
Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk
A note on “New travelling wave solutions to the Ostrovsky equation”

E.J. Parkes

Department of Mathematics & Statistics, University of Strathclyde, Livingstone Tower, Richmond Street, Glasgow G1 1XH, UK

Abstract

In a recent paper by Yaşar [E. Yaşar, New travelling wave solutions to the Ostrovsky equation, Appl. Math. Comput. 216 (2010), 3191–3194], ‘new’ travelling-wave solutions to the transformed reduced Ostrovsky equation are presented. In this note it is shown that some of these solutions are disguised versions of known solutions.

Key words: Travelling-wave solutions; reduced Ostrovsky equation; tanh-function method.

PACS: 02.30.Jr.

Over the past two decades or so several methods for finding travelling-wave solutions to nonlinear evolution equations have been proposed, developed and extended. The solutions to dozens of equations have been found by one or other of these methods. References [1–5] and some of the references therein mention some of this activity. Unfortunately, one unwanted consequence of this work is the large number of papers in which authors claim to have found ‘new’ solutions which, in truth, are just disguised versions of previously known solutions. Recently, in a series of enlightening papers [6–12], Kudryashov and co-workers have warned researchers and referees of the danger of not recognizing that apparently different solutions may simply be different forms of the same solution. In these papers, numerous examples are given to illustrate this phenomenon. Some other recent examples are given in [13–18].

In [14] we discussed ‘disguised’ solutions of an equation that we have dubbed the ‘transformed reduced Ostrovsky equation’, namely

\[uu_{xxt} - u_x u_{xt} + u^2 u_t = 0. \]

(1)

In this note we reveal yet more such solutions, this time as presented by Yaşar [1].

Email address: e.j.parkes@strath.ac.uk (E.J. Parkes).

Preprint submitted to Applied Mathematics and Computation 24 June 2010
In passing we note that Eq. (1) is a transformed form of the Vakhnenko equation [19] which, in turn, is a transformed version of the reduced Ostrovsky equation [20]. Misleadingly, in [1–4], Eq. (1) is referred to as the Ostrovsky equation.

First we summarize a derivation of some distinct solutions to Eq. (1). For this purpose we have used the extended tanh-function method for finding travelling-wave solutions which we summarized in [16]. A tedious but routine application of the method to (1) gives

\[u = 6k^2 - 6Y^2 \quad \text{or} \quad u = 2k^2 - 6Y^2, \tag{2} \]

where \(Y \) is one of five possible functions of \(\eta := x - ct - x_0 \), and \(k, c \) and \(x_0 \) are constants. If \(k^2 > 0 \) (so that \(k \) is real), then \(Y := k \tanh(k\eta) \) or \(Y := k \coth(k\eta) \); if \(k^2 < 0 \) (so that \(k \) is imaginary), let \(k = iK \) (so that \(K \) is real) and then \(Y := -K \tan(K\eta) \) or \(Y := K \cot(K\eta) \); if \(k = 0 \), then \(Y := 1/\eta \). These results lead to the following solutions to (1):

\[
\begin{align*}
\text{(3)} & & u_{11} &= 6k^2 - 6k^2 \tanh^2(k\eta) = 6k^2 \text{sech}^2(k\eta), \\
\text{(4)} & & u_{12} &= 6k^2 - 6k^2 \coth^2(k\eta) = -6k^2 \text{cosech}^2(k\eta), \\
\text{(5)} & & u_{13} &= -6k^2 - 6k^2 \tan^2(K\eta) = -6K^2 \sec^2(K\eta), \\
\text{(6)} & & u_{14} &= -6k^2 - 6k^2 \cot^2(k\eta) = -6k^2 \cosec^2(\eta), \\
\text{(7)} & & u_{21} &= 2k^2 - 6k^2 \tanh^2(k\eta) = -4k^2 + 6k^2 \text{sech}^2(k\eta), \\
\text{(8)} & & u_{22} &= 2k^2 - 6k^2 \coth^2(k\eta) = -4k^2 - 6k^2 \text{cosech}^2(k\eta), \\
\text{(9)} & & u_{23} &= -2K^2 - 6k^2 \tan^2(K\eta) = 4K^2 - 6k^2 \sec^2(\eta), \\
\text{(10)} & & u_{24} &= -2K^2 - 6k^2 \cot^2(k\eta) = 4K^2 - 6K^2 \cosec^2(\eta), \\
\text{(11)} & & u_3 &= -6/\eta^2.
\end{align*}
\]

We note that all these solutions may also be derived via the basic tanh-function method. The basic tanh-function method (also summarized in [16]) delivers the solutions \(u_{11} \) and \(u_{21} \). These may be obtained by hand or with minimal effort by use of the automated tanh-function method [21] which uses ATFM, a Mathematica package designed to take the drudgery out of applying the tanh-function method by hand. We may obtain \(u_{12} \) and \(u_{22} \) by replacing \(kx_0 \) by \(kx_0 + i\pi/2 \) in \(u_{11} \) and \(u_{21} \), respectively, and then using (A.1). We may obtain \(u_{13} \) and \(u_{23} \) by replacing \(k \) by \(iK \) in \(u_{11} \) and \(u_{21} \), respectively, and then using (A.2). We may obtain \(u_{14} \) and \(u_{24} \) by replacing \(k \) by \(iK \) in \(u_{12} \) and \(u_{22} \), respectively, and then using (A.3). We may obtain \(u_3 \) from \(u_{12} \) or \(u_{22} \) by taking the limit \(k \to 0 \).

