Design Aesthetics Leading to M-Loyalty in Mobile Commerce

Dianne Cyr
Management Information Systems
Simon Fraser University

Milena Head
Information Systems
McMaster University

Alex Ivanov
School of Interactive Arts and Technology
Simon Fraser University


Abstract
Researchers have previously examined the Technology Acceptance Model [TAM] in many contexts, including the Internet. More recently TAM has been enhanced to include a hedonic component of enjoyment but the effect has rarely been investigated in a mobile commerce context. In addition, specific antecedents of TAM related to design aesthetics have not been examined within the mobile domain. Our research filled these gaps, and discovered that visual design aesthetics did significantly impact perceived usefulness, ease of use, and enjoyment, all of which ultimately influenced users’ loyalty intentions towards a mobile service.

Keywords: visual design, aesthetics, mobile commerce, technology acceptance model, enjoyment, m-loyalty

Section type: Research

Original submittal 15 April 2005; Request for Revisions 5 August 2006; Revision submitted 25 August 2006; Acceptance 31 August 2006
Design Aesthetics Leading to M-Loyalty in Mobile Commerce

1. Introduction *

Mobile commerce (m-commerce) has the potential of serving customers in wireless environments for both business and pleasure. Technical advances have provided users with powerful and affordable computing and communications devices such as PDAs (Personal Data Assistants) and cellular phones. This ‘mobile’ Internet is growing at an astonishing rate, and is expected to surpass the desktop-based Internet in a few years [48, 55]. In 2003 the worldwide ring-tone market alone was worth $3.5 billion, up 40% from 2002 and this represents about 10% of the global music market [100]. The mobile terminal will become ‘the access point’ for all sorts of ‘anytime, anywhere’ services [1, 30, 63].

The adoption of m-commerce is dependent on consumer acceptance of new and well-designed technologies [8]. To gain an understanding of the mobile consumer, recent research examined a variety of topics, including value creation through service offerings to the consumer [4], impact of mobile commerce on business operations [51], contexts for mobile use, and extended business applications for mobility [73, 80]. However, only a few studies have examined factors that influence actual adoption of mobile commerce [70, 96] or hedonic components, such as fun or entertainment that induce consumers to use a mobile device. Of particular relevance to this investigation, Bruner and Kumar applied TAM to consumer adoption of handheld Internet devices and found that, as proposed by Davis [24], a user’s perceived ease of use (PEOU) is a key determinant of its perceived usefulness (PU), which in turn influences behavioral intention and actual use. However, they inserted an

* This research is part of a project titled “Managing E-Loyalty through Experience Design” generously funded by a Social Sciences and Humanities Research Council of Canada grant under the special category Initiative on the New Economy.
additional component of “fun” to their model, and made comparisons between a PC and mobile device related to both ease of use and fun. Results indicated both perceived usefulness and especially fun associated with the device contributed to consumer adoption.

In another vein, user interface design and aesthetics of the website were found to be important for users’ acceptance of technology [29, 86]. Tractinsky played a major role in the consideration of aesthetics or beauty of the website interface [53, 88, 89] and found high correlations between perceived aesthetics and perceived ease of use. Schultz [81] found that graphical design elements, including color, photographs, font style and layout, affected the perceived usefulness of a Web page. Finally, van der Heijden [90] linked perceived attractiveness of a website to perceived usefulness, perceived ease of use, and perceived enjoyment, all of which had implications on intended and actual use of the site.

2. Context for Mobility

Relatively little is known about the factors influencing mobile applications and adoption. There are some exceptions. Yang validated TAM in a mobile commerce setting, and explored potential impacts of various individual characteristics (such as age, gender, innovativeness, and past adoption behavior) on perceived usefulness and ease of use. Wu and Wang [94] considered perceived risks, cost, and compatibility within m-commerce and found compatibility to be the most important determinant of intention to use the technology. Pedersen [72] extended TAM with subjective norms and behavioral control into a decomposed theory of planned behavior for early adopters of mobile commerce services. Others investigated mobile adoption for a specific application. For example, Kleijnen et al. [49] examined adoption of mobile gaming, Pagani [71] explored mobile multimedia services (photo messaging, mobile e-mail, video messaging, and postcard messaging), and Luarn and Lin [61] investigated behavioral intention to use mobile banking.
Over time, increased attention focused on how to display information effectively on small screens. Duchnicky and Kolers [28] studied the effects of different screen sizes, including the ability to read on different window heights and line widths. Their study, along with others [26, 74, 83], demonstrated that comprehension rates on a smaller screen were generally as good as those on larger screens. While stationary workstation screens differed by ratios of six to one at most, mobile screens differed by a ratio of 24 to one [79]. Between 1992 and 2002 Nokia phone volume and weight shrunk by a factor of five [58]. At the same time, mobile phone display size increased from two lines displaying eight characters each to a matrix display of 128 by 128 pixels. In 2004, the Nokia 6600 mobile phone had a laptop equivalent display. Methods to convert Web-based graphic file formats into wireless protocols have been developed [43, 75], although effective design applications are far from simple adaptations of large screen technology to its smaller counterpart [7, 41, 44].

