Contraction Principle in Complex Valued G-Metric Spaces

Shin Min Kang
Department of Mathematics and RINS
Gyeongsang National University
Jinju 660-701, Korea
smkang@gnu.ac.kr

Balbir Singh
Department of Mathematics
Bhagwan Mahaveer Institute of Engineering and Technology
Murthal, Sonipat, Haryana, India
balbir.vashist007@gmail.com

Vishal Gupta
Department of Mathematics
Maharishi Markandeshwar University
Mullana, Ambala, Haryana, India
vishal.gmn@gmail.com

Sanjay Kumar
Department of Mathematics
Deenbandhu Chhotu Ram University of Science and Technology
Murthal, Sonepat, Haryana, India
sanjaymudgal2004@yahoo.com

Copyright © 2013 Shin Min Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
In this paper, we introduce the notion of complex valued G-metric spaces and prove contraction principle in the newly spaces.

Mathematics Subject Classification: 47H10, 54H25

Keywords: Complex valued G-metric spaces, contractive mappings

1 Introduction and Preliminaries

The study of fixed points of mappings satisfying certain contractive conditions has been at the center of rigorous research activity. Recently, Mustafa and Sims [6], [7] have shown that most of the results concerning Dhage’s D-metric spaces ([2]-[5]) are invalid, therefore they introduced an improved version of the generalized metric space structure which they called G-metric spaces.

In 2006, Mustafa and Sims [7] introduced the concept of G-metric spaces as follows:

Definition 1.1. Let X be a non-empty set and $G : X \times X \times X \rightarrow \mathbb{R}^+$ be a function satisfying

(G1) $G(x, y, z) = 0$ if $x = y = z$,
(G2) $0 < G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,
(G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables),
(G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).

Then the function G is called a generalized metric or a G-metric on X and the pair (X, G) is called a G-metric space.

The idea of complex metric space was initiated by Azam et al. [1] to explore the idea of complex valued normed spaces and complex valued Hilbert spaces.

Let \mathbb{C} be the set of complex numbers and $z_1, z_2 \in \mathbb{C}$. Define a partial order \prec on \mathbb{C} as follows:

$z_1 \prec z_2$ if and only if $\text{Re}(z_1) \leq \text{Re}(z_2)$ and $\text{Im}(z_1) \leq \text{Im}(z_2)$.

It follows that $z_1 \prec z_2$ if one of the following conditions is satisfied:

(C1) $\text{Re}(z_1) = \text{Re}(z_2)$ and $\text{Im}(z_1) = \text{Im}(z_2)$,
(C2) $\text{Re}(z_1) < \text{Re}(z_2)$ and $\text{Im}(z_1) = \text{Im}(z_2)$,
(C3) $\text{Re}(z_1) = \text{Re}(z_2)$ and $\text{Im}(z_1) < \text{Im}(z_2)$,
(C4) $\text{Re}(z_1) < \text{Re}(z_2)$ and $\text{Im}(z_1) < \text{Im}(z_2)$.

In particular, we will write $z_1 \prec z_2$ if $z_1 \neq z_2$ and one of (C2), (C3) and (C4) is satisfied and we will write $z_1 \sim z_2$ if only (C4) is satisfied.
Remark 1.2. We obtained that the following statements hold:
1. If $a, b \in \mathbb{R}$ with $a \leq b$, then $az \prec bz$ for all $z \in \mathbb{C}$.
2. If $0 \not\preceq z_1 \not\preceq z_2$, then $|z_1| < |z_2|$.
3. If $z_1 \not\preceq z_2$ and $z_2 \prec z_3$, then $z_1 \prec z_3$.

Now we introduce the notion of complex valued G-metric space akin to the notion of complex valued metric spaces [1] as follows:

Definition 1.3. Let X be a non-empty set and $G : X \times X \times X \to \mathbb{C}$ be a function satisfying

$$(CG1)\ G(x, y, z) = 0 \text{ if } x = y = z,$$

$$(CG2)\ 0 \prec G(x, x, y) \text{ for all } x, y \in X \text{ with } x \neq y,$$

$$(CG3)\ G(x, x, y) \preceq G(x, y, z) \text{ for all } x, y, z \in X \text{ with } y \neq z,$$

$$(CG4)\ G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots \text{ (symmetry in all three variables)},$$

$$(CG5)\ G(x, y, z) \preceq G(x, a, a) + G(a, y, z) \text{ for all } x, y, z, a \in X \text{ (rectangle inequality)}.$$

Then the function G is called a complex valued generalized metric or a complex valued G-metric on X and the pair (X, G) is called a complex valued G-metric space.

