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A Two-Dimensional Analysis for
the Coupling of Magnetic Gears

E. P. Furlani

Abstract— A formula is presented for computing the coupling
between magnetic gears. This formula, which is based on two-
dimensional analytical analysis, is expressed as a finite sum of
elementary functions and is well suited for parametric analysis. It
is demonstrated via application to a practical device and verified
using finite element analysis (FEA).

Index Terms—Magnetic analysis, magnetic coupling, magnetic
fields, magnetic gear, permanent magnetic.

I. INTRODUCTION

M AGNETIC gears can be used in place of mechanical
gears to reduce undesired vibrations and for applica-

tions that require torque coupling between separated members.
These devices consist of two separated radially polarized
cylindrical magnets constrained to rotate about their respective
axes (Fig. 1). The magnets are magnetically coupled to one
another, and when one of the magnets is rotated, it imparts a
torque to the second magnet causing it to rotate. The coupling
between the magnets is a function of several variables includ-
ing their number of poles, material properties, dimensions, and
separation. Furthermore, substantial torque can be realized if
modern rare-earth materials such as NdFeB are used.

Various numerical techniques such as finite element analysis
(FEA) can be used to design gear mechanisms. However, they
tend to be awkward for the kind of parametric analysis that is
often desired. In this article, a two-dimensional (2–D) formula
is derived for computing the coupling between magnetic gears.
This formula, which is developed using analytical methods, is
based on the assumptions that the magnets are ideal with a
second quadrant demagnetization relation of the form

(1)

and that the polarization is uniform in the radial direction

and that there are no other materials present that perturb or
contribute to the magnetic field (e.g., the magnets are in free
space). There are numerous rare earth materials for which (1)
applies including NdFeB. An important feature of this work
is that the torque formula, which is expressed in terms of
elementary functions, is readily programmed and ideal for
parametric analysis. It is useful for the design and optimization
of novel gear mechanisms. The theory is demonstrated via

Manuscript received August 7, 1996; revised October 10, 1996.
The author is with Imaging Research and Advanced Development Labora-

tories, Eastman Kodak Co., Rochester, NY 14653-5305 USA.
Publisher Item Identifier S 0018-9464(97)02085-2.

Fig. 1. Magnetic gear.

Fig. 2. Reference Frames.

application to a practical device and verified by use of 2-
D FEA. This paper follows earlier work on synchronous
magnetic couplings [1]–[5].

II. THEORY

The force on a particle with chargemoving in an external

field is given by

(2)

which generalizes to

(3)

where is the current density vector

(4)

and is the charge per unit volume moving with velocity
. It follows that the torque on this infinitesimal current is

given by

(5)

where is a vector from the point about which the torque is
to be computed.
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Recall that a linear ( isotropic magnet with magne-

tization can be represented as a distribution of equivalent
volume and surface current densities

and

respectively. It follows that the torque on a magnet in an
external field is given by

(6)

where and define the volume and surface of the magnet,
respectively [6]. Based on this equation, the derivation of the
torque can be divided into two parts. First, an expression is
obtained for the field of one of the magnets, which we denote

as the source magnet. This field is taken to be . Second,
the second magnet, which we denote as the load magnet, is
reduced to equivalent currents, and the torque is computed in
accordance with (6). These two parts are treated in the follow-
ing two sections, respectively. For the remainder of this article,
we distinguish the parameters associated with the source and
load magnets with superscripts and , respectively. Thus,
for example, and refer to the inner and outer radii of
the source magnet, whereas and refer to the inner and
outer radii of the load magnet.

A. Field Analysis

A field solution for the source magnet in free space, ignoring
the presence of the load magnet, has been developed by
Lewis [7]. We give a brief summary of his results. We adopt
coordinates centered on the axis of the source magnet

(Fig. 2). The field strength is given by , where

, the scalar potential, satisfies and

the polarization is in the radial direction with alternating

polarity . In two dimensions the solution of this
equation is

(7)

where is the variable of integration. The first integral,
over the cross-sectional area of the magnet, represents the
contribution of the effective magnetic charge density

. The second, over the boundary of the magnet,
represents the contribution of the effective magnetic surface

charge density , where is the outward normal.
Evaluation of (7) can be simplified by replacing the vectors

and by the complex variables

and , respectively,

and introducing the complex potential .
Outside the magnet, the magnetization is zero, sosatisfies

is, therefore, uniquely defined and analytic

in this region. The magnetic field is given by
. By inspection, must be given by

(8)

because (8) defines an analytic function whose real part
satisfies (7). This solution is valid only at pointsoutside
the magnet. For the current application, the primary interest is
in calculating , which is given by

(9)

Once is evaluated, the potential can be obtained,
if desired, by integrating with respect to .

