallel, phase transition classification in statistical mechanics aware us about the existence of
abrupt macroscopic changes occurring in the system under investigation, when varying its control parameters: although
the mechanisms underlying e.g. the ”ice-water” transition and the precipitation in an acid-base titration are completely
different, the global phenomenology - described in the proper specific set of observable - behaves in the same way and a
lot of mathematics and physics can be shared in their modeling (first of all the minimum energy and maximum entropy
principles).
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mechanisms such as lysis) response; as in standard literature, we focus on T-helper cells (TH) and on
T-cytotoxic or killer cells (TK) which, when in their quiescent state, are referred to as T-CD8+ and
T-CD4+, respectively. Quiescent T-cells can be activated upon contact with cells which have previously
interacted with the antigen: T-killer cells can interact with the so-called Class I Major Hystocompatibility
Complex (MHC-I) expressed by all cells, while T-helper cells can interact with the so-called Class II
Major Hystocompatibility Complex (MHC-II) expressed only by antigen presenting cells (APC, e.g.
macrophages, dendritic cells, B-cells). Active TK expresses killer functions destroying infected cells,
while active TH assists other white blood cells in immunologic processes, including maturation of B cells
and activation of cytotoxic T ones.

Every immune system cell is equipped to synthesize and release a variety of small molecules, called
cytokines, that travel to other cells (both immune and nonimmune) and up/down-regulate their growth;
cytokines include interferons (IFNs) and interleukins (ILs).

2.1 Chronic Fatigue Syndrome

The literature on CFS is very broad with hundreds of analysis carried out and a rich collection of data,
yet the clinical implications of such findings remain uncertain and a unifying, globally accepted, picture
of its etiology and pathophysiology is still missing [2, 3, 4, 5, 6].

Current theories are looking at the possibilities of neuroendocrine dysfunction, virus geneses, en-
vironmental toxins, genetic predisposition, or a combination of these: Several researches suggest that
Epstein-Barr Virus (EBV), by prompting a chronic immune reaction in the body, might cause CFS.
Indeed, the phenomenology reported is consistent with the idea that the syndrome may follow the occur-
rence of an infection yielding a massive immune response, which, for causes not yet completely clarified,
may persist for long time, although the underlying infection is no longer in course. In fact, a CFS state
is usually associated to an abnormal concentration and/or functioning of B-cells, T-cells and cytokines.
Another interesting and robust immunological fact found in patients with CFS is an unusually high
(more than 67%) increase of activated CD8+ cytotoxic T lymphocytes with MHC-II activation markers
[11, 12, 13, 14, 15].

From a symptomatology viewpoint, fatigue is a common symptom, but CFS is a multi-systemic
disease including even post-exertional malaise, unrefreshing sleep, widespread muscle, joint pain, cognitive
difficulties, chronic (often severe) mental and physical exhaustion, muscle weakness, hypersensitivity,
orthostatic intolerance, digestive disturbances and more.

2.2 The Epstein-Bar virus

EBV is one of the most successful viruses, infecting over 90% of humans and persisting for the lifetime of
the person in a non pathogenic way [16, 17]. The infection can follow different pathways, in particular,
it can turn in an AIM (in up to 25% cases [18]) or it can simply introduce the virus in the host organism
in a non apparent way.

The virus aims to enter B-cells and, if successful, two outcomes are possible: In the first case the EBV
begins a viral replication cycle (so called ”lytic phase”, a common feature of most viral infections), which
induces the death of the infected cell, followed by the complete release of new virus particles, which are
going to infect other cells; in the second case a state of latency (latent phase) is established where the
“disguised” virus multiplies and stands by inside the cell, while no extracellular phenomena are observed,
in such a way that no tackling by the immune system is evidenced.

During the primary infection, the latent cycle and the lytic cycle proceed in parallel and the immune
system addresses most of its resources to the lytic cycle of viral replication; the infection can be asymp-
tomatic, have non-specific symptoms, or be so massive to result in AIM. The acute phase can last up to
several months and it ceases when the lytic cycle is interrupted by the immune responses or by the virus
itself, then, the infection becomes latent and the host becomes a Healthy Carrier.

The possible persistence of the acute phase, despite a potent immune response against it, indicates
that the virus has evolved strategies to elude the immune system. Among the different hypothesis, one
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has received particular attention [19]: the antigen BCRF13 can simulate the signal produced by IL-10
cytokines (which normally prompts leukocytes specialized against small-sized threatening agents, like
EBV’s antigens) and determine a delay in the immune response. More precisely, the signal from BCRF1
inhibits the production of real IL-10; the lack of IL-10 polarizes the cellular immune response in the
activation of a different kind of leukocyte, specialized in fighting against bigger-sized pathogens.

We finally report an interesting study [20] on T-cell responses, in the cases of a relatively brief (2-3
weeks) and of a protracted (4 months) acute phase. Although expansions of antigen-specific T-cells were
observed in both situations, the T-cells reactivity occurred to be broad (i.e. addressed to several, both
lytic and latent, antigens) and narrowly focused (i.e. mainly addressed to a singular antigen, the Early
BMLF1), respectively4.

Summarizing, a significant presence of antigen BCRF1 can determine a delay in the immune response.
As a result, the immune activity may take a long time for the clearance of the infection; during this time
the concentration of TK cells remains high and polarizes against BMLF1 antigen as if an internal self-
reinforcement has occurred.

2.3 Statistical Mechanics of Pavlov effect

Classical conditioning, experimentally demonstrated by Pavlov [21], is probably the most famous form of
associative learning: The typical procedure for inducing classical conditioning on a subject (e.g. a dog)
involves presentation of a neutral stimulus (e.g. bell ring) along with a stimulus of some significance
(e.g. food). The neutral stimulus can be any event that does not result in an overt behavioral response
from the subject. If the neutral and the significant stimuli are repeatedly paired, the subject eventually
associates the two stimuli and starts to produce a behavioral response (e.g. salivation) even to the neutral
stimulus alone.

From a statistical mechanics point of view, classical conditioning can result from the interplay of
dynamic phenomena, as early investigated in [22]. More precisely, statistical mechanics usually assumes
that the states of interacting “components” are fast variables, while coupling among them evolves on by
far larger time scales, in such a way that, according to adiabatic hypothesis, the whole process results
in two distinct timescales; for instance, in neural scenario, learning and retrieval correspond to the fast
(neural) and slow (synaptic) dynamics respectively [23]. Conversely, Pavlov phenomenon emerges when
these two timescales are not so spread and a unique, coupled temporal evolution must be considered for
retrieval variables and learning ones.

