Guaranteeing Robustness in a Mobile Learning Application using Formally Verified MAPE Loops

Didac Gil de la Iglesia and Danny Weyns
Linnaeus University, Växjö, Sweden
{didac.gil-de-la-iglesia, danny.weyns}@lnu.se

Abstract—Mobile learning applications support traditional indoor lectures with outdoor activities using mobile devices. An example scenario is a team of students that use triangulation techniques to learn properties of geometrical figures. In previous work, we developed an agent-based mobile learning application in which students use GPS-enabled phones to calculate distances between them. From practical experience, we learned that the required level of GPS accuracy is not always guaranteed, which undermines the use of the application. In this paper, we explain how we have extended the existing application with a self-adaptation layer, making the system robust to degrading GPS accuracy. The self-adaptive layer is conceived as a set of interacting MAPE loops (Monitor-Analysis-Plan-Execute), distributed over the phones. To guarantee the robustness requirements, we formally specify the self-adaptive behaviors using timed automata, and the required properties using timed computation tree logic. We use the Uppaal tool to model the self-adaptive system and verify the robustness requirements. Finally, we discuss how the formal design supported the implementation of the self-adaptive layer on top of the existing application.

I. INTRODUCTION

The upcoming generation of software systems will operate in environments that are open in the sense that they are only partially known at design-time. An increasing number of these systems will consist of loosely connected subsystems that run on pervasive devices and networks providing services that are not fully predictable. One emerging class of such systems are mobile learning applications. Mobile learning applications support traditional indoor lectures with outdoor activities using mobile devices. In previous work, we developed a mobile learning application to support learning activities that require student participation in groups, information sharing, and peer collaboration [1]. The pedagogical activities focus on strengthening mathematical topics taught in the class room with additional outdoor activities using mobile devices. The focus is on groups of three or four students (with an age around 12) that have to measure and calculate properties of geometrical figures, such as circles, rectangles and triangles. To support the tasks, each student uses a GPS-enabled mobile device. The mobile learning application provides learning services to the students that enable them to perform the tasks, such as services to represent tasks, measure the distance between selected mobile devices based on their current GPS locations, etc.

The mobile learning application is designed as a distributed agent-based system. On each mobile device, a device agent is deployed that provides the learning services to the student. Device agents of a group of students that work on the same tasks form an organization, which we call a Mobile Virtual Device (MVD) [1]). An MVD has a master-slave structure. The master receives new tasks from an activity agent that resides on a server deployed at the school, and reports the results back when a task is finished. Evidently, to avoid students making misleading conclusions, it is important that the system provides suitable measurements. As the quality of measurements directly depends on the accuracy of the GPS, the system should ensure that the GPS services provide a minimum level of quality w.r.t. the accuracy of measurements. Due to changing environmental conditions, the required level of GPS accuracy is not always guaranteed. Unfortunately, the mobile learning application was not designed to deal with insufficient GPS quality of service, which undermines the use of the application when conditions get worse.

Self-adaptation (SA) is a well recognized approach for dealing with particular runtime qualities [2], [3], [4]. SA is used for adding so called self-* properties (self-healing, self-protection, self-optimization) [2] to systems, addressing changing operating conditions of the system or its environment. SA is based on the design principle of separation of concerns. In particular, SA aims to separate the logic that deals with quality concerns of interest from the domain functionality provided by the underlying managed system. One prominent approach to realize SA is by means of a MAPE feedback loop (Monitor-Analyze-Plan-Execute) [2]. Whereas multiple studies have applied a MAPE design to realize self-adaptation, most of these studies consider MAPE as a conceptual framework that guides the engineering process [5]. Few studies have rigorously modeled and analyzed the behavior of MAPE designs, in particular for systems with multiple interacting feedback loops [6]. However, such rigor is required if we want to obtain guarantees about the required self-adaptive behavior.