Expanded graphical displays have enabled a fuller examination of the aesthetics of a mobile interface. Sarker et al. [78] examined interface characteristics and network capabilities that affect the implementation and acceptance of wireless phones. They found that users were “quite forgiving of physical limitations of the device due to technological constraints, they were bothered by flaws in the interface of the devices”. According to Kiljander and Jarnstrom [47] user interface style is a combination of the user interaction conventions, audio-visual-tactile appearance, and user interface hardware.

3. Design Aesthetics and Mobility

Interface design is increasingly important as companies and entertainment websites compete for rapidly increasing customers [91]. The sensory experience of the website can also determine whether a user stays and shops [42, 77]. Visual design refers to the balance, emotional appeal, or aesthetic of a website [34] and it may be expressed through colors,
shapes, font type, music or animation. Some research in this area has shown a relationship between “aesthetic beauty” and e-trust [45].

The original TAM has been widely used to explain technology adoption. Legris et al. [56] provided a comprehensive review of its use. They listed 39 factors affecting system satisfaction, however visual design was not included.

We predicted that usefulness and enjoyment of the device would result in mobile loyalty. Figure 1 shows the model we tested.

Although not tested using a mobile device, Schultz examined the effect of graphical design elements on perceived usefulness of a library website page. Participants were presented with a simple page layout, and an enhanced version, including an image header, decorative font, colors, and graphical buttons. Results indicated that the enhanced design positively affected users’ impression of the site, including perceived usefulness. Zhang and Li [98] found the “perceived affective quality” of a system had a significant positive impact on both perceived usefulness and perceived ease of use. Tractinsky noted: “Based on the design characteristics of interactive systems, users perceive and evaluate various attributes of the system (e.g., ease of use, usefulness), including its aesthetics.” Related to this, Kurosu and Kashimua [52] and Tractinsky manipulated the layout of objects on an ATM machine and found this affected customer evaluation of the machine’s “beauty” which influenced other system attributes such as ease of use.

In a study that specifically examined user interface design and usability for a wireless device in m-commerce, many principles of interface design were found to be transferable to mobile devices. Issues included content, user interaction with the device, reading text on small screens, rapid serial visual presentation, and browser types but aesthetic elements of the site mentioned (with reference to color and size of tables) were only mentioned in one paragraph. Despite this, the author concluded that “aesthetics, along with
usability, may also be part of designing an overall enjoyable user experience with mobile devices,” Likewise, Chan et al. [11] address usability and mobility, but omitted any examination of the aesthetics of design. Instead they were more concerned with differences across mobile device platforms.

Van der Heijden presented a model for the Internet in close alignment with that proposed by us. Using a TAM framework he introduced a new construct of “perceived attractiveness.” Drawn from the psychology literature [27], this was defined as “the degree to which a person believes that the website is aesthetically pleasing to the eye.” Van der Heijden found empirical support that perceived attractiveness of the website did influence usefulness, enjoyment, and ease of use. Further, perceived ease of use impacted perceived usefulness and perceived enjoyment. Three items captured users’ impressions of website attractiveness and referred specifically to overall site attractiveness, and of the site layout or colors.

In our investigation we drew on research on visual aesthetics in a variety of situations, and applied this work in the specific context of a mobile device. We expected that perceived visual aesthetics of the mobile interface would impact user perceptions of usefulness and ease of use of the device. Therefore the following hypotheses were tested:

**H1:** Design aesthetics of a mobile site will positively influence perceived usefulness.

**H2:** Design aesthetics of a mobile site will positively influence perceived ease of use.

**4. Augmented TAM**

Recently, TAM was applied in a consumer context with the addition of a “hedonic” factor that relates to user pleasure when using it [14, 23]. In work involving the Internet this hedonic component has been described as “fun”, “playfulness” [17, 67, 93] or “enjoyment”.
Online retail shopping has been suggested to have both utilitarian and hedonic dimensions and that vendors can create aesthetically rich shopping environments that consumers enjoy.