To fix ideas, let us introduce a basic model which shall be exploited in the following. We consider
two (on/off)-neurons σi = ±1 (i = 1, 2) connected by one synapse J = ±1, so that {σi, J} ∈ {−1, 1}.
The characteristic time for the relaxation of the two neurons is the same and denoted as τ , while the
characteristic time for the relaxation of the synapse is T , with τ � T . The time-averaged mean values
of these three components are mi(t) and w(t), for which {mi(t), w(t)} ∈ [−1, 1]5. This system shows the
capacity of a dynamical learning in the following sense: consider the action of two external signals, (s1, s2),
each applied on a different neuron (σ1, σ2). If the stimulation of both neurons happens for a short time t
(comparable with the short timescale, i.e. t ∼ τ), once one signal is removed, the corresponding neuron
stops its activity; conversely, if the two stimuli are presented for a sufficiently long time (i.e. t ∼ T ),
due to synaptic contribution, correlations within the system develop and, if one signal is turned off, its
corresponding neuron remains active: We will refer to this dynamical feature as associative learning.

Let us deepen in more technical details the emergence of such a phenomenon. At first, both signals
s1 = 1, s2 = 1 are applied to the related neurons [regime (1, 1)], consequently, the synapse can be enforced
(according to Hebb’s prescription [24]), that is w(t) grows in time. After a given time ts ∈ [0, T ] one

3The BCRF1 antigen is a Lytic Antigen sharing 70% of the human IL-10R, which is the membrane bound receptor for
IL-10, see also [17].

4An investigation on the link among BCRF1 and BMLF1 can be found in [25]
5It is worth noting that here we do not use the ergodic hypoteses, so we skip the ensemble average and evaluate averages

directly over time; of course, such averages must be taken over a time range at least order of τ to be meaninfull, allowing
in this way the fast relaxation mode to operate.
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Figure 1: Circlet represent lymphocytes (T-cells in blue, B-cells in red); the red hexagon represent
the Epstein-Barr Virus; irregular shapes are antigens (red) antibodies ebv* (yellow), or anti-anti-body
ebv** (azure); the rectangular shape represent APCs or infected cells (healthy B-cells are not included).
Different stages of the process are depicted in different colors: Infection (black arrows), Presentation
(pink arrow), Activation (green arrow).

signal, say s2, is removed [regime (1, 0)]: if an associative learning is accomplished, we expect that under
the action of s1 alone, the system is still able to stimulate even σ2. As we are going to show, these words
can be translated into a system of stochastic differential equations describing the evolution of the neural
configuration. Here we display only the evolution of averages m1,m2, w (details of its derivation, together
with the evolution of the related correlations, are reported in the appendix): m1 = tanh [β(wm2 + s1)] ,

w = tanh (βm1m2) ,
m2 = tanh [β(wm1 + s2)] .

(1)

The randomness in the stochastic evolution is ruled by the term β ∈ R+
0 , which encodes the level of noise

in the system such that for β = 0 the dynamics is completely random (coherently the observable averages
to zero as they are symmetrically distributed), while for β →∞ the hyperbolic tangent becomes the sign
function and the dynamics is completely deterministic.

Finally, we stress that the statistical mechanics model we have elaborated allows a formal picture
of phenomena which, actually, go far beyond Pavlov’s conditional reflex; more generally, it describes
processes of associative learning which has been evidenced in different biological contexts [26].

3 Our model

Recalling the evidence of two time-scales characterizing the evolution of EBV primary infection (see [20]
and Sec. 2.2), as well as the statistical mechanics model introduced in Sec. 2.3, we want to exploit the
concept of associative learning as a bridge between the neuronal and the immune contexts; the occurrence
of such a learning process might be interpreted as a cause for the establishment of a CFS (see Sec. 2.1).

Let us sketch the evolution of the phenomenology of the EBV pathology in separate main phases
where we also anticipate the mapping between the antigenic load felt by TK and B cells respectively and
the state of the two stimuli (s1, s2):

• Infection and presentation, [Regime (0, 0)]. The virus starts the Lytic Cycle and infects permissive
cells, producing antigens. The infected cells (via MHC-I) and the APCs (via MHC-II) present
the processed antigen for specific T lymphocyte’s recognition. A resting CD4+ T-cell must be
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Figure 2: Kill and Memorise (yellow arrows). Agents are the same as in Fig. 1

triggered via MHC-II present on either an APC or a (antige-specific) B-cell (pink arrows in Figure
1) to become an activated TH .

• Activation and response, [Regime (1, 1)]. After having recognized the antigen, B-cells are fully
activated by TH (green arrow in Fig. 1) so that they can now start to differentiate into memory
cells and plasma cells producing antibodies; TH cells also provide the second signal, indirectly via
APC, for a resting CD8+ T-cell. A resting CD8+ T-cell must be triggered by an APC via MHC-I
(first signal, pink arrow in Fig. 1) and by TH (second signal, green arrow in Fig. 1) in order to
becomes a TK .
The activated TK can now operate directly (yellow arrow in Fig. 2) on APC that is still in contact
with the TH , or that has been previously instructed. Meanwhile, the B-cell starts to produce
antibodies (ebv*); such antibodies, being actually new antigens for the immune system, undergo
to an equivalent recognition process (yellow pattern in Fig. 2), so that they stimulate their specific
B*-cells for T-cell presentation 6.

• Possible Learning, [Regime (1, 0)]. The immune response eventually annihilates the antigenic load,
the viral load ceases and TK cells, no longer stimulated, can undergo apoptosis pathways. As for B
cells, they maintain a certain degree of stimulation (memory) even though of different nature with
respect the original one. In fact, after activation, B* cells secrete antibodies (ebv**) that, being
“complementary of the complementary” [27], resemble the original virus (ebv); as a result, they
may act as signals themselves, that is, the antibodies ebv** sustain the stimulation of B cells 7.

Now, according to the duration of the co-stimulation [Regime (1, 1)] two alternative situations
might happen:

– Healthy Carrier State, HCS. If the Lytic Cycle has been interrupted within a relatively short
time ts by the immune response, no associative learning between the production of TK cells
and the production of B-cells is accomplished. The immune system has stored memory of
the infection via memory cells and the EBV latency has established. The patient becomes a
Healthy Carrier displaying specific memory healthy cells for those given antigens, as well as

6This standard mechanism of anti-antibodies production is due to the fact that the antibodies produced constitute a
large concentration of proteins seen as anomalous by the host itself. We stress that, for this mechanism to hold, we do not
need the Jerne idiotypic cascade, but only the Coutinho internal image, which has been largely revealed experimentally
[9, 10].