In this paper, we show how we have extended the existing mobile learning application with a self-adaptation layer, making the system robust to degrading GPS accuracy. The self-adaptation layer is conceived as a set of interacting MAPE loops, distributed over the mobile devices. We have designed distinct components for the different functions of the MAPE loops, which offer benefits in terms of modeling, reasoning and mapping the design to implementation. To guarantee the robustness requirements, we formally specify the self-adaptive behaviors and verify the robustness requirements. We used the formally verified design to support the implementation of the self-adaptive layer on top of the existing application.
The rest of this paper is structured as follows. In Section II we provide background on MAPE. Section III introduces the mobile learning application, describes the problem, and outlines the architecture of the self-adaptive solution. In Section IV, we describe in detail the behavioral models of the self-adaptive system. Section V describes the required properties and discusses verification results. Section VI briefly explains the mapping of behavioral models to implementation. We draw conclusions and outline plans for future work in Section VII.

II. BACKGROUND AND RELATED WORK

MAPE was introduced as the conceptual core of an autonomic manager, which is central to IBM’s framework for Autonomic Computing [2]. The MAPE components realize the primary functions of a feedback loop. The Monitor component gathers relevant information from the underlying managed system and the environment. The Analyze component assesses the collected data to determine the system’s need to satisfy the adaptation objectives. The Plan component constructs the actions necessary to achieve the system’s objectives. Finally, Execute component carries out changes on the managed system. The additional Knowledge component maintains representations of the managed system and environment, adaptation objectives, and other relevant state that is shared by the MAPE components. MAPE is therefore also referred as MAPE-K.

Rainbow [7] offers a reusable architectural framework for building self-adaptive systems. The architectural layer that deals with self-adaptation, resembles similarities with a MAPE loop. Rainbow supports monitoring and adaptation of software systems that are distributed in a network. However, the control of adaptation is centralized. Another interesting example of a centralized feedback loop is described in [8]. The authors propose an approach to achieve QoS for service-based systems through an external MAPE loop. Formally specified requirements are automatically analyzed to identify and enforce optimal system configurations. The approach uses Markov models and probabilistic computation tree logic, and focuses on improving response time and dealing with failures.

A number of authors have studied interactions between feedback loops, which are more or less explicitly modeled as MAPE loops. [9] expresses structural constraints over an architectural specification that are used by component managers to automatically configure the system. [10] introduces a gossip protocol to make this approach scalable. [11] makes control loops explicit and present a UML profile for control loops that extends UML modeling concepts. [12] extends MAPE with support for inter-loop and intra-loop coordination. [13] introduces the concept of adaptive goal in service-based systems. Adaptive goals are responsible for adapting the goal model at runtime when needed. [14] presents a reference model for adaptive software that supports separation of concerns among feedback loops required to address control objectives over time. Finally, [6] describes patterns of interacting MAPE loops derived from implemented self-adaptive systems.

The work presented in this paper contributes to the presented background with a rigorous specification and verification of the behavior of the distinct components of MAPE loops and their interactions, for a concrete application.

III. TOWARDS A ROBUST M-LEARNING APPLICATION

In this section we give a brief summary of the mobile learning application we developed, we pinpoint the robustness problem we faced with insufficient GPS accuracy, and we outline how we tackled this problem by extending the design of the legacy system with a self-adaptation layer.

A. Mobile-Learning Application

The mobile learning application supports outdoor learning activities, where students use GPS-enabled mobile devices. A learning activity takes place in the context of a lecture (of 1 or 1.5 hour) and is composed of a set of tasks (typically 4 to 8 tasks). An example of a learning activity is to measure and calculate properties of triangles, and one concrete task is to use triangulation techniques to find locations on the field given the three side measurements of a triangle, and having two of the triangle locations already marked on the field. Fig. 1 shows a use case scenario, where three groups of students (represented by MVDs) perform tasks of a learning activity.

![Fig. 1. Use case scenario of a learning activity](image)

The application is conceived as a distributed agent-based system. A Device Agent deployed on each mobile phone provides the learning services to the student (gathering locations, calculating distances, etc.). The device agents of a group that work on the same tasks form an MVD. Within an MVD, one of the agents is elected as master, while the others serve as slaves. The MVD Manager is responsible for the management of the MVD. E.g., a new master is elected when the master phone runs out of energy. The master communicates via 3G with the Server using the Communication Infrastructure. Management of the tasks at the server is the responsibility of the Activity Agent. The master of each MVD receives new tasks from the activity agent at the server and reports the results back when a task is finished.

