Relatively Complete Counterexamples for Higher-Order Programs

Phúc C. Nguyên
University of Maryland
pcn@cs.umd.edu

David Van Horn
University of Maryland
dvanhorn@cs.umd.edu

Abstract
In this paper, we study the problem of generating inputs to a higher-order program causing it to error. We first study the problem in the setting of PCF, a typed, core functional language and contribute the first relatively complete method for constructing counterexamples for PCF programs. The method is relatively complete in the sense of Hoare logic; completeness is reduced to the completeness of a first-order solver over the base types of PCF. In practice, this means an SMT solver can be used for the effective, automated generation of higher-order counterexamples for a large class of programs.

We achieve this result by employing a novel form of symbolic execution for higher-order programs. The remarkable aspect of this symbolic execution is that even though symbolic higher-order inputs and values are considered, the path condition remains a first-order formula. Our handling of symbolic function application enables the reconstruction of higher-order counterexamples from this first-order formula.

After establishing our main theoretical results, we sketch how to apply the approach to untyped, higher-order, stateful languages with first-class contracts and show how counterexample generation can be used to detect contract violations in this setting. To validate our approach, we implement a tool generating counterexamples for erroneous modules written in Racket.

Keywords Higher-order programs; symbolic execution; contracts; testing

1. Introduction
Generating inputs that crash first-order programs is a well-known and well-studied problem in the literature on symbolic execution [Cadar et al. 2006; Godefroid et al. 2005], type systems [Foster et al. 2002], flow analysis [Xie and Aiken 2005], and software model checking [Yang et al. 2014]. However, in the setting of higher-order languages, those that treat computations as first-class contracts and show how counterexample generation can be used to detect contract violations in this setting. To validate our approach, we implement a tool generating counterexamples for erroneous modules written in Racket.

There are, however, a few notable exceptions which tackle the problem of counterexamples for higher programs. Perhaps the most successful has been the approach of random testing found in tools such as QuickCheck [Claessen and Hughes 2000; Klein et al. 2010]. While testing works well, it is not a complete method and often fails to generate inputs for which a little symbolic reasoning would go a long way (Section 2 discusses such an example in detail). Symbolic execution aims to overcome this hurdle, but previous approaches to higher-order symbolic execution can only generate symbolic inputs, which are not only less useful to programmers, but may represent infeasible paths in the program execution [Tobin-Hochstadt and Van Horn 2012; Nguyen et al. 2014].

Higher-order model checking [Kobayashi 2013] offers a complete decision procedure for typed, higher-order programs with finite base types, and can generate inputs for programs with potential errors. Unfortunately, only first-order inputs are allowed. This assumption is reasonable for whole programs, but not suitable for testing higher-order components, which often consume and produce behavioral values (e.g., functions, objects). Zhu and Jagannathan [2013] give an approach to dependent type inference for ML that relies on counterexample refinement. This approach can be used to generate higher-order counterexamples, however no measure of completeness is considered.

In this paper, we solve the problem of generating potentially higher-order inputs to functional programs. We give the first relatively complete approach to generating counterexamples for PCF programs. Our approach uses a novel form of symbolic execution for PCF that accumulates a path condition as a symbolic heap. The semantics is an adaptation of Nguyen et al. [2014], where the critical technical distinction is our semantics maintains a complete path condition during execution. The key insight of this work is that symbolic function application can be leveraged to decompose unknown functions to lower-order unknown values. By the point at which an error is witnessed, there are sufficient first-order constraints to reconstruct the potentially higher-order inputs needed to crash the program. The completeness of generating counterexamples reduces to the completeness...
of solving this first-order constraint, and in this way is relatively complete, much like Hoare logic [Cook 1978].

Beyond PCF, we show the technique is not dependent on assumptions of the core PCF model such as type safety and purity. We sketch how the approach scales to handle untyped, higher-order, imperative programs. We also show the approach seamlessly scales to handle first-class behavioral contracts [Findler and Felleisen 2002] by incorporating off-the-self semantics for contract monitoring [Dimoulias et al. 2012] with no further work. The semantic decomposition of higher-order contracts into lower-order examples naturally composes with our model of unknown functions to yield a contract counterexample generator for CPCF.