7A more simplified description would require only the presence of B-memory cells for providing signalling to TH , skipping
any discussion on memory generation in B-cell network [27].
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Figure 3: Learning. Agents are the same as in Fig. 1

infected resting B cells in the Latent Cycle.

– Chronic Fatigue Syndrome, CFS. The prolonged exposition to the (original) viral load (exper-
imentally found to occur in the presence of large concentration of BRCF1 antigen) can lead to
an associative learning between TK and B cells production. In fact, although TK are no longer
directly stimulated by the antigen, the active state of B cells can work itself as a surrogate
stimulus. Namely, TK bypass the TH signal and interact directly with the MHC-II signal
provided by B-cells as APC. This is consistent with [20], where it is reported that the BMLF1-
specific CD8+ T-cell (which should only recognize the class MHC-I) gets active bypassing the
necessary T-CD4+ indirect signal. This scenario would lead to a chronic activation state and
it will be further discussed in the next Section8.

To summarize, this is our proposal for the CFS etiology: a massive presence of BMLF1 antigens
makes the clearance of the infection slow so that a long co-stimulation of BMLF1-specific B and TK cells
takes place. During this stage a learning process occurs leading TK cells to be able to detect the signal
directly from B cells, hence by-passing the direct stimulation from the antigen as well as from TH . One
can think at this situation as if TK assumed both killer and helper functions, that is as if it switched to
a hybrid state.

In order to corroborate our theory, we studied the dynamical properties of our model trough analytical
arguments and numerical simulations.

3.1 Formalization

In our interpretation, the viral load represents the external signal; when si = +∞9, the viral load is much
bigger than threshold levels implied by low-dose tolerance [28], conversely, when si = 0, it is much lower.
TK and B clones specific for EBV antigen play as the neurons σ1 and σ2; the synapse J represents the
TH clone. Indeed, the TH can influence both TK and B lymphocytes, via the sub-populations TH1 and
TH2 , respectively. Hence, the ”synapsis” should be thought of as a proper combination of TH1 and TH2 ,
which results in a long relaxation time T (see Sec. 3.2).

8As already empathized, it is worth noting that in our model there are no suggestions for this MHC-I/MHC-II switch, as
these details of the interaction are not even introduced: instead, are the results obtained ruling our stochastic dynamics -i.e.
an unbalanced K/H load- that can be explainable trough this mechanism. In this sense statistical mechanics can help in
understanding theoretical immunology, by conferring to thermodynamics a key role as a guide in the experimental findings.

9The choice of this limit value is for simplifying calculations, the physics behind is essentially the same of every ”high
enough” load. We stress however that the value of the field, as introduced into our stochastic system, is not coupled to the
noise, such that a high value implicitly accounts for low noise (i.e. high β)
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Following [28, 29, 30], the real size of the clone can be related to the time-average value of the
representative spin, bounded in [−1, 1], by means of an exponential law:

Mi = exp

[
si

(
mi(t) + 1

2

)]
, (2)

where i = 1, 2, and

W = exp

[
s0

(
w(t) + 1

2

)]
, (3)

being si, i = 0, 1, 2 a parameter that introduces the size of the pertaining population. Here we reasonably
assume that the clones considered have the same size S = 2× 1011, so that si = log(S) [8].
Now, the AIM phase corresponds to a Regime (1, 1), where both TK and B clones are stimulated by EBV
antigens.
The AIM phase is estimated to last from two weeks up to two months, so we choose τ in the interval
τ ∈ [14; 60] days.
Once the viral shedding has been interrupted by the immune responses, the TK clone is no longer
stimulated, while the B-cell clone is still managing the memory of the infection (directly or trough its
conjugate specific antigen): This corresponds to the Regime (0, 1).
The two-steps evolution described here is a useful schematization for the analytical approach developed in
the Appendix for the special cases β = 0 and β →∞. More generally, the system of coupled differential
equations Eqs. (1) can be solved numerically for any value of β and in the presence of continuous signals.
In particular, while s2 is still non-null over the whole range considered, s1 can be chosen as exponentially
decaying (being ts characteristic time for vanishing), in agreement with experimental findings [8].
Despite the system is well described by the stochastic dynamical equations (Eqs. (1)), we can improve
the picture by including proper terms accounting for the collective behavior due to interaction with other
lymphocytes and immune agents, that is, we mimic both quiescence induction and internal signaling to
apoptosis by introducing further two small negative fields |ε1|, |ε2| � 1, in such a way that the effective
fields acting on the two clones are s̃1 = s1 + ε1 and s̃2 = s2 + ε2, respectively. We underline that the
statistical mechanics reason for these small fields, whose effect would otherwise be negligible being them
infinitesimal, is breaking the gauge symmetry of the model, so to allow a quiescent state in the absence
of signals.

3.2 On the mixed synapse and timescales

In our model the synapse plays the role of the helper T-cell. Upon activation, helper T cells differentiate
in two major subtypes known as TH1

and TH2
: Beyond other functions, the former maximizes the

proliferation of cytotoxic CD8+, the latter stimulates B-cells into proliferation; also, they both produce
cytokines which are aimed to their own proliferation and cross-regulate each other’s development and
activity [8]. The net result is that, once the TH response begins to develop, it may get polarized in one
of the two directions (either Type 1 or Type 2), due to auto-amplification and cross regulation [8].

Now, when the two subpopulations are completely balanced and small (corresponding to a quiescent
state) none of the two prevails so that, in our equivalent model, there is no link between B and TK
(w = 0) and no learning can be established among them (as intuitively T →∞). Conversely, when one of
the two prevails the synapse is onset (w 6= 0), so that B and TK can (indirectly) interact (still retaining
a large timescale T compared to the single clone one τ).
Hence, as envisaged by the scheme in Fig. 4 the central spin, playing the role of the synapse, can be
thought of as a combination of two sub-populations. An effective way to relate the states of TH1

and TH2

with the overall state of TH is given by the following “average”, where we denote with w1 and w2 the
“magnetizations” corresponding to the two sub-populations:

w =
w1w2

4
[w1 + w2 + |w1|+ |w2|+ |w1 − w2|]. (4)
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Th1
Th2 BTk

Figure 4: Schematic representation of the three-spins system considered, where the complex structure
of the synapse (central spin) is explicitly envisaged.