B. Problem Description

Due to changing environmental conditions, the GPS sensitivity can vary over time, which affects the accuracy of the measurements and may undermine the use of the application...
when conditions get worse. We were aware of the fact that GPS is not always accurate. However, it proved to be a bigger problem than our initial assumptions, up to the point where inaccurate measurements mislead students’ conclusions.

There are two main variables that determine the required quality of the GPS measurements during learning activities: the current GPS accuracy and the required level of accuracy for the task at hand. Fig. 2 illustrates how the GPS accuracy error typically evolves over time for a mobile device.

Depending on the given task, the allowed level of GPS accuracy errors can be different. As an example, an 8 meters accuracy error in the GPS acquisition has a higher impact when used in a 20 meter distance calculation than when used in a 60 meter distance. Therefore, there is a need for dynamically updating the required level of GPS accuracy for the measurements of each task. Fig. 2 shows two horizontal lines representing different accuracy requirements for Task-1 and Task-2, where the first task requires a lower level of accuracy (error lower than 11 meters) than the second (error lower than 7 meters).

The combination of the GPS quality and the requirements for a given task determine whether a mobile device is suitable to perform the distance measurements for the task. We marked two time instances in Fig. 2 representing points where the mobile device is not providing the required quality of measurements. At time stamp 20, while running Task-1, a 14 meter accuracy error is reported, failing the 11 meters accuracy that is required for the task. Notice that the available GPS quality may fulfill the requirements for one task, but fail for another task (see e.g., time stamp 40). From our experience, we learned that the required GPS quality of the mobile devices varies substantially. However, we noticed that during a learning activity, at most 20% of GPS modules failed to provide the required quality level, and this for a duration lower than 20% of the time of the learning activity. As a rule, we can state that (worst case in practice) less than 10% of the mobile devices are in an undesired state at the same time.

![Fig. 2. Exemplification of GPS accuracy](image)

In order to deal with failing devices, we need to take into account the number of required GPS devices per group (MVD) when handling failing devices. Typically, between 10 and 20% redundant phones are available.

Summarizing, the GPS accuracy of phones can degrade making them invalid for distance measurements. As a result, the number of mobile devices in a group may be insufficient to complete tasks successfully. Currently, the application does not support students with identifying the lack of sufficient quality of the GPS module and solving the problem by dynamically integrating available phones. To deal with this problem, we aim to enhance the current system with self-adaptation mechanisms that guarantee the robustness of the system with respect to decreasing GPS quality of mobile devices.

C. Adding a Self-Adaptive Layer

To realize the required robustness, we added a self-adaptive layer on top of the exiting system. We realized the self-adaptive layer using MAPE [2] loops, as shown in Fig. 3. Concretely, to provide robustness to the system we added two MAPE loops that deal with two concerns of robustness: the first loop deals with managing the availability of the GPS service based on the actual GPS service quality (left-side MAPE in Fig. 3); the second loop deals with managing the required number of GPS services of the current task for the MVD (right-side MAPE in Fig. 3). Probes and effectors enable the MAPE loops gathering the relevant information of the underlying managed system and applying the planned adaptations actions.

![Fig. 3. Structural view of the self-adaptive system](image)

The first MAPE loop (GPS Service Concern) is local to each mobile device. This loop monitors the quality of the GPS module, compares it with the required quality, and based on that, activates or deactivates the GPS service. When a GPS service is deactivated, it can trigger the second MAPE loop to start a self-healing process, that is, find a new device and
add this to the MVD. We say can trigger, because there may be redundant phones in the MVD, so that no replacement is required.