Moon and Kim conducted an experiment on the Internet and suggest there is a positive relationship between PEOU and perceived playfulness, and between perceived playfulness and attitude or intention toward use of the World Wide Web. They say: “when individuals are in the playfulness state, they will find the interaction intrinsically interesting: they are involved in the activity for pleasure and enjoyment rather than for extrinsic rewards”. However, it should be pointed out that they had no specific and defining antecedent variable to enjoyment. Childers et al. examined characteristics of the interactive shopping environment, such as navigation and convenience, that were expected to result in an enjoyable shopping experience as well as perceived usefulness and ease of use. These relationships were supported but aesthetics of the website were not considered.

Various antecedents of playfulness have been identified, including website characteristics. Seven such characteristics were: content, speed, ease of use; experimentation; variety; navigation; feedback; focused attention; and control. All characteristics were found to influence perceptions regarding playfulness of the site.

Zhu et al. [99] included antecedent variables of trust and enjoyment along with perceived ease of use and perceived usefulness as precursors to intention to use a mobile device in their untested conceptual model.

Finally, an investigation by Bruner and Kumar served as an important catalyst to our study. In their work, they tested different perceptions for fun by users on a desktop PC, a wireless phone simulation, and a PDA. Results demonstrated that the desktop and PDA were equally easy to use, but the PDA was perceived as more fun. Contrary to expectations, the wireless phone simulation was perceived as less fun than the desktop. Strong effects were found for ease of use related to both usefulness and fun of the device, however specific characteristics of the device responsible for influencing EOU and fun were not articulated.”
In our investigation, we used a real mobile phone to examine specific elements of visual aesthetics as antecedents to perceived usefulness, perceived ease of use, and perceived enjoyment. This resulted in further hypotheses:

**H3:** Design aesthetics of a mobile site will positively influence perceived enjoyment.

**H4:** Perceived ease of use of a mobile site will positively influence perceived usefulness.

**H5:** Perceived ease of use of a mobile site will positively influence perceived enjoyment.

5. M-loyalty

While early electronic commerce research indicated that website design elements could influence online satisfaction and sales [60], most research ignored the importance of website design factors and how they can influence customer satisfaction and the likelihood that customers will revisit a website resulting in customer loyalty [66]. Online loyalty or e-loyalty has been defined as a consumer’s intention to buy from a website or to visit it again [21, 31, 97]. Studies on the Internet suggest that if users are satisfied with the design of a website, they are more likely to exhibit e-loyal behavior [5, 25]. Website content can have an influential effect on contributing to repeat site visits [54].

Gommans et al. [38] discussed an untested conceptual framework for e-loyalty in which five elements were suggested as contributing to online consumer intentions to revisit the website or purchase again from an online vendor. One element proposed was website design, including ease of navigation, personalized features, designing for targeted customers segments, language options, and effective search functions. Yoon tested a model in which website properties and navigation functionality were expected to result in website trust and website satisfaction. The properties included width of product selections, accuracy of online
information and firm’s reputation, while navigation functionality involved overall operational efficiency, usefulness of help functions, and speed of online navigation. Yoon further suggested that trust results from confidence in the website and the buyer-seller exchange, while satisfaction relates to factors that induced users to return to the site. Website trust was found to be significantly related to properties of the website, while satisfaction was significantly related to navigation functionality, and both trust and satisfaction positively influenced e-loyalty.

In alignment with the definition of loyalty for an Internet site, mobile loyalty, or m-loyalty also depends on user willingness to revisit a site [10, 57]. Lin and Wang examined the determinants of customer loyalty in mobile contexts and found m-loyalty to be influenced by perceived value, habit, trust, and satisfaction. Chae et al. found that information quality was a key element of the mobile Internet and that it enhanced customer loyalty for mobile services.

Bruner and Kumar found that user attitudes significantly influenced their intention to use a device or service. In a mobile context perceived usefulness, perceived playfulness, and perceived ease of use correlated positively with user intentions, although they did not specifically measure loyalty. Similarly, Lee et al. observed that perceived usefulness and ease of use explained a significant percentage of the variation in attitude toward using the mobile Internet, which in turn influenced actual usage.