Indeed, this combination is in agreement with the immunological phenomenology and consistent with the
model we are introducing: balanced, quiescent sub-populations correspond to w = 0, a large unbalance
in favor of any of the two sub-population means w < 0, while when they are both stimulated we have a
reinforcement effect (w > 0).

In general, one can assume that the characteristic timescales of lymphocyte growth are the same,
independently of the particular type, that is, TH , TK and B cells require the same time τ to adjust
their concentrations responding to a signal. Anyhow, in our model, the three agents considered feature
different degrees of complexity: while σ1 and σ2 can be thought of as homogenous populations, the
synapse J displays inner degrees of freedom, being the combination of the two sub-populations TH1

and
TH2

. Consequently, we expect that its relaxation time T is larger than τ . In other words, the typical
time necessary for the sub-populations to adjust is much longer than τ .

The characteristic time for the response of B and TK is taken to be τ ∈ [14, 60], since the AIM phase
is estimated to range from two weeks up to two months, while for our synapse we reasonably choose
T = 90 days because the average duration of the AIM phase, prequel to the CFS, is estimated to be
from three months up to seven. However, in our model the tunable parameter is the ratio τ/T , so the
previous choice does not modify the results. Furthermore, while the signal s2 is constant, the signal s1

(representing the real antigenic load) is taken exponentially decaying, in such a way that the effective
time of its offset is ts; similarly, in the analytical approach in the appendix the signal is active for a time
t ∈ [0, ts], while the second regime holds for t ∈ [ts,∞), with τ < ts < T : In any case we find that the
value of ts crucially determines the final equilibrium state.

3.3 The role of the latent and lytic cycles

In this section we want to deepen a way (tipycal of all herpesviruses) which may further contribute to
lengthen the hospitalization time of a CFS patient. In fact EBV, once the infection has been established in
the host body, may hide away from immune recognition and opportunely switch among cycles of latency
and cycles of lytic replication, somehow mirroring a switch among a quiescent and an active external
stimulus acting on the immune system. In fact, during latency, EBV mainly manages minimal tasks as
inhibiting apoptosis and blocking viral lytic replication, while, during the lytic phase, EBV syntetizes
proteins from many more viral genes, allowing for nucleotide biosynthesis, RNA processing, viral DNA
replication, etc.
As a consequence, within the framework based on ”Pavlov phenomenology” we are using to explain the
transition from an AIM to a CFS scenario, these re-activations display significantly different outcomes in
healthy carriers and in CFS patients. In fact, as shown in Fig. 5, for the formers, whose infection walked
off quickly (toward an healthy carrier final state), sequential impulsive stimuli do not have particular
consequences, while, for the latters, whose infection has been prolonged enough to allow the correlation
via the Helpers, basically each time there is an impulsive reactivation, this thwarts the natural de-learning.
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Figure 5: Upper panel: impulsive stimulus s = s11 = s2 as a function of time; Lower panel: immune
response in terms of concentration of TK (dark line) and of TH (bright line) for an healthy carrier (smaller
values) and a CFS patient (higher values).

4 Results

The stochastic system of Eqs. (1) is solved numerically by means of standard Runge-Kutta packages for
Matlab.
For the sake of clearness, a fully rigorous solution of the system is shown in the appendix, nonetheless,
here it is worth introducing the whole set of observables we need to consider. Namely we have to deal
with averages and correlations:

w = 〈J〉τ , m1 = 〈σ1〉τ , m2 = 〈σ2〉τ ,m12 = 〈σ1σ2〉τ ,

m01 = 〈Jσ1〉τ , m02 = 〈Jσ2〉τ , m012 = 〈Jσ1σ2〉τ ,

where the average 〈·〉τ is meant over the time as explained in Sec. 2.3. We set our initial conditions m(0)
using concentrations expressed in cells/µL and keeping in mind that, in a healthy body, a given clone
has an incidence of 1 over 105 cells with respect to the whole population; by using the normal values for
lymphocytes concentrations and the relative translation in terms of magnetizations (see Eq. 2) reported
in Tab. 1, we get:

m(0) =



w(0) ∼ 0
m1(0) = −0.971
m2(0) = −0.938
m12(0) = m1(0) ·m2(0)
m01(0) = 0
m02(0) = 0
m012(0) = 0

(5)

Notice that the initial value for the correlation m12 as the product of the two concentrations m1,m2 is a
useful condition to initialize the evolution (implicitly assuming uncorrelation), and we will use it during
numerical integration.

In order to recover the two cases of HSC patient and CFS patient, as reported in Sec. 2.2, we consider
two different situations, corresponding to a short (ts = 5 days) and to a long (ts = 100 days) AIM phase,
respectively. The other parameters holding for both patients are:

τ = 30, T = 90,
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Table 1: Data for initial conditions [8]. Notice that we do not specify the relative concentrations of TH1

and TH2 , whose supposed equality at rest imposes w ∼ 0, but only of their sum TH .

Agent Concentration % Mi(0) mi(0)
(cells/µL) (specific cells/µL) (adimens.)

TH 1000.50 46 0.010 -0.815
TK 413.25 19 0.004 -0.971
B 500.25 23 0.005 -0.938

s1 = 1000, s2 = exp−(t−ts)/80,

ε1 = −1.0, ε2 = −1.0.

We also fix the level of noise as low (β = 6.5), while later we will discuss the case of high noise.
Patient 1: HSC Scenario.

As shown in Fig. 6, during the AIM phase (t < ts = 5 days), both signals s1 and s2 are active and, as
responses, m1, m2 grow up, meaning that TK and B clones are proliferating; the synapse also increases
as both its afferent inputs are growing (correlations begin).
As the real viral load is diminishing, TK concentration decreases and finally reaches a value comparable
with the initial one. Conversely, B clones, being still stimulated, maintain high levels of concentration.
In Fig. 8 we focus on the behavior of TH and TK , showing their evolution directly in terms of their
concentrations: the latter reach a maximum (∼ 103 cells/µL) at very short times and then relax to
approximately 102 cells/µL.

Patient 2: CFS Scenario.
As shown in Fig. 7, during the AIM phase (t < ts = 100 days), the concentrations of B, TK and TH
increase as a result of a viral load (s1, s2 > 0). This time, the signal on TK lasts long enough for
TK and TH to reach high levels (both ∼ 105 cells/µL) and, even when the signal is switched off their
concentrations are much larger than the one pertaining to Patient 1.

The outcomes for the two cases are compared in Fig. 8 directly in terms of concentrations.