The second MAPE loop (MVD Concern) is distributed over the devices of the MVD. This MAPE loop uses a master-slave pattern [6]. Fig. 4 shows the distribution of MAPE components for three phones. The master-slave pattern enables coordination of self-adaptation among nodes in a distributed system. Devices have similar roles (master and slave) both with respect to adaptation in the second MAPE loop and the functionality provided by mobile learning application (i.e., the managed system). All devices of an MVD (master and slaves) monitor the mobile learning application and execute adaptation actions on it, but only the master is responsible for analysis and planning adaptations.

If the master detects that the number of GPS services in the MVD is not sufficient for the current task, it looks for an additional service. If there is a free GPS service available, the device that provides that service is dynamically added to the MVD, if not, the master periodically re-checks.

The master role can be performed by any of the phones in an MVD, making the organization robust in case of a master failure. In this paper, we abstract from the mechanisms to elect a new master. We refer the interested reader to [15] for self-healing mechanisms to deal with failures of a master in a master-slave organization deployed in a distributed application.

In this research, we use Uppaal [16], a model checking tool that supports modeling of behaviors (also called processes) using timed automata and verification of the robustness properties expressed in timed computation tree logic (TCTL). Timed automata and TCTL provide an accessible formalism. Concretely, a timed automaton is a finite-state machine extended with clock variables, which are used to synchronize behaviors. The automata represent states in which a behavior can be found and store actions to be performed on the transition between states. Behaviors can communicate through channels by signal passing, where the sender process x' synchronizes with the receiver process x. The automata can be complemented with expressions specified in a C-like language to define data structures (struct concept) and functions. Expressions in TCTL describe state and path formulae allowing the verification of properties of interest, such as reachability (a system should/cannot etc. reach a particular state or states), liveness (something eventually will hold), etc.

In the rest of this section, we describe the behaviors of the self-adaptive layer in three parts. We start by presenting the processes of the external world. Then, we present the behaviors of first MAPE loop (GPS Service Concern) and conclude with the behaviors of the second MAPE loop (MVD Concern). For the managed system, we only model the essential aspects that are required with respect to self-adaptation.

A. External World Processes

The need for self-adaptation is triggered by changes in the external world. To that end, it is necessary to formally specify an abstraction of the external world. In our case, the external world consists of three behaviors: the Activity Agent, the Context, and the GPS Module. Fig. 5 shows the behaviors in relation to the MAPE loop for GPS service self-adaptation (which we discuss below).

An Activity Agent, located at the activity server, is in charge of setting the requirements for the GPS accuracy to perform the tasks, and the number of mobile devices that are required per group. Fig. 6 shows the automaton of the Activity Agent1. A first step initializes the distributed application, defining an initial deployment of phones to MVDs. Next, the Activity Agent is in charge to control the activity flow. On a periodic basis2 (Time_Activity), the activity agent sends new tasks in the activity with new requirements (SubmitTask state), until the tasks in the activity (TotalLoops) are completed (Final state). Task requirements define the desired minimal accuracy necessary for the GPS modules and the number of GPS modules in each MVD (represented by $\text{MA}_\text{activity}.\text{min}_\text{accuracy}$ and $\text{MA}_\text{activity}.\text{number}_\text{GPS}$) (see Fig. 5).

The environment influences the GPS module quality, potentially bringing a GPS service to an undesired state. The

IV. BEHAVIORAL DESIGN

The structural models of the self-adaptive layer described in the previous section show the primary building blocks of the MAPE loops and their interactions. These models are useful for explaining the adaptation mechanisms at a high-level of abstraction, and defining course-grained modules to implement the self-adaptive layer. However, to guarantee the robustness requirements, we need a rigorous specification of the self-adaptive behaviors, together with the properties that express the robustness requirements. This specification allows then to verify whether the self-adaptive behaviors comply to the properties. To that end, we formally specify the behavioral design of the self-adaptive layer.

1Transitions between states fire based on conditions and/or received signals (we place these above transition arrows) and can perform actions or send signals to other processes (we place these below transition arrows).

2The model abstracts the Activity Agent behavior by sending new requirements on a period basis. In practice, there is an activity flow between server and device agents based on the assignment and completion of tasks.
The GPS Module behavior, which is part of the Communication Infrastructure layer, is modeled by the automaton shown in Fig. 8. This behavior gets quality signals from the context (via qualityGPSModuleUp and qualityGPSModuleDown) that are used to update the representation in the system, represented by MASPhoneStruct.GPS_Quality (see Fig. 5).