These findings suggested the final two hypotheses:

**H6**: Perceived usefulness of a mobile device will positively influence m-loyalty.

**H7**: Perceived enjoyment of a mobile device will positively influence m-loyalty.

No direct path between design aesthetics and loyalty was considered in our model. Flavián et al. have recently suggested that usability elements do not follow a direct path to consumer loyalty, but are mediated through other constructs that are antecedents to loyalty.
6. Research Methodology

6.1. Participants

Data collection took place in a large Canadian city in Western Canada. Participants were solicited through a poster placed in a variety of public spaces and university bulletin boards. To participate, individuals were required to have used a cell phone for at least one year. Sixty participants who were either Chinese or Canadian in origin (30 in each category) were selected. We originally expected differences between the two groups due to culture, age, and gender, but t-tests for between group differences were not significant, so the groups were combined to test our model. Demographics of the sample are given in Table 1.

[Place Table 1 about here]

6.2. Experimental Site and Device

Given our emphasis on aesthetics, an attractive site was required for our research, with no interference from a slow or faulty connection. Most WAP sites in North America and Europe are primarily text-based, however the Lonely Planet (www.lonelyplanet.com also accessible from a mobile phone [wap.lonelyplanet.com]) offered visual treatment. Therefore the City Guide version of this site was chosen for the experiment. A typical WAP site has a black and white pure text format, but our study featured a colored background and text cells, as well as photographs, maps and icons. Screenshots of all pages are shown in Appendix A. A Nokia 6600 Internet enabled cell phone was used before it had been released to the Canadian market. This phone seemed very suitable as a basis for the investigation as it has one of the largest screens on the market and a superior color display (65,536 TFT) capable of laptop quality images. A joystick also permitted easy navigation.

To prevent problems with downloading and browsing delays, website pages were downloaded and saved on the cell phone. Based on feedback obtained from our pilot focus group (of 6), participants were not aware of this and perceived the connection to be “real.”
6.3. Experimental Tasks

A pilot study was used to pre-test potential tasks and check the experimental protocol, which included survey items and interview questions. Participants were initially asked to perform three information retrieval tasks: finding movie listings at a local theatre, choosing a restaurant in a different city, and booking a hotel in a different city. The restaurant task was found to be most suitable; it was preferred by the pilot subjects and afforded excellent visual design opportunities. For this task, photos of the interior of the restaurant and the map showing its location were included.

For the full study, each participant performed the experiment under the supervision of an investigator. The session began with a brief introduction and completion of the background data sheet, followed by familiarization with the Nokia 6600 device, including a written summary of key functions (shown in Appendix B). Once it was determined that participants were comfortable with the device they were read the following:

“Imagine that you have just arrived in San Francisco to meet up with an old friend. Your friend has suggested that you select a restaurant on your cell phone, and call her back with the address. Use the bookmarked CityGuide site to accomplish this task. Spend as much time as you need browsing through the featured listings for San Francisco. There is no need to actually write down any information or make any calls. Just let me know what your selection is when you’re finished.”

The device was then handed to the participant with the browser opened at the introductory page of the site. The site listing featured four restaurants, and most participants took between five to fifteen minutes to complete the task. He or she was then asked to complete a survey, followed by open-ended interview questions; these were tape-recorded. The interview questions were intended to solicit additional information about the participant’s experience with the experimental task and interface; they probed how
participants liked the site, what they would change, and whether or not they found the device useful. Finally, participants were debriefed and received a $20 honorarium.

6.4. Content and Construct Validity

Content validity considers how representative and comprehensive the items are in providing the results. Validity is assessed by examining the process by which the construct items were generated [84]. Constructs should draw representative questions (items) from a universal pool [20, 46]. In our research, survey items were adapted from previously validated work on design aesthetics [22], PEOU [50], PU [62], Perceived Enjoyment [9], and Loyalty. All items were constructed as agree-disagree statements on a seven-point Likert scale. The complete survey is given in Appendix C.

Construct validity assesses the extent to which a construct measures the variable of interest. Results of the varimax rotation on the 19 survey items is given in Table 2. All loadings are greater than 0.5, as recommended by Hair et al. [39] (convergent validity). There are no high cross-loadings of items in one construct with items in other constructs (discriminant validity). To further verify discriminant validity, Fornell and Larcker [33] suggested that correlations between items in any two constructs should be lower than the square root of the average variance shared within a construct. As shown in Table 3, this criterion is met.