From $(CG5)$, the following proposition follow easily.

Proposition 1.4. Let (X, G) be a complex valued G-metric space. Then for any $x, y, z \in X$

1. $G(x, y, z) \preceq G(x, x, y) + G(x, x, z),$
2. $G(x, y, y) \preceq 2G(y, x, y).$

Definition 1.5. Let (X, G) be a complex valued G-metric space, let (x_n) be a sequence in X, we say that (x_n) is complex valued G-convergent to x if for every $c \in \mathbb{C}$ with $0 \prec c$, there exists $k \in \mathbb{N}$ such that $G(x, x_n, x_m) \prec c$ for all $n, m \geq k$. We refer to x as the limit of the sequence (x_n) and we write $x_n \to x$.

Definition 1.6. Let (X, G) be a complex valued G-metric space. Then a sequence (x_n) is called complex valued G-Cauchy if for every $c \in \mathbb{C}$ with $0 \prec c$, there exists $k \in \mathbb{N}$ such that $G(x_n, x_m, x_l) \prec c$ for all $n, m, l \geq k$.

Definition 1.7. A complex valued G-metric space (X, G) is said to be complex valued G-complete if every complex valued G-Cauchy sequence is complex valued G-convergent in (X, G).

A point $x \in X$ is called interior point of a set $A \subset X$, whenever there exists $0 \prec r \in \mathbb{C}$ such that

$$B_G(x, r) = \{y \in X : G(x, y, y) \prec r\} \subset A.$$
A point \(x \in X \) is called limit point of a subset \(A \) of \(X \) whenever there exists \(0 < r \in \mathbb{C} \),
\[
B_G(x, r) \cap (A/X) \neq \emptyset.
\]
\(A \) is called open whenever each element of \(A \) is an interior point of \(A \). A subset \(B \) of \(X \) is called closed whenever each limit point of \(B \) belongs to \(B \).

Definition 1.8. Let \((X, G)\) and \((X', G')\) be two complex valued \(G \)-metric spaces. Then a function \(f : X \to X' \) is complex valued \(G \)-continuous at a point \(x_0 \in X \) if \(f^{-1}(B_{G'}(fx_0, r)) \in \tau(G) \) for all \(r > 0 \). We say \(f \) is complex valued \(G \)-continuous if it complex valued \(G \)-continuous at all points of \(X \), that is, continuous as a function from \(X \) with \(\tau(G) \)-topology to \(X' \) with \(\tau(G') \)-topology.

Since complex valued \(G \)-metric topologies are metric topologies we have

Proposition 1.9. Let \((X, G)\) and \((X', G')\) be two complex valued \(G \)-metric spaces. Then a function \(f : X \to X' \) is complex valued \(G \)-continuous at a point \(x \in X \) if and only if it is complex valued \(G \)-sequentially continuous at \(x \), that is, whenever \(\{x_n\} \) is complex valued \(G \)-convergent to \(x \), we have \(fx_n \) is complex valued \(G \)-convergent to \(fx \).

2 Main Results

Now, we need the following propositions.

Proposition 2.1. Let \((X, G)\) be a complex valued \(G \)-metric space and \(\{x_n\} \) be a sequence in \(X \). Then \(\{x_n\} \) is complex valued \(G \)-convergent to \(x \) if and only if \(|G(x, x_n, x_m)| \to 0 \) as \(n, m \to \infty \).

Proof. Suppose that \(\{x_n\} \) is complex valued \(G \)-convergent to \(x \). For a given real number \(\epsilon > 0 \), let
\[
c = \frac{\epsilon}{\sqrt{2}} + i \frac{\epsilon}{\sqrt{2}}.
\]
Then \(0 < c \in \mathbb{C} \) and there is a natural number \(k \) such that \(G(x, x_n, x_m) \prec c \) for all \(n, m \geq k \). Therefore, \(|G(x, x_n, x_m)| < |c| = \epsilon \) for all \(n, m \geq k \). It follows that \(|G(x, x_n, x_m)| \to 0 \) as \(n, m \to \infty \).

Conversely, suppose that \(|G(x, x_n, x_m)| \to 0 \) as \(n, m \to \infty \). Then given \(c \in \mathbb{C} \) with \(0 < c \), there exists a real number \(\delta > 0 \) such that for \(z \in \mathbb{C} \)
\[
|z| < \delta \quad \text{implies} \quad z \prec c.
\]
For this \(\delta \), there is a natural number \(k \) such that \(|G(x, x_n, x_m)| < \delta \) for all \(n, m \geq k \). This means that \(G(x, x_n, x_m) \prec c \) for all \(n, m \geq k \). Hence \(\{x_n\} \) is complex valued \(G \)-convergent to \(x \). \(\square \)
From Propositions 1.4 and 2.1, the following proposition follows easily.