As mentioned above, we abstracted the managed system to its essentials required to deal with self-adaptation. Concretely, the managed system is represented using structures in Uppaal. Snippet 1 illustrates how different elements of the mobile learning application are represented: the current information w.r.t. the GPS quality (GPS_Quality) and the service (GPS_Service) state, the participation in organizations (status), and temporary information used to determine changes on the GPS quality (change_NotTreated, prev_quality).

Once we have a formal model of the external world and an abstraction of the managed system, we can model the self-adaptation processes.

B. GPS Service Self-Adaptation Processes

The GPS service self-adaptation processes model the first MAPE loop that deals with activating and deactivating GPS services based on the quality of the GPS signals. Fig. 5
shows the mapping of the behaviors of the MAPE loop to the components of the MAPE loop, shown in Fig. 3. There are two variables that can affect the suitability of a GPS module: the current task requirements and the GPS quality. Therefore, we model two probe processes that gather system information. Fig. 9 shows the automaton that represents the behavior of the GPS Quality Probe. The automaton contains a state in which the GPS quality is being sensed (Probing), and two additional states where the quality is Increasing and Decreasing. In case the GPS quality is modified, the GPS Service Monitor is notified by sending a signal (SAqualityGPSIncreased and SAqualityGPSDecreased). Similarly, the GPS Requirement Probe captures changes in the activity requirements (MAS-activity:min_accuracy) to notify the monitor component (automaton not shown).

The GPS SA Monitor process (Fig. 10) is in charge of monitoring the underlying managed system and updating the knowledge repository (SAPhoneStruct in Fig. 5), supporting analysis and planning of self-adaptive actions. The automaton monitors two separated variables. On the left hand side, changes on the GPS requirements (initiated by the Activity Agent) are processed (UpdateGPSReq). On the right hand side, changes on the GPS quality are processed (increase/decreaseQuality). The automaton notifies the Analyze process when changes in the knowledge are detected (through the SAGPSParametersChanged[Pid] channel).

The GPS SA Analyze process (Fig. 11) waits in the Waiting state for a trigger from the Monitor process to make a transition to the Analyzing state. One of four possible states can be reached (KeepGood, KeepBad, ChangedGood, ChangedBad), depending on the current GPS quality and the requirements to accomplish the current task. In case changes are identified (ChangedGood, ChangedBad), the Plan process is notified via a SA_GPS_degraded/recovered signal. Snippet 2 illustrates how the analyze functions to determine transitions to potential undesired states are specified in Uppaal.

\[\text{Snippet 2. \texttt{changesToGPSBad()} function} \]

```java
boolean changesToGPSBad(phone_id Pid) {
    if (SAPhoneStruct[Pid].GPS_Quality < SAPhoneStruct[Pid].activity.min_accuracy &&
        SAPhoneStruct[Pid].GPS_Service == 1) {
        return true;
    } else {
        return false;
    }
}
```

The GPS SA Plan process (Fig. 12) is responsible for planning adaptation actions with respect to the GPS service. That is, deciding whether to turn on/off the GPS service provided by the phone (ChangeToGood, ChangeToBad).

The GPS SA Execute process (Fig. 13) is in charge to apply the planned actions to the managed system. From a waiting state, it is triggered by the GPS SA Plan to make a transition and modify the GPS service via one of the states SetGPSServiceUp or SetGPSServiceDown.

To support the Execute process, two effectors are provided that perform the actual adaptations to the managed system. The GPS Service Effector process (Fig. 14) is in charge of activating/deactivating the GPS service on the managed system. This is represented by the MASPhoneStruct.GPS_Service variable (see Fig. 5). Additionally, a GPS Group Effector process is designed to remove a phone from an MVD in case the GPS Service is deactivated (automaton not shown).

