
Filtering of XML Documents∗

D. Ballis
Dip. Matematica e Informatica

Via delle Scienze 206,
33100 Udine, Italy.

demis@dimi.uniud.it

D. Romero
DSIC, Universidad Politécnica de Valencia

Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain.
dromero@dsic.upv.es

Abstract

In this paper, we present a simple, easy-to-use, rewriting-
like methodology for filtering information in an XML docu-
ment. Essentially, we define a specification language which
allows one to extract relevant data (positive filtering) as
well as to exclude useless and misleading contents (negative
filtering) from a set of XML documents according to some
given criteria. We believe that our methodology achieves
the right tradeoff between expressive power and simplicity
of use, and thus it may be also fruitfully employed by those
users who typically prefer to avoid formal languages.

1 Introduction

Internet users typically retrieve/receive a lot of informa-
tion which should be absorbed in a pleasant and/or under-
standable fashion. Frequently, information flows are not of
the desired quality, since data might appear obscure, diffi-
cult to interpret or with an unknown format. Besides, most
of the time, just a small percentage of the whole amount of
the data received is considered interesting by the user.

Filters are one of the possible methodologies which
is employed to obtain Web contents which best fit user’s
needs. They allow one to extract useful data as well as to
get rid of meaningless, incorrect information of a Web site.
In other words, they are just as useful for selecting the good
as they are in weeding out the bad. Arguably, simply select-
ing the good is a more productive and enjoyable process;
although, sometimes, it is more convenient to just remove
the unnecessary information. Additionally, filters can trans-
form our information flows into more useful and palatable
forms [12].

∗This work has been partially supported by the EU (FEDER) and Span-
ish MEC TIN-2004-7943-C04-02 project, the Generalitat Valenciana un-
der grant GV06/285, and the ICT for EU-India Cross-Cultural Dissemina-
tion ALA/95/23/2003/077-054 project. Daniel Romero is also supported
by ALFA grant LERNet AML/19.0902/97/0666/II-0472-FA

XML[18] is the format of interchange usually used to
transmit information on internet with the aim of standard-
izing and facilitating data sharing across different systems.
A lot of research work has been invested in XML docu-
ment management, in particular XML filtering is undoubt-
edly one of the more relevant topic in such an area. The
World Wide Web Consortium has defined XQuery[20] and
XPath[19] as standard languages to consult and filter infor-
mation in XML documents, nonetheless a plethora of alter-
native and worthwhile proposals have been developed inde-
pendently, e.g. [7, 15, 8].
Our contribution. In this paper, we present a novel XML
filtering language which allows the user to easily select the
desired information (positive filtering) as well as to remove
noisy, spurious data (negative filtering) from a given Web
page. Our language is easy to use and thus can be em-
ployed even by those users who are typically not used to
express themselves using formal methodologies, since no
special expertise is required. We also believe that the pro-
posed methodology is expressive enough to catch all those
filtering features one may require.

Basically, in our approach, XML documents are encoded
as Herbrand terms of a suitable term algebra, then home-
omorphic embedding among terms [5, 14] is used to rec-
ognize the information that the user wants to select or to
strike out. To detect information patterns inside an XML
document, similar works make use of tree (or graph) simu-
lation, which is a slightly different, less powerful, but effi-
cient to compute notion of embedding. Simulation has been
used in a number of works dealing with querying, trans-
formation, and similarity checks of semistructured data (cf.
[1, 10, 4, 6]). For instance, the language Xcerpt [6] is a
(logic) query language for XML and semistructured docu-
ments which implements a sort of unification by exploiting
the notion of simulation.
Plan of the paper. The rest of the paper is structured as fol-
lows. Section 2 summarizes some preliminary definitions
and notations, we also formulate a simple method for trans-
lating XHTML/XML documents into Herbrand terms. In

2nd Int'l. Workshop on Automated
Specification and Verification of Web Systems (WWV'06)
0-7695-2826-0/06 $20.00 © 2006

Section 3, we recall the notion of homeomorphic embed-
ding, which we utilize to recognize patterns inside XML
documents. In Section 4, we define our XML filtering lan-
guage, while in Section 5, we formalize the positive as well
as the negative filtering by means of the notion of partial
matching. Section 6 concludes.