Proposition 2.2. Let \((X, G)\) be complex valued \(G\)-metric space, then for a sequence \(\{x_n\}\) in \(X\) and point \(x \in X\), the following are equivalent:

1. \(\{x_n\}\) is complex valued \(G\)-convergent to \(x\).
2. \(|G(x_n, x_n, x)| \to 0\) as \(n \to \infty\).
3. \(|G(x_n, x, x)| \to 0\) as \(n \to \infty\).
4. \(|G(x_m, x_n, x)| \to 0\) as \(m, n \to \infty\).

Proposition 2.3. Let \((X, G)\) be a complex valued \(G\)-metric space and \(\{x_n\}\) be a sequence in \(X\). Then \(\{x_n\}\) is complex valued \(G\)-Cauchy sequence if and only if \(|G(x_n, x_m, x_l)| \to 0\) as \(n, m, l \to \infty\).

Proof. Suppose that \(\{x_n\}\) is complex valued \(G\)-Cauchy sequence. For a given real number \(\epsilon > 0\), let
\[
c = \frac{\epsilon}{\sqrt{2}} + i \frac{\epsilon}{\sqrt{2}}.
\]
Then \(0 \prec c \in \mathbb{C}\) and there is a natural number \(k\) such that \(G(x_n, x_m, x_l) \prec c\) for all \(n, m, l \geq k\). Therefore, \(|G(x_n, x_m, x_l)| < |c| = \epsilon\) for all \(n, m, l \geq k\). It follows that \(|G(x_n, x_m, x_l)| \to 0\) as \(n, m, l \to \infty\).

Conversely, suppose that \(|G(x_n, x_m, x_l)| \to 0\) as \(n, m, l \to \infty\). Then given \(c \in \mathbb{C}\) with \(0 \prec c\), there exists a real number \(\delta > 0\) such that for \(z \in \mathbb{C}\)
\[
|z| < \delta \quad \text{implies} \quad z \prec c.
\]
For this \(\delta\), there is a natural number \(k\) such that \(|G(x_n, x_m, x_l)| < \delta\) for all \(n, m, l \geq k\). This means that \(G(x_n, x_m, x_l) \prec c\) for all \(n, m, l \geq k\). Hence \(\{x_n\}\) is complex valued \(G\)-Cauchy sequence.

Proposition 2.4. Let \((X, G)\) be a complex valued \(G\)-metric spaces. Then the function \(G(x, y, z)\) is jointly continuous in all three of its variables.

Proof. Suppose \(\{x_k\}, \{y_m\}\) and \(\{z_n\}\) are complex valued \(G\)-convergent to \(x, y\) and \(z\), respectively. Then, by (CG5) we have
\[
G(x, y, z) \preceq G(y, y_m, y_m) + G(y_m, x, z),
\]
\[
G(z, x, y_m) \preceq G(z, x_k, x_k) + G(x_k, y_m, z)
\]
and
\[
G(z, x_k, y_m) \preceq G(z, z_n, z_n) + G(z_n, y_m, x_k),
\]
so
\[
G(z, y, z) - G(x_k, y_m, z_n) \preceq G(y, y_m, y_m) + G(x, x_k, x_k) + G(z, z_n, z_n).
\]
Similarly, we have
\[G(x_k, y_m, z_n) - G(x, y, z) \lesssim G(x_k, x, x) + G(y_m, y, y) + G(z_n, z, z). \]

Therefore by Proposition 1.4, we have
\[|G(x_k, y_m, z_n) - G(x, y, z)| \leq 2|G(x_k, x, x) + G(y_m, y, y) + G(z_n, z, z)| \]
and hence \(|G(x_k, y_m, z_n) - G(x, y, z)| \to 0 \) as \(k, m, n \to \infty \). By Proposition 1.9, the conclusion holds.

Next, we prove contraction principle in complex valued \(G \)-metric spaces as follows:

Theorem 2.5. Let \((X, G) \) be a complete complex valued \(G \)-metric space. Let \(T : X \to X \) be a contraction mappings on \(X \), i.e.,
\[G(Tx, Ty, Tz) \lesssim kG(x, y, z) \] (2.1)
for all \(x, y, z \in X \), where \(k \in [0, 1) \). Then \(T \) has a unique fixed point.