C. MVD Self-Healing Processes

The MVD self-healing processes model the second MAPE loop that deals with recovery of undesired MVD states. Fig. 15
shows the mapping of the behaviors of the MAPE loop to the components of the MAPE loop, shown in Fig. 3.

The MVD Requirement Probe process (Fig. 16) shows a behavior that gathers information about the group requirements for the current task (MASactivity.number_GPS, see Fig. 15). Changes that are detected are communicated to the corresponding Monitor process. Mid refers to the MVD ID.

The MVD Requirement Monitor process (Fig. 17) is in charge of monitoring changes in the task requirements and, when signaled by the Requirement Probe, it updates the knowledge repository for the self-healing process (modeled as the SAMVDStruct, see Fig. 15). As shown in the Fig. 15, the probe and monitor processes that deal with the MVD requirements are only instantiated at the master device.

If a mobile device deactivates the GPS service resulting from the GPS service self-adaptation, a MVD Membership Probe communicates the change to the MVD Membership Monitor, represented by the process in the Fig. 18. Unlike the MVD Requirement Probe and MVD Requirement Monitor processes, the MVD Membership Probe and the MVD Membership Monitor processes are instantiated at all mobile devices to gather the distributed information w.r.t. the MVD composition. The MVD Membership Monitor identifies whether an MVD is affected or not by a GPS service that is turned off (myMVD !\= NOGROUP).

The MVD SH Analyze process (Fig. 19) is triggered by the MVD SH Monitor. The Analysis process identifies three possible scenarios, that is, the MVD is Complete (the number of GPS services covers the requirements), Incomplete (GPS services are missing) or Redundant (there is redundancy of...
GPS devices). The Analyze process communicates with the Plan process to start recovering the MVD that is missing GPS services (via \textit{SH_MVD_Incomplete}) or to stop a possible search otherwise (via \textit{SH_MVD_Redundant/Complete}).

When triggered by the Analyze process, the MVD SH Plan process (Fig. 20) initiates a search to locate a free phone \textit{(found_Phone)} that offers a GPS service \textit{(LookForFreeGPS)}. In case the resource cannot be found, the process stays in the \textit{NoFreeGPS} state and repeats the search until it finds a service and its goal is achieved (\textit{AllFine}). The phone that provides the service \textit{(found_Phone)} is notified to get integrated in the MVD. Only the master phone executes the Plan process.

![Fig. 19. MVD SH Analyze](image1)

The MVD SH Execute process (Fig. 21) is in charge of applying the planned decisions for MVD self-healing. One Execute process is instantiated in each phone, in order to allow changing the phone state and integrating it into the correspondent MVD. The integration is performed through a MVD Effector, and results in changing the \textit{MASPhoneStruct.status} (see Fig. 15).

![Fig. 20. MVD SH Plan](image2)

![Fig. 21. MVD SH Execute](image3)

V. VERIFICATION OF SELF-ADAPTATION

Once we have modeled processes, we can formulate the self-adaptation requirements as logical expressions over the models. Uppaal uses a subset of TCTL (timed computation tree logic) to specify state and path formulae that can be verified. We discuss four groups of properties: functional correctness, GPS service adaptation, MVD self-healing, and MAPE loop interference.

A. Functional Correctness

To verify functional correctness, we check the absence of deadlock in the system (F1), and we check that for all tasks the required number of GPS services are available in each group. Deadlock is directly supported in Uppaal. F2 presents a concrete scenario that checks the required GPS services for group 1.

\[F1: A[] \text{not deadlock} \]
\[F2: A[] \text{ServerAgent1.SubmitTask imply} \]
\[\text{MASmvdStruct[1].nMembers} >= \text{MASactivity1.number_GPS} \]

B. GPS Service Self-Adaptation

We define three robustness properties that allow verification of self-adaptation of the GPS service. R1 specifies that a GPS service, which provides an insufficient quality, will eventually be recognized by the Analyze process. R2 specifies that the GPS service of a GPS module with insufficient quality will actually be deactivated. Finally, R3 specifies that such GPS service will eventually be removed from any MVD. R1 and R2 are exemplified by defining an instance that analyzes cases on the phone number 1. R3 studies the scenario in which 3 groups (1, 2 and 3) do not contain the deteriorated phone 1.