Internal consistency (construct reliability) of the five factors was examined using Chronbach’s $\alpha$-value. As shown, $\alpha$-values ranged from 0.83 (for m-loyalty) to 0.94 (for enjoyment), which is well past the threshold recommended by Rivard and Huff [76] and Nunnally [69]. Therefore, our instrument encompassed satisfactory content, convergent validity, and discriminant validity.

[Place Table 2 about here]

[Place Table 3 about here]
7. Results

A structural equation modeling (SEM) approach was used, as it possesses many advantages over traditional methods. For example, it can simultaneously test the structural and measurement model, does not involve assumptions of homogeneity in variances and covariance of the dependent variables across groups, and allows for more complete modeling of theoretical relations [37].

Path analyses were performed to test the hypotheses using the variance-based Partial Least Square (PLS) method as used in recent IS studies [2, 36, 95, 68]. PLS was chosen over co-variance based methods, as it has fewer demands on residual distributions and sample size [13]. Additionally, it is appropriate for testing theories in early stages of development [32], as it supports both exploratory and confirmatory research.

With regards to sample size, Chin and Gefen et al. recommend that the minimum sample size for a PLS analysis should be the larger of (a) ten times the number of items for the most complex construct; or (b) ten times the largest number of independent variables impacting a dependent variable. The proposed model had five items in its most complex construct (enjoyment), and at most two independent variables impacting a dependent variable. Therefore, our sample size of sixty exceeded the recommended threshold of fifty.

Figure 2 shows the results of the analysis. PLS does not generate overall goodness-of-fit indices. Therefore, model validity was primarily assessed by examining the structural paths and $R^2$ values [18]. As recommended by Chin, bootstrapping (with 500 sub-samples) was performed to test the statistical significance of each path coefficient using t-tests. All path coefficients were significant. The findings supported all hypotheses at a minimum $p<0.05$ level, as summarized in Table 4.

Approximately 46% of the variance for m-loyalty towards mobile services is accounted for by the variables in the model ($R^2=0.46$). Note that the $R^2$ value of PEOU is
relatively small (0.053). This, however, does not represent a threat to the model’s validity. In general, low $R^2$ values are common in behavioral science research (for example, see [12]). In addition, PEOU is influenced by a single construct in our model (design aesthetics). As such, it would possess a low $R^2$ value when compared to multi-relationship models.

[Place Table 4 about here]

8. Discussion and Interpretation

Emerging research has begun to explore adoption issues for mobile services however this work is still preliminary. In particular, there is a lack of understanding of how design elements can influence the experience of the mobile user, and ultimately his or her loyalty towards using the service.

Our study sought to investigate gaps in the literature, and to apply established TAM constructs of perceived ease of use and perceived usefulness to the mobile services domain. Our findings supported previous results for non-mobile and mobile settings, in that perceived ease of using a mobile service significantly impacted perceived usefulness, which in turn significantly impacted adoption.

In recent technology adoption studies, dependent variables have been attitude [87], acceptance [82], preference, satisfaction [64, 65], intention [3, 35, 59], and actual use [15]. However, in their meta-analysis of online consumer behavior, Cheung et al. [16] stated: “compared to intention and adoption, continuance is an under-researched area.” In particular, Flavián et al. stressed that loyalty (an indicator of continuance) is an important construct to consider for online studies. Our study is one of a first to consider loyalty within the mobile services domain. Our results show that both perceived usefulness and enjoyment significantly influenced m-loyalty.

Additionally, a hedonic component (enjoyment) was incorporated into the model; it has been suggested as being an important determinant of the adoption of mobile services.
Our results showed a larger path coefficient from enjoyment to m-loyalty than from usefulness to m-loyalty. To investigate further, effect sizes were calculated using the procedure outlined by Chin. The effect size of perceived usefulness and enjoyment on m-loyalty were $f^2=0.17$ and $f^2=0.25$, respectively. Cohen [19] provided the following criteria for interpreting effect size: (i) for small effect size, $0.02<f^2\leq0.15$; (ii) for medium effect size, $0.15<f^2\leq0.35$; and (iii) for large effect size, $f^2>0.35$. Although the path coefficient ($b$) and effect size ($f^2$) from enjoyment was larger than from perceived usefulness, both were classified as having a medium effect on m-loyalty. Therefore, our study showed that enjoyment may have at least as large an impact on loyalty as perceived usefulness. Van der Heijden found similar results in his study of portals and suggested that the function of the system or application under study affected the result. The mobile restaurant service used in our study had a strong entertainment and enjoyment functionality, and this may have contributed to a degree of enjoyment experienced by a user.