Finally, when the level of noise is high, we expect that the effects due to interaction get more and more
negligible. Indeed, in this model ”low” and ”high” level of noise are not referred to a specific “critical
value”, as this model does not break ergodicity by itself; conversely, since the noise level is coupled to the
averaged energy in the system E = 〈Jσ1σ2〉, the product among them, i.e. either βE > 1 , or βE < 1,
defines the levels. For instance, the case β = 0.8 is shown in Fig. 9: notice that independently of the
duration of s1, both the averages m1 and m2 relax to small values.

To summarize, according to the duration of the AIM phase, which is in turn related to the success of
the EBV strategy (Sec. 2.2), we can get two possible scenarios. If the AIM phase is rather fast, when the
viral load has vanished, B cells are continuously activated, while the concentration of TK cells recovers
normal values hence we reach an equilibrium state corresponding to an healthy carrier state.
Conversely, if the AIM phase is prolonged, a strong correlation between the active B and TK lymphocytes
can be accomplished; as a result, when the viral load has vanished, again B are continuously activated
but TK lymphocytes can maintain high levels concentrations. This is the actualization of a conditional
reflex and, from a mathematically point of view it arises from the large correlation w stored, able to
sustain the active status of TK .

5 Conclusion and Discussion

The Chronic Fatigue Syndrome (CFS) has been studied for almost thirty years in the whole biological,
medical and psychological world, being identified with tens of medical terms; as well, a full consensus on
its genesis, physiopathology and treatment has not been reached yet.
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Figure 6: (Color on line) Top panel: Averages w, m1 m2 and signal s1 as a function of time (zoom on
the early regime). Bottom panel: the same averages ad their correlations as a function of time, as shown
in the legends; time is measured in days. The signal on Tk vanishes at around time ts = 5. The level of
noise is low and fixed at β = 6.5.
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Figure 7: (Color on line) (Color on line) Top panel: Averages w, m1 m2 and signal s1 as a function of
time (zoom on the early regime). Bottom panel: the same averages ad their correlations as a function
of time, as shown in the legends; time is measured in days. The signal on Tk vanishes at around time
ts = 100. The level of noise is low and fixed at β = 6.5.
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Figure 8: (Color on line) Concentrations of TK cells (histogram, left vertical axis) and of TH cells (curves,
right vertical axis) for the two patients considered in the case of small noise.
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Figure 9: (Color on line) Averages w, m1 m2 and signal s1 (dashed line) as a function of time for Patient
1 (top panel) and Patient 2 (bottom panel). The level of noise is low and fixed at β = 0.8.
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It is just the lack of a clear-cut picture that makes theoretical models very useful tools in order to
get information about the possible causes of this disease. The present work aims to take advantage
of the statistical mechanics lenses to investigate why and how the CFS may establish. Of course, the
model cannot simulate the whole immune system, which is much too complicated, rather, it has to
get a compromise between simplification and inclusion of most important characters, the latter chosen
according to experimental facts.

Our explanation is inspired by the well-known conditional reflex phenomenon in neurobiology, which,
from a statistical mechanics perspective, can be recovered in terms of thermodynamic relaxation of
complex systems [22]. Given two agents (e.g. two neurons or B and TK lymphocytes) and a coupling
(e.g. the synapse or the TH lymphocytes) joining them, provided that two agents are contemporary
stimulated by two related signals (e.g. neural stimuli or antigens), then even though one of the signal is
switched off the two agents remain both active; this realizes the so-called ”associative learning”.
More precisely, we find that, if the Epstein-Barr virus infection is prolonged in time, TK and B cells can
reach high values of concentration, moreover, the latter have time enough to produce the image ebv**. As
a result, when the (real) viral load has vanished, B cells are still stimulated, while TK may maintain high
concentration levels since they have learnt the correlation between presence-of-antigen and B-activation.
Interestingly, this learning process also implies that TK can get activated by-passing the signal from TH
cells and this has been recently found experimentally.
Therefore, our model and our analysis suggest that the CFS, meant as a chronically active immune
state, can arise from an associative-learning phenomenon. Such a suggestion may be exploited in future
experiments in order to shed light on the etiology of this syndrome; furthermore, at least at a theoretical
physics level, unlearning processes are actually possible.

Finally, it is worth stressing the ”guide role” of statistical mechanics when modeling biological sys-
tems: in fact this approach, constraining the system to respect thermodynamics, can provide a working
picture possibly inspiring experimental path to be walked. In this sense, relying on natural and minimal
assumptions, we evidence the emergence of a subtle role by TK (able to bypass a standard double signal
activation provided by antigen plus helpers), and, indeed, we found its consistency with experimental
data. In fact in [31], it has been documented that a CD8+ T receptors that normally recognize MHC-I
signals can exhibit dual specificity recognizing also an antigen in the context of the MHC-II.

6 Appendix: Evolution toward steady states of the system

The system whose dynamics is investigated trough the paper can be resumed as follows:
σi=1 = σ1, σi=2 = σ2 are the effectors (as neurons in the neurobiology counterpart), while J12 is the
synapse; further we name s1, s2 the external fields acting respectively on σ1, σ2.
Each of the variable experiences the same structure of (external/internal) fields, namely (calling σi=3 =
J12 to preserve the symmetry)

〈σi〉 = 〈tanh
(
βσi+1σi+2 + si

)
〉 = ai + bi〈σi+1σi+2〉, (6)

where

ai =
1

2
[tanh(β + si) + tanh(−β + si)] , (7)

bi =
1

2
[tanh(β + si)− tanh(−β + si)] . (8)

Overall we have the following system

〈σ1〉 = 〈tanh(βJσ2 + s1)〉, (9)

〈J〉 = 〈tanh(βσ1σ2)〉 = 〈σ1σ2〉 tanh(β), (10)

〈σ2〉 = 〈tanh(βJσ1 + s2)〉. (11)
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The time scale of J is T � τ , τ being the time scale of the σ and we pose 1
T + 1

τ = 1
τ ′ ,

2
τ + 1

T = 1
τ ′′ .