\[R1: \text{GPSModule(1).Deteriorating -->} \]
\[\text{GPSSAAnalyze(1).ChangeBad} \]
\[R2: \text{GPSModule(1).Deteriorating -->} \]
\[\text{MASphoneStruct[1].GPS_Service == DEACTIVATED} \]
\[R3: \text{GPSModule(1).Deteriorating -->} \]
\[\text{MASmvdStruct[1].member[1] == NOT_USED & &} \]
\[\text{MASmvdStruct[2].member[1] == NOT_USED & &} \]
\[\text{MASmvdStruct[3].member[1] == NOT_USED} \]

C. MVD Self-Healing

We define three properties that allow verification of self-healing of MVDs. R4 specifies that when an MVD is incomplete, eventually a search of a replacing GPS service will be initiated. R5 verifies that a search will eventually be completed successfully, and R6 that this will lead to the MVD being in a Complete (or Redundant) state. \(^3\) R4 to R6 illustrate the rules applied to group 1.

\[R4: \text{MVDSHAnalyze(1).Incomplete -->} \]
\[\text{MVDSHPlan(1).LookForFreeGPS} \]
\[R5: \text{MVDSHPlan(1).LookForFreeGPS -->} \]
\[\text{MVDSHPlan(1).AllFine} \]
\[R6: \text{MVDSHAnalyze(1).Incomplete -->} \]
\[\text{MVDSHAnalyze(1).Complete ||} \]
\[\text{MVDSHAnalyze(1).Redundant} \]

D. MAPE Loop Interference

Finally, we verify that there is no interference between the MAPE loops. R7 specifies that the deactivation of a GPS service (as a result from adaptations in the first MAPE loop), is correctly handled by not including the undesired GPS service in any MVD (by the MVD self-healing process in the second MAPE loop). R8 specifies another required interference property that concerns the integration of a phone in a group

\(^3\)The correctness of R5 and R6 relies on the assumption that only a fraction of the available GPS services can go down at the same time, and redundant services are available, as described in Section III.
(second MAPE loop) while the GPS service of this phone is deactivated (first MAPE loop) because it can no longer provide the required quality. In this case, the service of the failing phone should be replaced by another available service. R8 shows a concrete scenario where group 1 (MVDSHPlan(1)) and MASmdvStruct[1]) has initially selected phone 2. In case the GPS service of phone 2 becomes DEACTIVATED during the integration process, phone 2 will be NOT USED and a replacing service (MVDSHPlan(1).found_Phone != 2) will be selected. Finally, R9 specifies that, as a result of self-healing processes, a GPS service will not belong to two different MVDs at a time.

R7: GPSInternalEffector(1).Inactive -->

R8: MASphoneStruct[2].GPS_Service == DEACTIVATED && MVDSHplan(1).found_Phone == 2 -->
\[\text{MASmdvStruct[1].member[2] == NOT_USED} \land \text{MVDSHplan(1).found_Phone != 2}\]

R9: forAll(Mid1:MVD_id)
\[\text{forall(Pid:phone_id) forall(Mid1:MVD_id)} \forall\text{forall(Mid2:MVD_id)}
\[\text{MASmdvStruct[Mid1].member[Pid] == NOT_USED} \land \text{Mid1 != Mid2} \land \text{implies MASmdvStruct[Mid2].member[Pid] == NOT_USED}\]

E. Verification and Results

We instantiated different scenarios with increasing number of phones and MVDs. Learning activities consisted of 6 tasks. Measurements confirm that the processing cost for verification grow exponentially with the complexity of the scenarios (number of phones and number or MVDs). In this particular domain, a scenario with 3 phones and 1 MVD required 393 ms to verify the deadlock property (F1), while 6 phones and 2 MVDs required around 21 minutes, and 12 phones and 3 MVDs required several hours to analyze. The analysis results show only small differences in terms of cost for verifying the other properties for the same scenario. For example, for a scenario with 1 MVD and 3 phones, the verification cost varied between 167 ms to 178 ms for properties F2 and the robustness properties R1 to R9.