2 Preliminaries

We call a finite set of symbols alphabet. Given the al-
phabet A, A∗ denotes the set of all finite sequences of el-
ements over A. Syntactic equality between objects is rep-
resented by ≡. By V we denote a countably infinite set of
variables and Σ denotes a set of function symbols, or sig-
nature. We consider varyadic signatures as in [9] (i.e., sig-
natures in which symbols have an unbounded arity, that is,
they may be followed by an arbitrary number of arguments).
τ(Σ,V) and τ(Σ) denote the non-ground term algebra and
the term algebra built on Σ∪V and Σ. Terms are viewed as
labelled trees in the usual way. Positions are represented by
sequences of natural numbers denoting an access path in a
term. The empty sequence Λ denotes the root position. By
notation w1.w2, we denote the concatenation of position w1

and position w2. Positions are ordered by the prefix order-
ing, that is, given the positions w1, w2, w1 ≤ w2 if there
exists a position x such that w1.x = w2. Given S ⊆ Σ∪V ,
OS(t) denotes the set of positions of a term t which are
rooted by symbols in S. t|u is the subterm at the position
u of t. t[r]u is the term t with the subterm rooted at the
position u replaced by r. Given a term t, we say that t is
ground, if no variables occur in t. Besides, t is a termi-
nal term, if it is a 0-ary signature symbol (i.e. constants are
terminal terms).

A substitution σ ≡ {X1/t1, X2/t2, . . .} is a mapping
from the set of variables V into the set of terms τ(Σ,V)
satisfying the following conditions: (i) Xi 6= Xj , whenever
i 6= j, (ii) Xiσ = ti, i = 1, ..n, and (iii) Xσ = X , for any
X ∈ V \ {X1, . . . , Xn}. By Var(s) we denote the set of
variables occurring in the syntactic object s.

Term rewriting systems provide an adequate computa-
tional model for functional languages. In the sequel, we fol-
low the standard framework of term rewriting (see [3, 13]).
A term rewriting system (TRS for short) is a pair (Σ, R),
where Σ is a signature and R is a finite set of reduction (or
rewrite) rules of the form λ → ρ, λ, ρ ∈ τ(Σ,V), λ 6∈ V
and Var(ρ) ⊆ Var(λ). We will often write just R instead
of (Σ, R). A rewrite step is the application of a rewrite rule
to an expression. A term s rewrites to a term t via r ∈ R,
s →r t (or s →R t), if there exist a position u ∈ OΣ(s),
r ≡ λ → ρ, and a substitution σ such that s|u ≡ λσ and
t ≡ s[ρσ]u. When no confusion can arise, we will omit any
subscript (i.e. s → t). A term s is a irreducible form (or
normal form) w.r.t. R, if there is no term t s.t. s →R t. t

<books>
<book>

<title>El Alquimista</title>
<author>Coelho</author>
<year>2002</year>

</book>
</books>

books(book(title(El Alquimista),
author(Coelho),year(2002)))

Figure 1. An XML document and its corre-
sponding encoding into a Herbrand term.

is the irreducible form of s w.r.t. R (in symbols s →!
R t) if

s →∗
R t and t is irreducible.

We say that a TRS R is terminating, if there exists no
infinite rewrite sequence t1 →R t2 →R . . . A TRS R is
confluent if, for all terms s, t1, t2, such that s →∗

R t1 and
s →∗

R t2, there exists a term t s.t. t1 →∗
R t and t2 →∗

R t.
When R is terminating and confluent, it is called canoni-
cal. In canonical TRSs, each input term t can be univocally
reduced to a unique irreducible form.

Let s = t be an equation, we say that the equation s = t
holds in a canonical TRS R, if there exists an irreducible
form z ∈ τ(Σ,V) w.r.t. R such that s →!

R z and t →!
R z.

2.1 Denotation of XML Documents

In this work, we assume an XML document [18] to be
well-formed, since there are plenty of programs and online
services which are able to validate XML syntax and per-
form link checking (e.g. [21],[17]). XML documents can
be encoded as Herbrand terms as follows.