Consider an arbitrary magnet segment covering the region
and with the magnetization pointing

outward. By assumption, the magnetization at is

where is constant, so

and is given by , and along the
boundaries , and , respectively.
Equation (9) reduces to

(10)

Evaluation of these integrals yields

(11)

It is necessary to take some care with complex logarithms in
results such as this. Equation (11) is written so that if the
branch cut of the function is taken, as usual, to lie along
the negative real axis ( with ),
then will have branch cuts only along the boundaries of
the magnet segment. In general, it should always be possible
to rearrange solutions so that this is the case. Some more
complicated examples are given in [7].

The radial and tangential components of the field are given
by

(12)

The magnetic field produced by one sector of the inner magnet
can therefore be written in the form

(13)
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Fig. 3. Torque (per unit length) versus� (+ = FEA).

The field produced by the entire magnet, consisting of
sectors, is obtained by adding results of this form. If
sector is located between and , where

and if the odd-numbered poles ( ) point
outward and the even-numbered poles ( )
point inward, then the total magnetic field can be found to be

(14)

To compute the torque, it is convenient to express these
components as functions of the coordinates centered on
the axis of the load magnet. The relation between the two
coordinate systems is

(15)

and

(16)

Substituting (15) and (16) into (14), and making use of the

relation yields (17) and (18) shown at the bottom
of the page. These are labeled as external field components
because they are due to the source magnet. The Cartesian
components, which are common to both coordinate systems,
are given by

(19)

and

(20)

These expressions are used to compute the torque.

B. Torque Analysis

As indicated above, the torque can be evaluated using

(21)

where the current densities in this expression refer to the load

magnet. For this magnet and, therefore,
the first term in (21) is zero. As for the second term, there are

sectors to consider, and each sector has two surfaces
with current densities that contribute to the torque. These
surfaces constitute the radial sides of the sector at angular
positions and , respectively. If the magnet is rotated by
an angle , then the surface current densities for theth sector

(17)

(18)
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Fig. 4. Torque (per unit length) versusd(+ = FEA).

are given by (22), shown at the bottom of the page, where
Notice that occurs when

the middle of the zeroth sector coincides with theaxis and
its polarization is radially outward. It it is assumed that the
source magnet is held stationary with one of its sectors in a
similar orientation, and, therefore,reflects the angular offset
of the two magnets.

Now, substituting (22) into (21) and simplifying yields

(23)

where is the length of the coupling

(24)

and and are given by (19)
and (20). The coefficient 2 takes into account the fact that
there are two surfaces at the interface between neighboring
sectors (one for each sector). The integral in (23) can be
evaluated numerically using Simpson’s method. The resulting
torque formula is

(25)

where are the Simpson coefficient terms

(26)

and the integration points are as follows:

(27)

An application of (25) is described in the next section.

III. RESULTS

Equation (25) was implemented in BASIC and applied to a
hypothetical gear with the following parameters:

A m

A m

cm (separation) (28)

cm (inner radius of source magnet)

cm (outer radius of source magnet)

cm (inner radius of load magnet)

cm (outer radius of load magnet)

(source magnet)

(load magnet) (29)

The values used for and are characteristic of sintered
NdFeB material. The torque per unit length was computed
with the source magnet fixed and the load magnet rotated
through a series of angular values 0 , 5 , 10 , , 90 .
The analysis was performed with the integration parameter

, since there was no improvement in accuracy above
this value. It took approximately 2 s to compute 19 torque
values on a 120 MHz Pentium computer (Fig. 3). Notice
that the peak torque occurs at 45 and 135 when load
magnet is, in effect, rotated half the angular span of a single
a pole from its initial orientation. This data was checked by
Knewston using the Maxwell 2-D Field Simulator which is
an FEA based program from Ansoft Corp. [8]. This program
uses the Local Jacobian method for computing the torque. The
FEA model consisted of 2500 triangular elements, and it took
approximately 2 min to compute each torque value using a
200 MHz Pentium computer (36 min for the entire analysis
not including model development and setup).

An analysis was also performed to determine the decrease of
the peak torque as a function of separation distance for a series
of values mm. Again, the integration
parameter was set to 20, and it took less than 1 s to
compute the 11 torque values. This data is compared to the
corresponding FEA data in Fig. 4.

(22)
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IV. CONCLUSION

A formula has been derived for computing the coupling be-
tween magnetic gears. This formula is readily programmed and
is ideal for parametric analysis. It should be of considerable
use in the design and optimization of novel gear devices.
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