VI. FROM DESIGN TO IMPLEMENTATION

The original mobile learning application was implemented using JADE [17]. JADE is a platform that provides facilities to develop distributed multi-agent systems, including services for message communication, service registration and discovery, etc. We briefly explain how we implemented the self-adaptive layer on top of the legacy system.

We mapped one-to-one the behavioral processes presented in Section IV to Java classes. Fig. 22 illustrates the classes that implement the MAPE loop of the GPS service concern. The probe processes are implemented as Jade behaviors, which are executed by the agent on each mobile device. Snippet 3 shows the implementation of the GPS Quality Probe. The code that is executed on a periodic basis (TickerBehaviour) has been granted access to the current GPS accuracy data via the getAccuracy interface offered by the LocationManager. Effector classes implement effectors that have access to the underlying system to adapt it when needed. For example, the GPSServiceEffector class implements an effector that consumes the setGPSService() method of the PhoneManager to activate (or deactivate) the GPS service when demanded.

Snippet 3. GPSQualityProbeBehaviour class

```java
public class GPSQualityProbeBehaviour extends TickerBehaviour{
    ...
    public GPSQualityProbeBehaviour(Agent agent, long period, float threshold) {
        super(agent, period);
    }

    @Override
    protected void onTick() {
        float accuracy = LocationManager.getInstance().getMyLocation().getAccuracy();
        myLogger.log(Logger.WARN, "Tick", "Tick.Check.GPS_accuracy");
        if(accuracy < threshold) {
            myLogger.log(Logger.WARN, "GPS_accuracy_change");
            GPSMonitor.getInstance().update("accuracy", accuracy);
        }
    }
}
```

Analogously, we mapped the processes of the MVD self-healing loop to Java classes. For the communication between the masters and the activity agent on the one hand, and between the agents of MVDs on the other hand, we used ACLMessages (Agent Communication Language Messages) provided by JADE. These messages offer high-level communication primitives and supporting protocols, such as request-confirm, inform, etc.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explained how we have extended a legacy mobile learning application with a self-adaptation layer, making the system robust to degrading GPS accuracy. We designed the self-adaptive layer as a set of interacting MAPE loops distributed over the mobile devices. To guarantee the required robustness requirements, we used timed automata to specify the behaviors of the MAPE loops, and expressed the robustness requirements as formal properties in TCTL. The Uppaal tool allowed us to verify the properties. The behavioral design was then mapped to Java implementation.

While MAPE is widely recognized in the community, it is often only used as a conceptual guidance for the design of self-adaptive systems. In this paper, we used explicit modules for each of the adaptation functions of MAPE loops in the design of a self-adaptive application and mapped these modules one-to-one to an implementation. We report a number of lessons learned from this effort. Using explicit modules for each of the adaptation functions of MAPE loops makes it easier to:

- model the self-adaptive behavior, as the designer can focus on one activity at a time;
- model the interaction between the managed and managing system, as the interaction points are well-defined;
- reason about the behavior within and between MAPE loops, as a result of the clear separation of concerns;
- reason about the interactions between the managed and managing system;
specify required properties, and these properties can be specified at a more fine-grained level;
identify problems in the design;
map design to implementation.
However, there are also some tradeoffs:
• some MAPE activities have a straightforward behavior, which may raise questions about the usefulness of a separate specification;
• the size of the design increases;
• the cost for verification grows.
Regarding the generalization of the approach, we remark that in the presented application, we could easily separate the adaptation behavior from the business logic. From other work in our team [15], it is clear that this separation is not always so easy to realize. This calls for more attention to the separation of managed and managing system and the study of their interactions, including formal verification.

As the next step, we first aim to further verify that the required properties hold in the implemented mobile learning application. To that end, we plan to check the compliance of traces derived from the verification of the design with traces obtained from the running implementation. Second, we plan to study the overhead implied by adding MAPE loops to the system at runtime, including cost in terms of resources, and communication due to interactions among MAPE loops.

REFERENCES