Contributions
We make the following contributions

1. We give a novel symbolic execution semantics for the PCF language which gradually refined unknown values and maintains a complete path condition.
2. We give a method of integrating a first-order solver to not only obtain a precise execution of symbolic programs, but also enable construction of higher-order counterexamples in case of errors.
3. We prove that our method of finding counterexamples is sound and relatively complete.
4. We discuss extensions to our method to handle untyped, higher-order, imperative programs with contracts.
5. We implement our approach and give preliminary results of benchmarking the method of existing functional programs.

Outline
The remainder of the paper is organized as follows. We first step through a worked example of a higher-order program that consumes functional inputs (§ 2). The example is simple, but thwarts approaches to counterexample generation based on random testing. Stepping through the example illustrates the key ideas of how the path condition is accumulated as a heap of potentially symbolic values with refinements and how this heap can be translated to a first-order formula suitable for a SMT solver. Generating a model for the path condition at the point of an error reconstructs the higher-order input needed to witness the error.

Next we develop the core model of Symbolic PCF (§ 3) as a heap-based reduction semantics. We prove that the semantics is sound and relatively complete, our main theoretical contribution. We then show how to scale the approach beyond PCF to untyped, higher-order, imperative languages with contracts (§ 4). We use these extensions as the basis of a tool for finding contract violations in Racket code to validate our approach (§ 5). Finally, we relate our work to the literature (§ 6) and conclude (§ 7).

2. Worked Examples
We illustrate our idea using the following incomplete OCaml program. Below, \(\bullet \) denotes an unknown value of the appropriate type. Each subscript is unique to identify some unknown but fixed value.

\[
\begin{align*}
\text{let } f \ g \ n &= 1 / (100 - g \ n) \\
in &\bullet_1 f
\end{align*}
\]

Through symbolic execution and gradual refinement of unknown values, we are able to construct a counterexample triggering division by zero. In general, the program may have multiple unknown values, and the system tries to find one combination of such that breaks the program.

Error: Division by zero
Breaking context:

\[
\bullet_1: \text{fun } f \rightarrow f (\text{fun } n \rightarrow \text{if } n = 0 \text{ then } 100 \text{ else } 0) \ 0
\]

To find counterexamples, we first seek possible errors by running the program under an abstract semantics allowing opaque values. When execution follows different branches, it remembers assumptions associated with each path, and opaque values become partially transparent. To keep track of incremental refinements throughout execution, we allocate all values and maintain a heap mapping each location to an upperbound of their behavior. We rewrite the original execution of the main expression as follow, where the unknown value \(\bullet_1 \) is now allocated at location \(L_1 \).

\[
(L_1 f), [L_1 \mapsto \bullet]
\]

Even though the function at \(L_1 \) is arbitrary, the only operation that impacts known program portions is applying its argument \(f \). To soundly approximate all actual applications, we assume this unknown context applies \(f \) to yet other unknown values. The main expression therefore applies \(f \) to unknown values \(L_2 \) and \(L_3 \). We also refine the originally unknown value at \(L_1 \) accordingly.

\[
(f \ L_2 L_3), [L_1 \mapsto \text{fun } f \rightarrow (f \ L_2 L_3),
L_2 \mapsto \bullet_{\text{int}\rightarrow\text{int}},
L_3 \mapsto \bullet_{\text{int}}]
\]

We execute \(f \)'s body, substituting \(g \) with \(L_2 \) and \(n \) with \(L_3 \). Applying unknown function \(L_2 \) to unknown integer \(L_3 \) gives another unknown integer \(L_4 \). Assuming functions are pure, we model unknown functions on integers as mappings and refine \(L_2 \) to map \(L_3 \) to \(L_4 \). We straightforwardly extend primitive operations to work on abstract values. Subtraction of \(L_4 \) from 100 in turn results in another unknown integer \(L_5 \). We refine \(L_5 \) by a predicate remembering that it is the subtraction of \(L_4 \) from 100.