Let us consider two alphabets T and Tag . We denote
the set T ∗ by Text . An object t ∈ Tag is called tag el-
ement, while an element w ∈ Text is called text element.
Since XML documents are provided with a tree-like struc-
ture, they can be straightforwardly translated into ordinary
terms of a given term algebra τ(Text ∪ Tag) as shown in
Figure 1. Note that XML tag attributes can be considered as
common tagged elements, and hence translated in the same
way.

In the following, we will also consider terms of the non-
ground term algebra τ(Text ∪ Tag ,V), which may contain
variables. An element s ∈ τ(Text ∪ Tag ,V) is called XML
document template. In our methodology, XML document
templates are used for specifying filtering criteria over XML
documents as described in Section 4.

2nd Int'l. Workshop on Automated
Specification and Verification of Web Systems (WWV'06)
0-7695-2826-0/06 $20.00 © 2006

3 Homeomorphic embedding

Roughly speaking, homeomorphic embedding allows us
to verify whether a given XML document template is some-
how “included” into another one. We give a definition of
homeomorphic embedding, E, which is an adaptation of the
one proposed in [14], where (i) a distinct trreatment of the
variables is considered, (ii) terms with different arity are
allowed, and (iii) the positional ordering among the argu-
ments of terms is ignored (i.e. f(a, b) is “equivalent” to
f(b, a)).

Definition 3.1 (homeomorphic embedding) The homeo-
morphic embedding relation

E⊆ τ(Text ∪ Tag ,V)× τ(Text ∪ Tag ,V)

on XML documents templates is the least relation satisfying
the rules:

1. X E t, for all X ∈ V and t ∈ τ(Text ∪ Tag ,V).

2. s E f(t1, . . . , tn), if s E ti for some i.

3. f(t1, . . . , tm) E g(s1, . . . , sn) iff f ≡ g and
ti E sπ(i), for i = 1, . . . ,m, and some injective func-
tion π : {1, . . . ,m} → {1, . . . , n}.

Whenever s E t, we say that t embeds s (or s is embedded
or recognized into t).

The intuition behind the above definition is that s E t
iff s can be obtained from t by striking out certain parts, in
other words, the structure of s appears within t.

Note that, in Definition 3.1, when m is 0 we have c E c
for each terminal term c. Also observe that, if we con-
strain π to be an increasing function w.r.t. the usual ordering
over natural numbers ≤, Definition 3.1 captures the notion
of ordered homeomorphic embedding, where the ordering
among the arguments of a term does matter. Typically, or-
dered homeomorphic embeddings can be computed faster
[16].

Let us illustrate Definition 3.1 by means of a rather intu-
itive example.

Example 3.1 Consider the following XML document tem-
plates (called s and t, respectively)

(s) book(author(X))
(t) book(authorlist(author(name(Borges)),

author(Guerrero)),
year(1957), code(BG57),
title(Manual de zoologı́a fantástica))

We observe that the structure of s can be recognized in-
side the structure of t, hence s E t, while t 6E s. More
precisely, there are 3 possible homeomorphic embeddings
between s and t. In Figure 2, we show two of them: specifi-
cally, the ones which bind the variable X to some terminal
term.

4 XML filtering language

A filtering specification is a set of filtering rules. Ba-
sically, a filtering rule formalizes the information pattern
(also called filtering criterion) which has to be detected in-
side a given XML document p. The information, which is
recognized in p, is then selected (positive filtering) or re-
moved (negative filtering), whenever a given filtering con-
dition which refers to the detected instance of the filtering
criterion is fulfilled.

We simply model filtering criteria as XML document
templates.

A filtering condition consists of a sequence of equations
over terms and membership tests (e.g. X ∈ rexp) w.r.t. a
given regular language.1

More formally, a filtering criterion t belongs to
τ(Text ∪ Tag ,V). Besides, let (Σ, R) be a canonical TRS.
A filtering condition C is a sequence of the form C ≡
(X1 in rexp1, . . . , Xn in rexpn, s1 = t1 . . . sm = tm),
where V ar(C) ⊆ V ar(t), t is a filtering criterion, rexpi is
a regular expression over Text , i = 1, . . . , n, and sj = tj
is an equation over τ(Σ,V), j = 1, . . . ,m.