The averages evolve accordingly to

τ
d〈σ1〉
dt

= −〈σ1〉+ a1 + b1〈Jσ2〉, (12)

T
d〈J〉
dt

= −〈J〉+ tanh(β)〈σ1σ2〉, (13)

τ
d〈σ2〉
dt

= −〈σ2〉+ a2 + b2〈Jσ1〉, (14)

while the correlations evolve accordingly to

d〈σ1σ2〉
dt

=
−2

τ
〈σ1σ2〉+

1

T

(
a1〈σ2〉+ b1〈J〉+ a2〈σ1〉+ b2〈J〉

)
, (15)

d〈Jσ1〉
dt

=
−1

τ ′
〈Jσ1〉+

1

T
tanh(β)〈σ2〉+

1

τ

(
a1〈J〉+ b1〈σ2〉

)
, (16)

d〈Jσ2〉
dt

=
−1

τ ′
〈Jσ2〉+

1

T
tanh(β)〈σ1〉+

1

τ

(
a2〈J〉+ b2〈σ1〉

)
, (17)

d〈Jσ1σ2〉
dt

=
−2

τ ′′
〈Jσ1σ2〉+

1

T
tanh(β) +

1

τ

(
a1〈Jσ2〉+ b1 + a2〈Jσ1〉+ b2

)
. (18)

The source of 〈σ1〉 is s1 as well as s2 does for 〈σ2〉, while the source for 〈J〉 is the internal correlation
〈σ1σ2〉.
Such a system experiences four different regimes [zero signal, one signal (left), one signal (right), both
signals], whose dynamics we are going to analyze.

6.1 Regime s1 = 0, s2 = 0: No signalling.

Glauber dynamics reduces to

T
d〈J〉
dt

= −〈J〉+ tanh(β)〈σ1σ2〉, (19)

τ
d〈σ1〉
dt

= −〈σ1〉+ tanh(β)〈Jσ2〉, (20)

τ
d〈σ2〉
dt

= −〈σ2〉+ tanh(β)〈Jσ1〉, (21)

dσ1σ2

dt
=

1

τ

(
− 2〈σ1σ2〉+ 2 tanh(β)〈J〉

)
, (22)

d〈Jσ1〉
dt

= − 1

τ ′
〈Jσ1〉+

1

τ ′
tanh(β)〈σ2〉, (23)

d〈Jσ2〉
dt

= − 1

τ ′
〈Jσ2〉+

1

τ ′
tanh(β)〈σ1〉, (24)

d〈Jσ1σ2〉
dt

= − 1

τ ′′
〈Jσ1σ2〉+

1

τ ′′
tanh(β). (25)

As it is immediate to see, the global dynamics spreads over four different independent subdynamics,
namely 〈σ1〉 ⇐⇒ 〈Jσ2〉, 〈σ2〉 ⇐⇒ 〈Jσ1〉, 〈σ1σ2〉 ⇐⇒ 〈J〉, 〈Jσ1σ2〉, whose asymptotic regime is given by
〈J〉 = 〈σ1σ2〉 = 0, 〈σ1〉 = 〈Jσ2〉 = 0, 〈σ2〉 = 〈Jσ1〉 = 0, 〈Jσ1σ2〉 = tanh(β).
The general solution of the problem can be obtained coupling the four different subdynamics.
By the first set we get

d〈J〉
dt

= − 1

T
〈J〉+

tanh(β)

T
〈σ1σ2〉 (26)

d〈σ1σ2〉
dt

= −2

τ
〈σ1σ2〉+

2 tanh(β)

τ
〈J〉. (27)
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whose matrix can be written as (
1/T − tanh(β)/T

−2 tanh(β)/T 2/T

)
.

We can diagonalize the subdynamics by looking for solutions as linear combinations as

Y (t) = a〈J(t)〉+ b〈σ1(t)σ2(t)〉, (28)

and we can associate to this new variable a caracteristic timescale τ̄ as

τ̄
dY

dt
= −Y =⇒ aτ̄

T

(
− 〈J〉+ tanh(β)〈σ1σ2〉

)
(29)

+
2bτ̄

τ

(
− 〈σ1σ2〉+ tanh(β)〈J〉

)
= −a〈J〉 − b〈σ1σ2〉.

Namely we get the system (
1− τ̄

T

)
+ 2

τ̄

τ
tanh(β)b = 0 (30)

τ̄

T
tanh(β)a+

(
1− 2

τ̄

T

)
b = 0. (31)

Let us work out τ̄(β): (
1

τ̄

)2

−
(

1

τ̄

)[
1

T

2

τ

]
+

2

τT

1

cosh2(β)
= 0, (32)

whose roots are

1

τ̄1,2 (β)
=

1

2

 1

T
+

2

τ
±

√(
1

T
+

2

τ

)2

− 8

τT cosh2(β)

 . (33)

Now we have to solve for a, b in Y = a〈J〉+ b〈σ1σ2〉. We can define a = c2 τ̄T tanh(β), b = −c(1− τ̄
T ), by

which

Y0(t) = c0

(
2
τ̄1
τ

tanh(β)〈J〉 − (1− τ̄1
T

)〈σ1σ2〉
)

(34)

Y12(t) = c12

(
2
τ̄2
τ

tanh(β)〈J〉 − (1− τ̄2
T

)〈σ1σ2〉
)
, (35)

on which we can fix c0, c12 as c0 = τ/2τ̄1 tanh(β), c12 = −1/(1− τ̄2/T ). From eq.(32) we get

tanh(β) =

√
τT

2

√(
1

τ̄
− 1

T

)(
1

τ̄
− 2

τ

)
and we can solve for Y0, Y12:

Y0(t) = 〈J〉+

√
τ

2T

√
1
T − 1τ̄1
2
τ −

1
τ̄1

〈σ1σ2〉, (36)

Y12(t) = 〈σ1σ2〉 −
√

2T

τ

√√√√ 1
τ̄2
− 2

τ
1
τ̄2
− 1

T

〈J〉, (37)

so we get the form

Y0(t) = 〈J(t)〉+A0〈σ1(t)σ2(t)〉, (38)

Y12(t) = 〈σ1(t)σ2(t)〉 −A12〈J(t)〉, (39)

17



with

A0 =

√
τ

2T

√
1
T − 1τ̄1
2
τ −

1
τ̄1

, A12 =

√
2T

τ

√√√√ 1
τ̄2
− 2

τ
1
τ̄2
− 1

T

.

By the eigenvalues found in eq.s(33) we can build the eigenvectors V1 = (V11, V12), V2 = (V21, V22) as

V11 = tanh(β)/T, V12 = (
1

2T
− 1

τ
− 1

2

√
∆),

V21 = tanh(β)/T, V22 = (
1

2T
− 1

τ
+

1

2

√
∆),

being ∆ = (1/T + 2/τ)2 − 8
Tτ cosh2(β)

, by which, finally we get

〈J(t)〉 = C1V11e
− t
τ̄1 + C2V12e

− t
τ̄2 , (40)

〈σ1(t)σ2(t)〉 = C1V21e
− t
τ̄1 + C2V22e

− t
τ̄2 . (41)

By the second set we get

τ
d〈σ1〉
dt

= −〈σ1〉+ tanh(β)〈Jσ2〉, (42)

τ ′
d〈Jσ2〉
dt

= −〈Jσ2〉+ tanh(β)〈σ1〉. (43)

whose matrix can be written as (
1/τ − tanh(β)/τ

− tanh(β)/τ ′ 1/τ ′

)
.