While the elements of our model have contributed to the theory and understanding of the mobile services domain, its primary contribution lies in the design aesthetics component. Despite the importance of usability and design for mobility [92], very few studies have addressed the topic. Our study demonstrated that design aesthetics do in fact have a significant impact on perceived usefulness, ease of use, and enjoyment. Tarasewich [85] suggested that aesthetics and usability may be an important part of “designing an overall enjoyable user experience with mobile devices.” This was confirmed by our analysis, where design aesthetics may have a larger relative impact on enjoyment ($b=0.55$) than on usefulness ($b=0.21$) and ease of use ($b=0.23$). Our results also support Flavián et al., who suggested that usability elements do not follow a direct path to loyalty, but are mediated through other constructs that are antecedents to loyalty. In a post-hoc analysis, a PLS model was run to test a direct path between design aesthetics and m-loyalty. This was not significant ($b=0.074; p>0.1$) and the $R^2$ for m-loyalty was not improved ($R^2=0.47$).
From a theoretical perspective, the objective of our paper was to develop and validate a model for loyalty in a mobile domain. Our model built on a solid theoretical foundation and combined validated TAM constructs, a hedonic enjoyment construct, and design aesthetics in a new context (mobile services).

From a practitioner perspective, the objective of this paper was to provide practical insights into ways of establishing loyalty among users of mobile services. Depending on the nature of the service, enjoyment may play a critical role here. Accordingly, the design of the interface may be central in determining the level of enjoyment experienced by users, as well as the perceived usefulness and ease of use. For stationary devices, the interface has been demonstrated as significant to the success of the system [6]. To the end-user, the human-computer interface is often considered the most important component of the entire system [40]. It appears that the same is true for mobile devices. Our study proved that design aesthetics of the mobile interface can significantly impact important antecedents to loyalty.

Some limitations must, however, be considered. First, only one mobile service was investigated; it is entertaining and enjoyable and as such could impact participants’ beliefs of usefulness and enjoyment on m-loyalty. Services that are more utilitarian by nature (such as mobile banking) may result in different relationships between the constructs of our model.

Second, this was a controlled laboratory experiment. However, laboratory experiments have flaws in terms of realism. The purpose of our research was to propose and test a model for perceived attractiveness of the interface design for a mobile product. Precision was essential for model validation. As such, a laboratory experiment was the most appropriate method.

Third, construct measures were collected at one point in time. Although the loyalty scales were based on previously validated constructs, one may argue that loyalty is difficult to measure using a series of questions following an initial experience with a system or product. True loyalty can only be demonstrated through repeated actions of preference.
Appendix A. Screen Shots

Numbers indicate different pages, or decks:

1. "Aqua" (seafood)
2. Choose a city
   - Rome
   - San Francisco
   - Seoul
   - Shanghai
   - Singapore
   - Stockholm
   - Sydney
   - Tokyo
   - Venice
   - Vienna
   - Zurich
3. "R & G Lounge" (cantonese)
3.1 "Greens" (vegetarian)
3.2 "Greens" gives you spectacular vegetarian fare at reasonable prices. Much of the food that goes into the dishes - Mézé platters, grilled vegetables, and leek and potato - comes from the Zee Cafe's Green Gulch Ranch in Marin.
3.3 "Ditarombo" (Italian)
3.4 There's a kind of rustic charm about Ditarombo, with its wood-beamed ceilings and wooden floors. The food is traditional Italian with a dash of innovation (like polenta with mint) and the home-made bread and pasta add to its chimes.

San Francisco
The Golden Gate bridge, unbelievable fog, and 90's legends.

- Dramatic
- Seaside
- Genuine
- Cantina
- Vegetarian
- Rustic
- Italian

252 California St.
Tel: (415) 765 2257
Int'l Tel: +1 415 771 8222
Price: $$

631 Kearny St.
Tel: (415) 982 7077
Int'l Tel: +1 415 982 7877
Price: $$

5 Mission St.
Tel: (415) 982 7077
Int'l Tel: +1 415 982 7877
Price: $$
Appendix B. Summary of Cell Phone Functions

**Joystick:** the only tool you need to use to browse the CityGuide site today.

1. Move up and down to browse the site (the page scrolls only up and down).

2. Move left and right to highlight links. Move right to go to the next link, and move left to return to the previous link. A box will appear around these text links.