Given a filtering condition

C ≡ (X1 in rexp1, . . . , Xn in rexpn,
s1 = t1 . . . sm = tm)

we say that C holds for substitution σ, if (i) each structured
text Xiσ, i = 1, . . . , n, is contained in the language of the
corresponding regular expression rexpi; (ii) each instanti-
ated equation (si=ti)σ, i = 1, . . . ,m, holds in R.

The TRS R contains the definition of some auxiliary
functions which the user would like to provide in order to
ease some common operations, such as string processing,
arithmetic, boolean operators, etc. It is formalized as a term
rewriting system, which is handled by standard rewriting
[13].

In Figure 3, we present the complete grammar of our
filtering language using a BNF-like notation. In the follow-
ing, we describe the syntax and the features of the language
through some intuitive examples. Note that some parts of
the rules are not mandatory (e.g. conditions and labels). In
particular, when no condition is provided for a filtering rule
r, we say that r is unconditional.

4.0.1 Positive filtering

Intuitively, given an XML document p, a positive filtering
rule extracts every instance tσ of a given filtering criterion
t from p. Then, if the associated condition C holds for σ,
the result is delivered to the user. Positive filtering rules are

1Regular languages are represented by means of the usual Unix-like
regular expressions syntax.

2nd Int'l. Workshop on Automated
Specification and Verification of Web Systems (WWV'06)
0-7695-2826-0/06 $20.00 © 2006

book

authorlist

author author

name

Borges

Guerrero

year title

Manual de zoología fantástica1957

book

author

X

code

BG57

Figure 2. Example of homeomorphic embeddings

(1) <filterRule> ::= <filter> <criterion> in
<expression> [where <condition>]
[label]

(2) <filter> ::= filter | filter*
(3) <criterion> ::= <xmlDocumentTemplate>
(4) <expression> ::= <xmlDocument>|(<filterRule>)
(5) <condition> ::= <sequence of membership tests

and equations>
(6) <label> ::= (P) | (N)

Figure 3. BNF-like grammar for the XML filter-
ing language

identified by means of the label (P). However, when no
label is provided, the rule is considered positive by default.

Example 4.1 Consider the following filtering criterion and
XML document:

(t) book(title(X),author(name(Y),
surname(Z)),code(W))

(p) book(title(El Alquimista),
author(surname(Coelho),

name(Paulo)),
year(2002),abstract(blablabla),
code(PC))

along with a TRS R which models the usual string concate-
nation function ++ and the function first, which returns
the first character of a string. Then, the execution of the
positive filtering rule

filter book(title(X),author(name(Y),
surname(Z)),code(W))

in book(title(El Alquimista),
author(surname(Coelho),
name(Paulo)),year(2002),
abstract(blablabla),
code(PC))

where X in [:Text:]Alquimista[:Text:],
W = first(Y) ++ first(Z)

(P)

will yield the following slice of the original XML document:

book(title(El Alquimista),
author(surname(Coelho),name(Paulo)),
code(PC))

4.0.2 Negative filtering

Given an XML document p, a negative filtering rule ex-
tracts every instance tσ of a given filtering criterion t from
p. Then, if the associated condition C holds for σ, tσ is
removed from p and the result is delivered to the user. Neg-
ative filtering rules are identified by means of the label (N).

Example 4.2 Consider the filtering criterion

book(code(X),name(Y))

together with the XML document of Example 4.1. Then, the
execution of the unconditional negative filtering rule

filter book(code(X),name(Y))
in book(title(El Alquimista),

author(surname(Coelho),
name(Paulo)),year(2002),
abstract(blablabla),
code(PC))

(N)

will produce the following slice of the original XML docu-
ment:

2nd Int'l. Workshop on Automated
Specification and Verification of Web Systems (WWV'06)
0-7695-2826-0/06 $20.00 © 2006

book(title(El Alquimista),
author(surname(Coelho)),
abstract(blablabla),year(2002))

4.0.3 Unordered filtering vs ordered filtering.

In Section 3, we state that ordered homeomorphic embed-
dings are faster to compute than the unordered ones of Def-
inition 3.1. When the user knows the structure of the XML
document, is thus more convenient to use the notion of or-
dered embedding for filtering information. In our language
we provide this distinction: the keyword filter allows
us to implement the filtering mechanism without taking into
account the positional ordering of the term arguments, while
by means of the keyword filter* we force the system to
consider such an ordering.