Again we can write a solution in the general form Y (t) = a〈σ1〉 + b〈Jσ2〉 and label τ̄ its characteristic
timescale such that

τ̄
dY

dt
= −Y

=⇒ τ̄

τ
a
(
− 〈σ1〉+ tanh(β)〈Jσ2〉

)
+
τ̄

τ ′
b
(
− 〈Jσ2〉+ tanh(β)〈σ1〉

)
=

= −a〈σ1〉+ b〈Jσ2〉,
and write the system

(1− τ̄

τ
)a+

τ̄

τ ′
tanh(β)b = 0, (44)

τ̄

τ
tanh(β)a+ (1− τ̄

τ ′
)b = 0. (45)

Again we can find the eigenvalues τ̄−1
1,2 (β) as

1

τ̄1,2(β)
=

1

2

(1

τ
+

1

τ ′
±
√

(
1

τ
+

1

τ ′
)2 − 4

ττ ′
(1− tanh2(β))

)
(46)

and write the general solution in the form

〈σ1(t)〉 =
C1 tanh(β)

τ
e−

t
τ̄1 − C2 tanh(β)

τ
e−

t
τ̄2 , (47)

〈Jσ2(t)〉 = −C1

2
(

1

T
−
√

∆)e−
t
τ̄1 − C2

2
(

1

T
−
√

∆)e−
t
τ̄2 , (48)

∆ being (1/τ + 1/τ ′)2 − (4/ττ ′)(1− tanh(β)).

For the two other subsystems we can proceed exactly as we did so far and verify that, even though
on different timescales, all the observables (magnetizations and correlations) converge to zero.
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6.2 Regime s1 = 0, s2 =∞: One infinite signal.

Let us start with the following conditions: s1 = 0, s2 = ∞, then we have a1 = 0, b1 = tanh(β), a2 =
1, b2 = 0 and the evolution of the system can be written as

T
d〈J〉
dt

= −〈J〉+ tanh(β)〈σ1σ2〉, (49)

τ
d〈σ1〉
dt

= −〈σ1〉+ tanh(β)〈Jσ2〉, (50)

τ
d〈σ2〉
dt

= −〈σ2〉+ 1, (51)

τ
d〈σ1σ2〉
dt

= −2〈σ1σ2〉+ tanh(β)〈J〉+ 〈σ1〉, (52)

d〈Jσ1〉
dt

= − 1

τ ′
〈Jσ1〉+

1

τ ′
tanh(β)〈σ2〉, (53)

d〈Jσ2〉
dt

= − 1

τ ′
〈Jσ2〉+

1

T
tanh(β)〈σ1〉+

1

τ
〈J〉, (54)

d〈Jσ1σ2〉
dt

= − 1

τ ′′
〈Jσ1σ2〉+

1

τ
〈Jσ1〉+

1

τ ′
tanh(β). (55)

The presence of a signal in the second channel bridges the two sets (〈σ1(t)〉, 〈Jσ2(t)〉) and (〈σ1(t)σ2(t)〉, 〈J(t)〉)
such that the latter, if the system has experienced the field enough time to learn correlations, will assume
high values: a signal in the second channel may induce a raise of response even in the first channel.

Let us divide the system again by considering the following natural sub-dynamics

T
d〈J〉
dt

= −〈J〉+ tanh(β)〈σ1σ2〉, (56)

τ
d〈σ1σ2〉
dt

= −2〈σ1σ2〉+ 2 tanh(β)〈J〉

+ [〈σ1〉 − tanh(β)〈J(t)〉]. (57)

We observe at first that the term [〈σ1〉 − tanh(β)〈J(t)〉] is a novelty with respect to the same equations
in the regime s1 = 0, s2 = 0 and represents the ”unlearning source”: if the conditional reflex (which we
are going to introduce) is not reinforced, it will tend to vanish.
The source of such a conditional reflex can be found by looking at the other subsystem, namely

τ
d〈σ1〉
dt

= −〈σ1〉+ tanh(β)〈Jσ2〉, (58)

d〈Jσ2〉
dt

= − 1

τ ′
〈Jσ2〉+

1

τ ′
tanh(β)〈σ1〉

+
1

τ
[〈J〉 − tanh(β)〈σ1〉]. (59)

In fact, the new term [〈J〉 − tanh(β)〈σ1〉], the source of the conditional reflex, is a learning term as it
couples the slow channel (〈J〉, 〈σ1σ2〉) with the fast one (〈σ1〉, 〈Jσ2〉).
We can now start studying the dynamics in this regime by considering the sub-dynamics of (〈J〉, 〈σ1〉,
〈σ1σ2〉, 〈Jσ2〉), whose dynamical system reads off as

τ
d〈σ1〉
dt

= −〈σ1〉+ tanh(β)〈Jσ2〉, (60)

T
d〈J〉
dt

= −〈J〉+ tanh(β)〈σ1σ2〉, (61)

τ
d〈σ1σ2〉
dt

= −2〈σ1σ2〉+ tanh(β)〈J〉+ 〈σ1〉, (62)

d〈Jσ2〉
dt

= − 1

τ ′
〈Jσ2〉+

1

τ
〈J〉+

1

T
tanh(β)〈σ1〉. (63)

19



The associated matrix can be written as
1/τ 0 0 − tanh(β)/τ
0 1/T − tanh(β)/T 0
− 1
τ − 1

τ tanh(β) 2
τ 0

− 1
T tanh(β) − 1

τ 0 1
τ ′

 .