3. When the link is highlighted, push inward to click and advance to the next page. (Use the links at the bottom of pages to return to the main menu, or if you prefer, use the “Back” button on the keypad to go back a page.)

**The Main Menu button:** if you accidentally go to another application or window, click (do not hold) this button to return to the main application window, then use the Joystick to scroll back to the Opera browser.

**Back button:** if you prefer you can use this button to go back a page instead of clicking the “back” links in the site.
Appendix C. M-loyalty Survey

Following are the statement used in the survey. Each was answered on a 7-point Likert scale from strongly disagree to strongly agree.

**Design Aesthetics**  
**Sources: [21, 22, 90]**  
DA-1: The screen design (i.e. colors, boxes, menus, etc) is attractive.  
DA-2: This site looks professionally designed.  
DA-3: The graphics are meaningful.  
DA-4: The overall look and feel of the site is visually appealing.

**Perceived Usefulness**  
**Sources: [8, 62]**  
PU-1: The service helped me be more effective.  
PU-2: The service required the fewest steps to accomplish what I wanted to do with it.  
PU-3: The service made the task I wanted to accomplish easier to get done.  
PU-4: This service helped me be more productive.

**Perceived Ease of Use**  
**Sources: [50]**  
PEOU-1: Learning to use this service is easy for me.  
PEOU-2: It would be easy for me to become skillful at using this service.  
PEOU-3: I find this service easy to use.

**Perceived Enjoyment**  
**Sources: [8, 9, 14]**  
E-1: Using the service was exciting.  
E-2: The process of using this service was pleasant.  
E-3: It was cool to use.  
E-4: I had fun using this service.  
E-5: I found using this service to be enjoyable.

**M-Loyalty**  
**Sources: [21, 22]**  
L-1: I would use this mobile service again.  
L-2: I would consider purchasing from this mobile service in the future.  
L-3: I would consider using this mobile service in the future.
References


Table 1. Participant Demographics

<table>
<thead>
<tr>
<th>Age</th>
<th>Range: 19 to 56 years; Average: 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Women: 51.6%; Men: 48.4%</td>
</tr>
<tr>
<td>Highest level of education</td>
<td>High school (33%)</td>
</tr>
<tr>
<td></td>
<td>Technical degree (6%)</td>
</tr>
<tr>
<td></td>
<td>Undergraduate / College (50%)</td>
</tr>
<tr>
<td></td>
<td>Masters / Doctorate (15%)</td>
</tr>
<tr>
<td>Time spent online per week</td>
<td>19.7 hours</td>
</tr>
<tr>
<td>Internet experience</td>
<td>84%</td>
</tr>
<tr>
<td>Mobile Internet browsing experience</td>
<td>19%</td>
</tr>
<tr>
<td>Time owned a cell phone</td>
<td>4.6 years</td>
</tr>
<tr>
<td>Use of the mobile Internet</td>
<td>Buy movie/concert tickets (67%)</td>
</tr>
<tr>
<td></td>
<td>Download games/ring tones (48%)</td>
</tr>
<tr>
<td></td>
<td>Browse places to eat or shop (41%)</td>
</tr>
<tr>
<td></td>
<td>Check news (40%)</td>
</tr>
<tr>
<td></td>
<td>Other (12%)</td>
</tr>
</tbody>
</table>
Table 2. Principle Components Factor Analysis

<table>
<thead>
<tr>
<th>Items</th>
<th>Design Aesthetics</th>
<th>Perceived Ease of Use</th>
<th>Perceived Usefulness</th>
<th>Enjoyment</th>
<th>M-Loyalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA-1</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA-2</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA-3</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA-4</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEOU-1</td>
<td></td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEOU-2</td>
<td></td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEOU-3</td>
<td></td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU-1</td>
<td></td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU-2</td>
<td></td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU-3</td>
<td></td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU-4</td>
<td></td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-1</td>
<td></td>
<td></td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-2</td>
<td></td>
<td></td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-3</td>
<td></td>
<td></td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-4</td>
<td></td>
<td></td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-5</td>
<td></td>
<td></td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-1</td>
<td></td>
<td></td>
<td></td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>L-2</td>
<td></td>
<td></td>
<td></td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>L-3</td>
<td></td>
<td></td>
<td></td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Cronbach α</td>
<td>0.89</td>
<td>0.87</td>
<td>0.85</td>
<td>0.94</td>
<td>0.83</td>
</tr>
</tbody>
</table>