\[
1 / L_5, [L_1 \mapsto \text{fun } f \rightarrow (f \ L_2 L_3),
L_2 \mapsto \text{case}_{\text{int}\rightarrow\text{int}} [L_3 \mapsto L_4],
L_3 \mapsto \bullet_{\text{int}},
L_4 \mapsto \bullet_{\text{int}}, \text{fun } x \rightarrow x = 100 - L_4]
\]
The resulting division evaluates to different results depending on the value of denominator L_5. In the error case where L_5 is zero, we have the following refinements on the heap:

\[
\text{error, } [L_1 \mapsto \text{fun } f \mapsto (f \ L_2 \ L_3), \ L_2 \mapsto \text{case } \text{int} \rightarrow \text{int} \ [L_3 \mapsto \ L_4], \ L_3 \mapsto \bullet \text{int}, \ L_4 \mapsto \bullet \text{int}, \ L_5 \mapsto \emptyset(\text{fun } x \rightarrow x = 100 - L_4)]
\]

Translation of refinements on integers into first-order assertions is straightforward:

\[
\begin{align*}
\text{(declare-const } L_3 \text{ Int}) \\
\text{(declare-const } L_4 \text{ Int}) \\
\text{(declare-const } L_5 \text{ Int}) \\
\text{(assert } (= L_5 (\times 100 L_4))) \\
\text{(assert } (= 0 L_5))
\end{align*}
\]

A solver such as Z3 [De Moura and Bjørner 2008] can easily solve such constraint and yield $([L_3 = 0, L_4 = 100, L_5 = 0])$ as a model. We then plug these values into the current heap and straightforwardly obtain the counterexample as shown in the beginning. In summary, we use execution to incrementally construct the shapes of functions, and query a first-order solver for a model for base values, from which we combine and construct higher-order counterexamples.

3. Formal Model with Symbolic PCF

This section presents a reduction system illustrating the core of our approach. Symbolic PCF (SPCF) [Tobin-Hochstadt and Van Horn 2012] extends the PCF language [Scott 1993] with symbolic values that can be higher-order. We present the language’s syntax and semantics, integration with an external solver to improve precision, and how the semantics enables the generation of counterexamples when errors occur. Finally, we prove that our counterexample synthesis is sound and complete relative to the underlying solver.

3.1 Syntax of SPCF

Figure 1 presents the syntax of SPCF. We write \overrightarrow{E} to mean a sequence of expressions and treat it as a set where convenient. The language is simply typed with standard expression forms for conditions, application, primitive applications, recursion, and standard values such as natural numbers and lambdas. We highlight non-standard forms in gray. The key extension of SPCF compared to PCF is the notion of symbolic, or opaque values. We write \bullet^T to denote an unknown but fixed and syntactically closed value1 of type T. The system automatically annotates each opaque value written in the source code with a unique label to identify the value. In addition, it annotates each primitive application to identify an error source.

Because an SPCF expression can contain unknown values, we allocate all values and maintain a heap to keep track of their constraints. When execution proceeds through branches and primitive applications, we refine the heap at appropriate locations with stronger assumptions taken at each branch. As figure 1 shows, a heap is a finite mapping each location L to a storable S as an upper-bound of the value’s behavior at run-time. A storable S is mostly similar to a value, but an opaque storable can be further refined by arbitrary program predicates. For example, $\bullet^T\{\text{nat, } \lambda x \cdot \text{even? } x\}$ denotes an unknown even natural.

In addition, we use $(\text{case}^T \ [L \mapsto L])$ to denote a mapping approximating an unknown function of type $(\text{nat} \rightarrow T)$. We clarify the role of this construct later when discussing the semantics of applying opaque functions.

Syntax for answers A is internal and unavailable to programmers. An answer is either a location L^T pointing to a value of type T on the heap, or an error message err^T_L denoting a violation of source location L failing a precondition from primitive O.