In [19], we derived \(u_{11} \) via Hirota’s method. This solution played an important role in the investigation of \(N \) loop-soliton solutions of the Vakhnenko equation [19,22]. In [2], the solutions \(u_{11} \) and \(u_{21} \) with \(x_0 = 0 \) were derived by both the basic tanh-function method and the equivalent exponential rational function method. In [14], we derived \(u_{11}, u_{21}, u_{12} \) and \(u_{22} \) via the basic tanh-function method. In [3], the authors derived twenty eight solutions by using the Sirendaoreji auxiliary equation method. In [14], we pointed out that all these solutions are just disguised versions.
of one or other of \(u_{11} \) or \(u_{12} \) with appropriate choices of \(x_0 \). In [4], two solutions were derived via the Exp-function method. In [14], we showed that these are just disguised versions of \(u_{11} \) and \(u_{21} \), respectively, with an appropriate choice of \(x_0 \). In [5], the \((G'/G)\)-expansion method is applied to the modified generalized Vakhnenko equation. In the notation of [5], with \(p = q = 1 \) and \(\beta = 0 \), the solutions for \(u \) expressed as a function of \(X \) and \(T \) are solutions to the transformed reduced Ostrovsky equation. By using the results in [16], we may show that, in [5], (26) corresponds to \(u_{11} \) or \(u_{12} \), (27) corresponds to \(u_{21} \) or \(u_{22} \), (32) corresponds to \(u_{23} \) or \(u_{24} \), (33) corresponds to \(u_{13} \) or \(u_{14} \), and (35) corresponds to \(u_3 \).

In [1], the author derives thirteen solutions by using an ‘improved tanh-function method’. The ones given by (19), (20), (23), (24) and (25) in [1] are respectively \(u_{11}, u_{12}, u_{13}, u_{14} \) (all with \(x_0 = 0 \)) and \(u_3 \). The remaining eight solutions are claimed to be ‘new’ and ‘important’; they are as follows:

\[
\begin{align*}
\quad u(x, t) &= \frac{3}{2}\alpha^2 \left(1 - |\tanh(\alpha\zeta) \pm i \operatorname{sech}(\alpha\zeta)|^2 \right), \quad (12) \\
\quad u(x, t) &= \frac{3}{2}\alpha^2 \left(1 - |\coth(\alpha\zeta) \mp \operatorname{cosech}(\alpha\zeta)|^2 \right), \quad (13) \\
\quad u(x, t) &= -\frac{3}{2}\alpha^2 \left(1 + |\sec(\alpha\zeta) \pm \tan(\alpha\zeta)|^2 \right), \quad (14) \\
\quad u(x, t) &= -\frac{3}{2}\alpha^2 \left(1 + |\cosec(\alpha\zeta) \mp \cot(\alpha\zeta)|^2 \right), \quad (15)
\end{align*}
\]

where \(\alpha \) is an arbitrary constant and \(\zeta := x - ct \). However, on using (A.4), we find that the two solutions in (12) are just \(u_{11} \) and \(u_{12} \) with \(k = \alpha/2 \) and \(kx_0 = -i\pi/4 \). Similarly, with (A.5), the two solutions in (13) are just \(u_{11} \) and \(u_{12} \) with \(k = \alpha/2 \) and \(x_0 = 0 \); with (A.6), the two solutions in (14) are just \(u_{13} \) and \(u_{14} \) with \(k = \alpha/2 \) and \(kx_0 = -\pi/4 \); with (A.7), the two solutions in (15) are just \(u_{13} \) and \(u_{14} \) with \(k = \alpha/2 \) and \(x_0 = 0 \). Note that the solutions \(u_{21}, u_{22}, u_{23} \) and \(u_{24} \) are not given in [1].

Appendix: Identities

\[
\begin{align*}
\tanh(\theta - i\pi/2) &= \coth(\theta), \quad (A.1) \\
\tanh(i\theta) &= i \tan(\theta), \quad (A.2) \\
\coth(i\theta) &= -i \cot(\theta), \quad (A.3) \\
\tanh(\theta) + i \operatorname{sech}(\theta) &= \tanh \left[\frac{1}{2} \left(\theta + \frac{i\pi}{2} \right) \right], \quad \tanh(\theta) - i \operatorname{sech}(\theta) = \coth \left[\frac{1}{2} \left(\theta + \frac{i\pi}{2} \right) \right], \quad (A.4) \\
\coth(\theta) - \operatorname{cosec}(\theta) &= \tanh(\theta/2), \quad \coth(\theta) + \operatorname{cosec}(\theta) = \coth(\theta/2), \quad (A.5) \\
\sec(\theta) + \tan(\theta) &= \tan \left[\frac{1}{2} \left(\theta + \frac{\pi}{2} \right) \right], \quad \sec(\theta) - \tan(\theta) = \cot \left[\frac{1}{2} \left(\theta + \frac{\pi}{2} \right) \right], \quad (A.6) \\
\cosec(\theta) - \cot(\theta) &= \tan(\theta/2), \quad \cosec(\theta) + \cot(\theta) = \cot(\theta/2). \quad (A.7)
\end{align*}
\]
References