Proof. Suppose that \(T \) satisfies condition (2.1). Let \(x_0 \in X \) be an arbitrary point, and define the sequence \(\{ x_n \} \) by \(x_n = T^n x_0 \). Then by (2.1), we have
\[G(x_n, x_{n+1}, x_{n+1}) \lesssim kG(x_{n-1}, x_n, x_n). \] (2.2)
Again by (2.1), we have
\[G(x_{n-1}, x_n, x_n) \lesssim kG(x_{n-2}, x_{n-1}, x_{n-1}). \]
Then from (2.2), we have
\[G(x_n, x_{n+1}, x_{n+1}) \lesssim k^2G(x_{n-2}, x_{n-1}, x_{n-1}). \]
Continuing in the same way, we have
\[G(x_n, x_{n+1}, x_{n+1}) \lesssim k^nG(x_0, x_1, x_1). \] (2.3)
Then, for all \(n, m \in \mathbb{N} \) with \(n < m \), we have by repeated use of \((CG5) \) and (2.3) that
\[
G(x_n, x_m, x_m) \lesssim G(x_n, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{n+2}, x_{n+2}) \\
+ G(x_{n+2}, x_{n+3}, x_{n+3}) + \cdots + G(x_{m-1}, x_m, x_m) \\
\lesssim (k^n + k^{n+1} + k^{n+2} + \cdots + k^{m-1})G(x_0, x_1, x_1) \\
\lesssim \frac{k^n}{1-k}G(x_0, x_1, x_1).
\]
Therefore, we have
\[|G(x_n, x_m, x_m)| \leq \frac{k^n}{1-k} |G(x_0, x_1, x_1)|. \]

Since \(k \in [0, 1) \) if we take limits as \(n \to \infty \), then \(\frac{k^n}{1-k} |G(x_0, x_1, x_1)| \to 0 \), i.e., \(|G(x_n, x_m, x_m)| \to 0 \). For \(n, m, l \in \mathbb{N} \), From Proposition 1.4, we obtain
\[G(x_n, x_m, x_l) \preceq G(x_n, x_m, x_m) + G(x_l, x_m, x_m). \]

Therefore,
\[|G(x_n, x_m, x_l)| \leq |G(x_n, x_m, x_m)| + |G(x_l, x_m, x_m)|. \]
Taking limit as \(n, m, l \to \infty \), we get \(|G(x_n, x_m, x_l)| \to 0 \). So by Proposition 2.3, \(\{x_n\} \) is complex valued \(G \)-Cauchy sequence. By completeness of \((X, G) \), there exists \(z \in X \) such that \(\{x_n\} \) is complex valued \(G \)-convergent to \(z \).

Next we prove that \(Tz = z \). Assume on the contrary that \(Tz \neq z \). Then by (2.1)
\[G(x_{n+1}, Tz, Tz) \preceq kG(x_n, z, z) \]
and hence
\[|G(x_{n+1}, Tz, Tz)| \leq k|G(x_n, z, z)|. \]
Taking the limit as \(n \to \infty \). By Proposition 2.4, \(G \) is continuous on its variables, we have
\[|G(z, Tz, Tz)| \leq k|G(z, z, z)|, \]
which is a contradiction since \(k \in [0, 1) \). Thus \(Tz = z \).

Finally, to prove uniqueness, suppose that \(w (\neq z) \) is such that \(Tw = w \). Then by (2.1),
\[G(z, w, w) = G(Tz, Tw, Tw) \preceq kG(z, w, w). \]
Therefore,
\[|G(z, w, w)| \leq k|G(z, w, w)|. \]
Since \(k \in [0, 1) \), we have \(|G(z, w, w)| \leq 0 \). Therefore, we have \(z = w \) and thus \(z \) is a unique fixed point of \(T \). This completes the proof.

Example 2.6. Let \(X = [-1, 1] \) and \(G : X \times X \times X \to \mathbb{C} \) be complex valued \(G \)-metric space defined as follows:
\[G(x, y, z) = |x - y| + |y - z| + |z - x| \]
for all \(x, y, z \in X \). Then \((X, G) \) is complex valued \(G \)-metric space. Define \(T : X \to X \) as \(Tx = \frac{x}{2} \). Then \(T \) satisfy \(G(Tx, Ty, Tz) \preceq kG(x, y, z) \) holds for all \(x, y, z \in X \), where \(\frac{1}{2} \leq k < 1 \). Hence \(x = 0 \) is the unique fixed point in \(X \).

Acknowledgements. One of the authors (S. Kumar) would like to acknowledge University Grants Commission for providing financial grant Major Research Project under Ref. No. 39-41/2010(SR).
References

Received: August 1, 2013