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TO THE EDITOR
Repair following cutaneous injury is
essential to return function, form, and
integrity to the tissue. Scar formation is
the inevitable and currently unprevent-
able consequence of tissue damage,
and misregulation can lead to the
development of pathological scarring
as in hypertrophic and keloid scars.
In developed countries alone, approxi-
mately 100 million people each year
will be left with a scar following sur-
gery; moreover, there are thought to be
11 million people with keloid scars
(Sund, 2000). This represents a signi-
ficant burden to both health-care pro-
viders and individuals.

Currently, the pathogenesis of keloid
scars is not fully understood, but there
are a number of clues as to the etiology.
There is an obvious genetic component,
and they have also been linked to
hormonal influences, wound infection,
and skin tension (Wolfram et al., 2009).
Given the burden presented and our
current poor ability to reduce or prevent
normal and pathological scarring,
clearly an improved understanding of
the molecular mechanisms underlying
scar formation is essential, and research
into novel treatment strategies is justi-
fied.

Histone deacetylases (HDACs) and
counteracting histone acetyltransferases
(HATs) are epigenetic modifying en-
zymes that are accepted to, respec-
tively, remove and add acetyl groups to
histones, and in this manner influence
gene expression (acetylation is gener-
ally an activating, transcription-promot-
ing modification; Kuo and Allis, 1998).
The objective of this work was to
characterize the expression profiles of
specific HDACs in normal and keloid

scars; this has not been previously
investigated, and there is a lack of
consensus about the role of histone
(de)acetylation in various fibrotic con-
ditions. For example, HDAC inhibitors
used in vitro suppressed myofibroblast
differentiation (Glenisson et al., 2007;
Mannaerts et al., 2010) and decreased
collagen production in keloid fibro-
blasts (Diao et al., 2011); in animal
models, HDAC inhibition decreased
heart, kidney, and liver fibrosis (Pang
et al., 2009; Iyer et al., 2010; Marumo
et al., 2010). Conversely, HATs were
overexpressed in fibrotic lesions of
scleroderma patients (Bhattacharyya
et al., 2005), and HAT inhibition was
found to be anti-fibrotic (Li et al., 2008).

To investigate HDAC expression in
human skin scars, three types of skin tissue
were assessed by immunohistochemistry
(IHC): normal human skin, normal scar
tissue from patients undergoing melano-
ma re-excision approximately 2–3 weeks
after the original wound, and keloid scar
tissue from revision procedures (age
of scar 46 months). Tissue samples were
batch analyzed for HDAC1, HDAC2,
HDAC4, and HDAC7. Scar-associated
fibroblasts in both normal and keloid
scars showed a significant and striking
upregulation of HDAC2, but not
HDAC1, 4, or 7 (Figure 1). Within the
epidermis, HDAC expression was un-
changed in scar versus non-scar regions
(data not shown).

Our observation that HDAC2 was
upregulated in scar tissue was substan-
tiated using a mouse model of wound
repair. Specifically, 4-mm excisional
wounds were made to the shaved
dorsal skin of anesthetized adult male
mice (CD-1; 6–8 weeks; protocol
approved by an institutional ethics

committee and the UK Home Office).
Wound tissue was harvested after 3, 7,
or 14 days and analyzed for HDAC2
by IHC. On Day 3, HDAC2-positive
cells were found at the wound margins,
whereas on Days 7 and 14 highly
expressing cells were abundant in the
wound bed (Figure 2a). This approach
demonstrated that HDAC2 is upregu-
lated in normal scar tissue in the mouse
as it is in human.

To begin to understand how HDAC2
expression may be regulated in this
setting, primary cultures of normal
human dermal fibroblasts (nHDFs,
o passage 15) were either (1) treated
with transforming growth factor
(TGF)b1 (0, 0.1, 0.5, 1 ng ml�1) or (2)
cultured at varying densities, and the
effects on HDAC2 expression were
observed by western blot analysis.
TGFb1 was able to trigger a concentra-
tion-dependent upregulation of HDAC2
(Figure 2b). Intriguingly, this effect was
not observed in all patients: only two of
the four primary cell populations tested
responded in this way. Future work
will investigate the determinants of this
variable response and its influence on
the efficacy of different targeted thera-
peutics. The same two nHDF isolations
showed that HDAC2 expression corre-
lates positively with cell density (Figure
2b), which would be high in a deve-
loping scar in vivo. Experiments using
murine Swiss 3T3 fibroblasts (o pas-
sage 12) confirmed that TGFb1 can
increase HDAC2 expression, and, inter-
estingly, also revealed that HDAC1
and HDAC7 were TGFb1-responsive
in these cells (Figure 2c). This see-
mingly contradictory finding that only
HDAC2 was upregulated in in vivo
scars, whereas TGFb1 stimulation of
cultured fibroblasts increased HDAC1
and 7, as well as 2, may indicate
that the timing and duration of TGFb1
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exposure are important factors in the
regulation of specific family members;
alternatively, there may be confounding

negative influences on the expression of
specific HDACs in the heterogeneous
in vivo setting.