We omit typechecking rules for SPCF as they are either standard or straightforward. In the following, we assume programs are well-typed, and primitives are applied with correct arities. In addition, we omit showing types and labels for constructs such as locations and lambdas when they are irrelevant or clear from context.

3.2 Semantics of SPCF

We present the semantics of SPCF as a relation between states of the form (E, Σ). Key extensions to the straightforward concrete semantics include generalization of primitives to operate on symbolic values and reduction rules for opaque applications. Intuitively, reduction on abstract states approximates that on concrete states, accounting for all possible instantiation of symbolic values. We formalize the notion of approximation later in section 3.6. Figure 2 presents the reduction semantics of SPCF.

All values are allocated on the heap and reduce to locations as shown in rules Opq1, Opq2, and Conc. Because

1 For example, \bullet does not approximate $(\lambda x.y)$
opaque values stand for arbitrary but fixed values, we reuse the location if it has been previously allocated.

Rule Prim shows the reduction of a primitive application. Relation δ relates primitive operators and values to results. Typically, δ is a function, but here it is a relation because primitive operations may behave non-deterministically on unknown values. In addition, the relation includes a heap remembering assumptions in each taken branch. Rules for conditionals are straightforward, except we also rely on δ to determine the truth of the value branched on instead of replicating the logic. We use θ to indicate falsehood and any non-zero number for truth. Application of a λ-abstraction follows standard β-reduction.

Application of an unknown value results in several possibilities. Consider the following example:

$$\lambda f. (\lambda x.(/ 1 x))\; 0$$

Different instantiations of λf result in different answers. For example, in the following, (1) raises an error from within the unknown function λf itself, (2) triggers the division error at λx, (3) delays the exploration of its argument’s behavior by returning a closure referencing the argument, and (4) is a constant function ignoring its argument.

1. $\lambda f. (/ 1 \theta)$
2. $\lambda f. (\theta \theta)$
3. $\lambda f. \lambda x. (\text{add1} (f x))$
4. $\lambda f. \lambda x. 42$

As we only analyze concrete program portions, we ignore possibility (1) and only consider cases where the application succeeds or the argument escapes to an unknown context invoking a potential error in a concrete program portion.

Rule AppOpq1 shows a simple case where the argument is a first-order value with no behavior. In this case, we approximate the application’s result with a symbolic value of appropriate type, and refine the opaque function to be of the form case δ $L_1 \rightarrow L_2$ to remember this mapping. Any future application of this function to an equal argument gives an equal result.

Applying a higher-order opaque function results in multiple distinct possibilities. Rule AppOpq2 considers the case where the function ignores its argument (i.e. it is a constant function). Any future application of this unknown context results in the same result. Rule AppOpq3 considers the case where the unknown context does not immediately explore its argument behavior but delay that work by wrapping the argument inside another function. The context using this result may or may not reveal a potential error. Finally, rule AppHavoc considers the case where the unknown context explores its argument’s behavior by supplying an unknown value to its argument and putting the result back into another unknown context.

One may suspect that rule AppOpq3 generalizes AppOpq2, but this is not the case. The absence of rule AppOpq2 would require that the opaque context eventually explores the first argument before continuing with the next one, failing to model cases where it completely skips the first argument. For example, the following application would either continue wrapping the first argument (by rule AppOpq2) or apply it and halt on the first error (by rule AppHavoc) and never reach the next argument.

$$(\lambda x. (/ 1 \theta))\; 1$$

On the other hand, the presence of rule AppOpq3 is clearly important to soundly model opaque applications. When the argument is higher-order, we do not assume a simple dispatch as in rule AppOpq1 because there is no mechanism for comparing functions for equality (without applying them as in rule AppHavoc). A non-constant higher-order function that does not apply its argument has a more restricted structure than an arbitrary mapping.

Finally, application rules for simple mappings are straightforward. Rule App-Case-1 shows the case where the function has been previously applied to the argument and reuses the result location. Rule App-Case-2 shows the case where the argument is new and allocate a new location for the result.