We cab diagonalize the dynamics and look for solutions as linear combinations as Y (t) = a〈σ1〉+ b〈J〉+
c〈σ1σ2〉 + d〈Jσ2〉 associating to this variable its caracteristic timescale τ̄ ⇔ Y and proceed as for the
former regime.
Skipping all the calculations for the sake of simplicity we report only the solution

〈σ1(t)〉 = c1x1e
− t
τ̄1 + c2x

′

1e
− t
τ̄2 + c3x

′′

1 e
− t
τ̄3 + c4x

′′′

1 e
− t
τ̄4 ,

〈J(t)〉 = c1x2e
− t
τ̄1 + c2x

′

2e
− t
τ̄2 + c3x

′′

2 e
− t
τ̄3 + c4x

′′′

2 e
− t
τ̄4 ,

〈σ1(t)σ2(t)〉 = c1x3e
− t
τ̄1 + c2x

′

3e
− t
τ̄2 + c3x

′′

3 e
− t
τ̄3 + c4x

′′′

3 e
− t
τ̄4 ,

〈J(t)σ2(t)〉 = c1x4e
− t
τ̄1 + c2x

′

4e
− t
τ̄2 + c3x

′′

4 e
− t
τ̄3 + c4x

′′′

4 e
− t
τ̄4 ,

all the x’s being the component of the following eigenvectors V1 = (x1, x2, x3, x4), V2 = (x
′

1, x
′

2, x
′

3, x
′

3),
V3 = (x

′′

1 , x
′′

2 , x
′′

3 , x
′′

3 ), V4 = (x
′′′

1 , x
′′′

2 , x
′′′

3 , x
′′′

3 ):

x1 =
1

τ
tanh(β),

x2 =
1

2

(1

τ
− 1

T
−
√

∆
)
,

x3 =
1

τ
tanh(β),

x4 =
1

2

(1

τ
− 1

T
−
√

∆
)
,

x
′

1 =
1

τ
tanh(β),

x
′

2 =
1

2

(1

τ
− 1

T
+
√

∆
)
,

x
′

3 =
1

τ
tanh(β),

x
′

4 =
1

2

(1

τ
− 1

T
+
√

∆
)
,

x
′′

1 =
1

τ
tanh(β),

x
′′

2 =
1

2

(1

τ
− 1

T
+
√

∆
)
,

x
′′

3 =
T

tanh(β)

[ 3

2τT
− 1

2T 2
− 1

τ2
− 1

τT
tanh2(β)−

√
∆(

1

τ
− 1

2T
)
]
,

x
′′

4 = −1

2

(1

τ
− 1

T
+
√

∆
)
,

20



x
′′′

1 =
1

τ
tanh(β),

x
′′′

2 =
1

2

(1

τ
− 1

T
−
√

∆
)
,

x
′′′

3 =
T

tanh(β)

[ 3

2τT
− 1

2T 2
− 1

τ2
− 1

τT
tanh2(β)−

√
∆(

1

τ
− 1

2T
)
]
,

x
′′′

4 = −1

2

(1

τ
− 1

T
+
√

∆
)
,

(64)

∆ being 1/τ2 + 1/T 2 + 2(2 tanh2(β)− 1)/(τT ).
The remaining sub-dynamics of (〈σ2〉, 〈Jσ1〉, 〈Jσ1σ2〉) is depicted by the system

τ
d〈σ2〉
dt

= −〈σ2〉+ 1, (65)

τ ′
d〈Jσ1〉
dt

= −〈Jσ1〉+ 〈σ2〉, (66)

d〈Jσ1σ2〉
dt

= − 1

τ ′′
〈Jσ1σ2〉+

1

τ
〈Jσ1〉+

1

τ ′
tanh(β). (67)

By applying the framework previously shown several times we obtain the solutions

〈σ2〉 = c1e
− t
τ̄1 + 1,

〈Jσ1〉 = c1
T

τ ′
e−

t
τ̄1 + c2e

− t
τ̄2 + 1,

〈Jσ1σ2〉 = c1
T

τ
e−

t
τ̄1 + c2e

− t
τ̄2 + c3e

− t
τ̄3 + τ

′′
[

1

τ
+

1

τ ′
tanh(β)

]
.

6.3 Regime s1 =∞, s2 =∞: Two infinite signal.

Let us start with the following conditions: s1 =∞, s2 =∞, then we have a1 = a2 = 1, b1 = b2 = 0) and
the evolution of the system can be written as

T
d〈J〉
dt

= −〈J〉+ tanh(β)〈σ1σ2〉,

τ
d〈σ1〉
dt

= −〈σ1〉+ 1,

τ
d〈σ2〉
dt

= −〈σ2〉+ 1,

τ
d〈σ1σ2〉
dt

= −2〈σ1σ2〉+ 〈σ1〉+ 〈σ2〉,

d〈Jσ1〉
dt

= − 1

τ ′
〈Jσ1〉+

1

T
tanh(β)〈σ2〉+

1

τ
〈J〉,

d〈Jσ2〉
dt

= − 1

τ ′
〈Jσ2〉+

1

T
tanh(β)〈σ1〉+

1

τ
〈J〉,

d〈Jσ1σ2〉
dt

= − 1

τ ′′
〈Jσ1σ2〉+

1

T
tanh(β) +

1

τ
〈Jσ2〉+

1

τ
〈Jσ1〉,
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whose solutions, in complete analogy with the previous introduced methodology, can be obtained as

〈σ1(t)〉 = c2e
− t
τ + 1, (68)

〈J(t)〉 = c1e
− t
τ + (c2 + c3)

tanh(β)

T ( 1
T −

1
τ )
e−

t
τ + c4

tanh(β)

T ( 1
T −

2
τ )
e−

2t
τ + tanh(β), (69)

〈σ2(t)〉 = c3e
− t
τ + 1, (70)

〈σ1(t)σ2(t)〉 = (c2 + c3)e−
t
τ + c4e

− 2t
τ + 1, (71)

〈J(t)σ1(t)〉 = c1e
− t
T +

tanh(β)

( 1
T −

1
τ )

(
c2
τ

+
c3
τ

)e−
t
τ + c4

tanh(β)

τT ( 1
T −

2
τ )( 1

T −
1
τ )
e−

2t
τ + c5e

− t
τ′ + tanh(β),(72)

〈J(t)σ2(t)〉 = c1e
− t
T +

tanh(β)

( 1
T −

1
τ )

(
c2
τ

+
c3
τ

)e−
t
τ + c4

tanh(β)

τT ( 1
T −

2
τ )( 1

T −
1
τ )
e−

2t
τ + c6e

− t
τ′ + tanh(β),(73)

〈J(t)σ1(t)σ2(t)〉 = 2c1e
− t
T +

tanh(β)

τ( 1
T −

1
τ )

(c2 + c3)e−
t
τ + c4

tanh(β)

τ2( 1
T −

2
τ )( 1

T −
1
τ )
e−

2t
τ + (74)

+ c7e
− t
τ′′ + tanh(β) + (c5 + c6)e−

t
τ′ + tanh(β). (75)

(76)
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