Example 4.3 Consider the filtering criterion
book(code(X),title(Y)) together with the XML
document of Example 4.1. Then, the execution of the
unconditional, ordered, positive filtering rule

filter* book(code(X),title(Y))
in book(title(El Alquimista),

author(surname(Coelho),
name(Paulo)),year(2002),
abstract(blablabla),
code(PC))

would not produce any result, while the unordered version
would select the code as well as the title of the given book.

4.0.4 Nested filtering.

Our filtering language allows the user to specify complex,
compound filtering statements by combining simpler filter-
ing rules through nesting (see the grammar rules (1) and
(4) of Figure 3). We call such rules compound filtering
rules.

Example 4.4 Consider the XML document of Example 4.1.
The execution of the compound filtering rule

filter name(X) in
(
filter book(title(X),author(name(Y),

surname(Z)),code(W))
in book(title(El Alquimista),

author(surname(Coelho),
name(Paulo)), year(2002),
abstract(blablabla),code(PC))

where X in [:Text:]Alquimista[:Text:],
W = first(Y) ++ first(Z)

(P)
)

(N)

yields

book(title(El Alquimista),
author(surname(Coelho)),code(PC))

In our methodology, filtering is carried out by running
filtering rules on XML documents. This is mechanized by
means of partial matching, a technique based on homeo-
morphic embedding, which is described in the following
section.

5 Filtering using Partial Matching

Given an XML document p and an XML document tem-
plate t, partial matching exploits homeomorphic embedding
to recognize instances of t in p. A formal definition follows.

Definition 5.1 (partial matching) Let s1, s2 ∈ τ(Text ∪
Tag ,V). We say that s2 partially matches s1 via substitution
σ iff

1. s1 E s2;

2. for each X ∈ V such that X ∈ V ar(s1), Xσ = s2|w
for some w ∈ OTag(s2), Xσ is a terminal term, and
s1σ E s2.

Definition 5.1 extends the notion of partial matching via tree
simulation we formalized in [2] in order to deal with the
more powerful notion of homeomorphic embedding.

Let us see an example which illustrates the definition
above.

Example 5.1 Consider the XML document template and
the XML document (called s and p, respectively) of
Figure 2. Then, we have that p partially matches
s via {X/Borges} and p partially matches s via
{X/Guerrero}. Note that there is also a third homeomor-
phic embedding between s and t: specifically, the one which
binds variable X to the term name(Borges). However, p
does not partially match s via {X/name(Borges)}, since
name(Borges) is not a terminal term and hence point 2 of
Definition 5.1 is not satisfied in this case.

The semantics of the positive as well as the negative fil-
tering rules is based on the partial matching relation, as we
can see in the following sections.

5.1 Positive filtering

Essentially, given a positive filtering rule filter t in p
where C (P), the main idea is to compute the set of all sub-
stitutions {σ1, . . . , σn} such that t partially matches s via
σi, i = 1, . . . n. Clearly, each instance tσi is embedded in p

2nd Int'l. Workshop on Automated
Specification and Verification of Web Systems (WWV'06)
0-7695-2826-0/06 $20.00 © 2006

by Definition 3.1. At this point, we glue together each tσi,
such that the corresponding condition C holds for σi, into a
single XML document, and finally we deliver the resulting
slice of p. Summing up, the method works in two steps:

1. Compute the set of substitutions σi, such that p par-
tially matches s via σi.

2. Assemble the new document.

5.1.1 Step 1.

We define the following operatorRwhich applies to a given
filtering rule filter t in p where C (L), where L ∈ {P,N},
and allows to compute all the required tσi.