*Note: Only loadings > 0.5 are shown.*
Table 3.
Discriminant Validity of Constructs

<table>
<thead>
<tr>
<th></th>
<th>Design Aesthetics</th>
<th>Perceived Ease of Use</th>
<th>Perceived Usefulness</th>
<th>Enjoyment</th>
<th>M-Loyalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Aesthetics</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Ease of Use</td>
<td>0.23</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Usefulness</td>
<td>0.32</td>
<td>0.57</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjoyment</td>
<td>0.61</td>
<td>0.39</td>
<td>0.36</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>M-Loyalty</td>
<td>0.44</td>
<td>0.45</td>
<td>0.53</td>
<td>0.59</td>
<td>0.77</td>
</tr>
</tbody>
</table>

The diagonal elements in bold (the square root of average variance extracted) should exceed the inter-construct correlations below and across them for adequate discriminate validity.
Table 4.
Results of Hypotheses Testing

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Causal path</th>
<th>Path coefficient</th>
<th>t-Values</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Design Aesthetics → PU</td>
<td>0.21</td>
<td>2.14*</td>
<td>Yes</td>
</tr>
<tr>
<td>H2</td>
<td>Design Aesthetics → PEOU</td>
<td>0.23</td>
<td>1.96*</td>
<td>Yes</td>
</tr>
<tr>
<td>H3</td>
<td>Design Aesthetics → Enjoyment</td>
<td>0.55</td>
<td>4.97***</td>
<td>Yes</td>
</tr>
<tr>
<td>H4</td>
<td>PEOU → PU</td>
<td>0.52</td>
<td>4.43***</td>
<td>Yes</td>
</tr>
<tr>
<td>H5</td>
<td>PEOU → Enjoyment</td>
<td>0.26</td>
<td>2.27*</td>
<td>Yes</td>
</tr>
<tr>
<td>H6</td>
<td>PU → M-Loyalty</td>
<td>0.37</td>
<td>3.54***</td>
<td>Yes</td>
</tr>
<tr>
<td>H7</td>
<td>Enjoyment → M-Loyalty</td>
<td>0.46</td>
<td>3.39***</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Cyr, Head, Ivanov. Design Aesthetics Leading to M-Loyalty in Mobile Commerce

Figure 1. A Model for Design Aesthetics and M-Loyalty
Figure 2. PLS Structural Model

Design Aesthetics

Usefulness
R² = .36

Ease of Use
R² = .053

Enjoyment
R² = .43

M-Loyalty
R² = .46

.21*

.23*

.55***

.52***

.37***

.26*

.46***

* significant at a .05 level
*** significant at a .001 level
ABOUT THE AUTHORS

Dr. Dianne Cyr is an Associate Professor in the Faculty of Business at Simon Fraser University in Vancouver. She is leading a government funded research project titled “Managing E-loyalty through Experience Design”. This investigation is focused on how trust, satisfaction, and loyalty are built in online business environments through website design. Unique features of this work are comparisons across cultures, genders, and concerning applications to mobile devices. Further details of these research projects may be accessed at www.eloyalty.ca. Dianne Cyr is the author of five books and over 50 research articles. Career information may be found at www.dianne Cyr.com.

Dr. Milena Head is an Associate Professor of Information Systems and the Associate Dean at the DeGroote School of Business, McMaster University, Canada. Specializing in eBusiness and Human Computer Interaction, she has published over 45 papers in academic journals, books and conferences. Her research interests include trust and adoption in electronic commerce, interface design, mobile commerce, identity theft, cross-cultural issues in electronic commerce and human computer interaction, e-retailing, and web navigation. Career information may be found at www.business.mcmaster.ca/msis/profs/head.

Alex Ivanov is currently a Ph.D. student at the School of Interactive Arts and Technology at Simon Fraser University, Canada. His research interests are in the area of information visualization and design for interactive environments. Alex holds a Master of Arts degree in Advertising from The University of Texas at Austin, and has five years experience in the marketing communications industry, in a variety of research, planning, and creative roles. His B.A. is in Journalism and Mass Communication.