Our in vivo studies on mouse and
human skin wounds revealed that
HDAC2 is significantly overexpressed
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Figure 1. Immunohistochemistry (IHC) reveals histone deacetylase (HDAC)2 upregulation in human scar tissue. (a) Formalin-fixed, paraffin-embedded human

scar samples were analyzed by IHC for expression of HDAC1, 2, 4, and 7. At least three independent reviewers scored the staining intensity and the percentage

of positive dermal fibroblast cells in normal skin and scar tissue. The product of these two numbers (mean of 3/4 scorers) gave the IHC score, which was

statistically analyzed and is graphically represented. Results were analyzed by paired (normal scars) or unpaired t-tests (keloids); *, Po0.005 (n¼10);

**, Po0.0001 (n¼ 11). (b, c) Representative patient samples showing HDAC2 upregulation in (b) normal scar tissue, and (c) keloid scars are shown. Brown

staining indicates HDAC2 positivity, omission of the primary antibody served as a negative control. Bars¼ 50 mm.
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in both normal and keloid scar tissue.
The failure of HDAC2 to distinguish
between normal and keloid scars leads
us to speculate that, in keloids, expres-
sion may fail to return to normal
levels at the completion of the healing
process, and thus may contribute to
persistent growth and/or alternative
differentiation of these cells.

Our ongoing hypothesis is that phar-
macological inhibition of HDACs will

decrease skin fibrosis. Early, but pro-
mising, findings in various animal
models of fibrosis certainly indicate
that this may be the case in other organ
systems (Pang et al., 2009; Iyer et al.,
2010; Marumo et al., 2010). As inflam-
mation tends to exacerbate scarring, it
will be interesting to determine whether
these results are owing to HDAC inhib-
itors acting directly on the fibroblasts,
or acting indirectly, as anti-inflamma-

tories (Han and Lee, 2009). Regardless
of the mode of action, if correct, the
pathway from bench to bedside for
HDAC inhibitors in the treatment of
skin scars is anticipated to be relatively
smooth, as there are 13 HDAC inhi-
bitors already in use clinically (Paris
et al., 2008).

Currently, there are no successful
treatments that prevent or eliminate scar
tissue; however, counteracting TGFb1,
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Figure 2. Transforming growth factor (TGF)b1 and cell density may regulate histone deacetylase (HDAC)2 expression in scar tissue. (a) Immunohistochemistry

of scars resulting from a 4-mm punch biopsy wound made to the dorsal skin of adult male mice showed elevated HDAC2 expression (brown) in the scar-

associated fibroblasts throughout the time course of scar formation. Omission of the primary antibody served as a negative control. Bars¼50 mm. (b) Western

blot analysis of normal human dermal fibroblasts (nHDF, o passage 15) treated with the indicated concentrations of TGFb1 for 24 h, or cultured at varying

densities (approximately 25, 50, 75, and 100% confluence) for 96 h, revealed a ‘‘concentration’’-dependent increase in HDAC2 expression. (c) TGFb1

(1 ng ml�1) stimulation of Swiss 3T3 (S3T3) cells also resulted in upregulation of HDAC2, as well as an increase in HDAC1 and 7. Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) served as a loading control.
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for example, using recombinant TGFb3
(Avotermin, Renovo, UK), has shown
potential success as an anti-scarring
treatment (So et al., 2011). Our finding
that TGFb1 treatment increased HDAC
expression suggests that HDAC inhibi-
tors equally have the potential to be
anti-fibrotic, depending on the extent to
which TGFb1 relies on HDAC2 to
exert its effects. People with scars face
many physical, psychological, esthetic,
and social consequences that may be
associated with substantial emotional
and financial cost (Brown et al., 2008).
This research implicates HDACs in skin
scarring, and suggests they may be novel
therapeutic targets for the prevention of
normal and pathological scarring.
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