R(filter t in p where C (L)) = {tσi | p partially matches t
via σi, C holds for σi}

Example 5.2 Consider the XML document

books(book(title(El Alquimista),
author(Coelho),year(2002))

book(title(Ficciones),
author(Borges),year(1944)))

together with the filtering criterion

books(title(X),year(Y))

Then, if we apply the operator R to the following filter-
ing rule r

filter books(title(X),year(Y))
in books(book(title(El Alquimista),

author(Coelho),
year(2002))

book(title(Ficciones),
author(Borges),
year(1944)))

(P)

we get the following set R(r)

{books(title(El Alquimista), year(2002)),
books(title(Ficciones),year(1944))}

5.1.2 Step 2.

Data obtained by applying the operator R to a given posi-
tive filtering rule r are subsequently assembled into a single
XML document in the following way.

Let result ∈ Tag be a fresh symbol which does not
appear in any tσ ∈ R(r). Then, the execution of r yields
the outcome

result(tσ1, . . . , tσn) where tσi ∈ R(r), i = 1, . . . , n

In other words, we create a new XML document containing
the results of the execution of the given positive filtering
rule r.

Example 5.3 Consider the result of the operator R of Ex-
ample 5.2. Then, we obtain the final outcome:

result(books(title(El Alquimista),
year(2002))

books(title(Ficciones),
year(1944)))

which corresponds to the following XML document

<result>
<books>

<title>El Alquimista</title>
<year>2002</year>

</books>
<books>

<title>Ficciones</title>
<year>1944</year>

</books>
</result>

5.2 Negative filtering

Given a negative filtering rule filter t in p where C
(N), we aim at removing each instance tσ of t which is
embedded in p whenever the associated condition C holds
for σ. For this purpose, we introduce the auxiliary function
clean(p1, p2) which deletes the embedded term p2 from the
entire XML document p1 and returns the modified docu-
ment. For instance, clean(f(g(a, c), a, h(a), d), f(a)) will
return the XML document f(g(c), h, d). Such a function
can be easily and efficiently implemented by applying a
bottom-up algorithm, which starts removing the p2’s em-
bedded subterms from the leaves of p1 and proceeds recur-
sively towards the root.

By using the clean function and the operator R, defined
in Section 5.1, giving a semantics for the negative filtering
rules becomes straightforward. More formally, the execu-
tion of a negative filtering rule r ≡ filter t in p where C
(N) yields the following XML document as outcome:

clean(clean(. . . (clean(p, tσ1), tσ2) . . .), tσn)

where R(r) = {tσ1, . . . , tσn}.

Example 5.4 Consider the negative filtering rule r

filter book(code(X))
in books(book(title(El Alquimista),

author(Coelho),

2nd Int'l. Workshop on Automated
Specification and Verification of Web Systems (WWV'06)
0-7695-2826-0/06 $20.00 © 2006

code(C2002), year(2002))
book(title(Ficciones),

author(Borges),
codes(code(B44),

ISBN(9514280)),
year(1944)))

(N)

Then,

R(r) = {book(code(C2002)),book(code(B44))},

and the final outcome is

books(book(title(El Alquimista),
author(Coelho),year(2002))

book(title(Ficciones),
author(Borges),
codes(ISBN(9514280)),
year(1944)))

which corresponds to the XML document

<result>
<book>

<title> El Alquimista </title>
<author> Cohelo </author>
<year> 2002 </year>

</book>
<book>

<title> Ficciones </title>
<author> Borges </author>
<codes>

<isbn> 9514280 </isbn>
</codes>
<year> 1944 </year>

</book>
</result>

6 Conclusions

The growing complexity of the World Wide Web de-
mands for tools which are able to tame the so-called infor-
mation overload. To this respect, filters allow one to extract
relevant and meaningful information within the enormous
amount of data available on the Web. In this paper, we pre-
sented an XML filtering language which has several advan-
tages w.r.t. other approaches. On the one hand, it is easy
to use, since it has a simple syntax and a clear, intuitive se-
mantics; on the other hand, it provides the expressive power
of functions (modeled as Term Rewriting Systems) and a
sophisticated mechanism for detecting information patterns
which is based on the notion of homeomorphic embedding.
By defining suitable rules, the user can easily establish fil-
tering criteria which are subsequently employed to automat-
ically select the needed information as well as to weed out
unwanted contents from a collection of XML documents.

Finally, let us conclude by mentioning some directions
for future work. We are currently working on a system
which implements the proposed methodology. To increase
efficiency, we are taking into account several approxima-
tions of the relation of homeomorphic embedding with dif-
ferent degrees of accuracy and time complexity [16]. More-
over, we are also planning to develop a compiler which
allows us to translate filtering specifications into XPath
queries to take advantage of the efficient XPath implemen-
tations [11] which are available nowadays.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web.
From Relations to Semistructured Data and XML. Morgan
Kaufmann, 2000.

[2] M. Alpuente, D. Ballis, and M. Falaschi. Rule-based Ver-
ification of Web sites. Int’l Journal on Software Tools for
Technology Transfer, 8:565–585, 2006.

[3] F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[4] E. Bertino, M. Mesiti, and G. Guerrin. A Matching Al-
gorithm for Measuring the Structural Similarity between an
XML Document and a DTD and its Applications. Informa-
tion Systems, 29(1):23–46, 2004.

[5] M. Bezem. TeReSe, Term Rewriting Systems, chapter Math-
ematical background (Appendix A). Cambridge University
Press, 2003.

[6] F. Bry and S. Schaffert. Towards a Declarative Query
and Transformation Language for XML and Semistructured
Data: Simulation Unification. In Proc. of the Int’l Con-
ference on Logic Programming (ICLP’02), volume 2401 of
Lecture Notes in Computer Science. Springer-Verlag, 2002.

[7] F. Bry and S. Schaffert. The XML Query Language Xcerpt:
Design Principles, Examples, and Semantics. Technical re-
port, 2002. Available at: http://www.xcerpt.org.

[8] A. Cortesi, A. Dovier, E. Quintarelli, and L. Tanca. Oper-
ational and Abstract Semantics of a Graphical Query Lan-
guage. Theoretical Computer Science, 275:521–560, 2002.

[9] N. Dershowitz and D. Plaisted. Rewriting. Handbook of
Automated Reasoning, 1:535–610, 2001.

[10] M. F. Fernandez and D. Suciu. Optimizing Regular Path
Expressions Using Graph Schemas. In Proc. of Int’l Confer-
ence on Data Engineering (ICDE’98), pages 14–23, 1998.

[11] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for
Processing XPath Queries. In Proc. of the 28th International
Conference on Very Large Data Bases (VLDB’02), Hong
Kong, China, 2002.

[12] B. Gross. Information Filtering, 2006. Available at:
http://bengross.com/filter.html.

[13] J. Klop. Term Rewriting Systems. In S. Abramsky, D. Gab-
bay, and T. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume I, pages 1–112. Oxford University
Press, 1992.

[14] M. Leuschel. Homeomorphic Embedding for Online Termi-
nation of Symbolic Methods. In T. Æ. Mogensen, D. A.
Schmidt, and I. H. Sudborough, editors, The Essence of

2nd Int'l. Workshop on Automated
Specification and Verification of Web Systems (WWV'06)
0-7695-2826-0/06 $20.00 © 2006

Computation, volume 2566 of Lecture Notes in Computer
Science, pages 379–403. Springer, 2002.

[15] W. May. XPath-Logic and XPathLog: A Logic-
Programming Style XML Data Manipulation Language.
Theory and Practice of Logic Programming, 2004.

[16] T. Schlieder and F. Naumann. Approximate Tree Embed-
ding for Querying XML Data. In Proc. of ACM SIGIR Work-
shop on XML and Information Retrieval, Athens, Greece,
2000.

[17] T. und Wicke GbR. Validate/Check XML. Available at:
http://www.xmlvalidation.com/.

[18] W. Wide Web Consortium (W3C). Extensible Markup
Language (XML) 1.0, second edition, 1999. Available at:
http://www.w3.org.

[19] W. Wide Web Consortium (W3C). XML Path Language
(XPath), 1999. Available at: http://www.w3.org.

[20] W. Wide Web Consortium (W3C). XQuery: A
Query Language for XML, 2001. Available at:
http://www.w3.org.

[21] W. Wide Web Consortium (W3C). Valida-
tor for XML Schema, 2005. Available at:
http://www.w3.org/2001/03/webdata/xsv.

2nd Int'l. Workshop on Automated
Specification and Verification of Web Systems (WWV'06)
0-7695-2826-0/06 $20.00 © 2006