These rules for opaque application collectively model the demonic context in previous works on higher-order symbolic execution [Tobin-Hochstadt and Van Horn 2012], but they unroll the unknown context in an incremental fashion and remember its shape to allow constructing counterexamples at the end.

3.3 Primitive Operations

We rely on relation δ to interpret primitive operations. The rules straightforwardly extend standard operators to work on symbolic values. In particular, division by an unknown denominator non-deterministically returns another integer and raises an error. The relation also remembers appropriate refinements to arguments and results at each branch. Figure 4 presents selective rules for primitive operations zero?, add1, and div. Throughout this paper, we abbreviate $\lambda X. (=XE)$ as $(=E)$. Rules for primitive predicates such as zero? utilize a proof relation between the heap, the value, and a predicate, which we present next.

3.4 Proof Relation

We define a proof relation deciding whether a value satisfies a predicate. We write $\Sigma \vdash L : P \checkmark$ to mean value at L definitely satisfies predicate P, which implies that all possible instantiations of L satisfy P. In the same way, $\Sigma \vdash L : P \checkmark$ means all instantiations of L definitely fail P. Finally, $\Sigma \vdash L : ?$ is a conservative answer when we cannot draw a conclusion given information from existing refinements on the heap.

Precision of our execution relies on this proof relation. (A trivial relation answering “neither” for all queries would make the execution sound but not very precise.) Instead of implementing our own proof system, we rely on an existing SMT solver for sophisticated reasoning of numeric values.
\[
\begin{align*}
\delta(\Sigma, \text{zero?}, L) &\ni (0, \Sigma) & \text{if } \Sigma \vdash L : \text{zero?} \checkmark \\
\delta(\Sigma, \text{zero?}, L) &\ni (0, \Sigma) & \text{if } \Sigma \vdash L : \text{zero?} \checkmark \\
\delta(\Sigma, \text{add1}, L) &\ni (\text{add1}, \Sigma) & \text{if } \Sigma(L) = n \\
\delta(\Sigma, \text{div}, L_1, L_2) &\ni (\text{div}, (L_1 / L_2), \Sigma') & \text{if } \Sigma(L_1) = m \text{ and } \Sigma(L_2) = n, n \neq 0 \\
\delta(\Sigma, \text{div}, L_1, L_2) &\ni (\text{div}, (L_1 / L_2), \Sigma') & \text{if } \Sigma(L_2) \neq n \text{ and } \delta(\Sigma, \text{zero?}, L_2) \ni (0, \Sigma') \\
\delta(\Sigma, \text{div}, L_1, L_2) &\ni (\text{div}, (L_1 / L_2), \Sigma') & \text{if } \Sigma(L_2) \neq n \text{ and } \delta(\Sigma, \text{zero?}, L_2) \ni (1, \Sigma')
\end{align*}
\]

Figure 3. Selected Primitive Operations

We define a translation \(\llbracket\cdot\rrbracket\) of run-time constructs into logical formulas, which is shown in figure 4. The translation of a heap is the conjunction of formulas obtained from each mapping, and the translation of each mapping is straightforward. In particular, a location pointing to a concrete number translates to the obvious assertion on equality, and a mapping \((\text{case } L \mapsto \overline{T})\) adds constraints asserting that equal inputs imply equal outputs. Notice that the proof system only needs to handle a small number of well-understood predicates. We rely on execution itself to break down complex predicates to smaller ones and take care of issues such as divergence and errors in the predicate itself. For example, if the proof system can prove that a value satisfies predicate \(P\), it automatically allows the execution to prove that the value also satisfies \((\lambda x. (P x) E))\) for an arbitrarily expression \(E\). By the time we have \([L \mapsto \overline{T}]\), we can assume all predicates \(\overline{P}\) have terminated with true on \(L\).

For each query between heap \(\Sigma\), location \(L\) and predicate \(P\), we translate known assumptions from the heap to obtain formula \(\phi\), and the relationship \((L : P)\) to obtain formula \(\psi\). We then consult the solver to obtain an answer. As figure 5 shows, validity of \((\phi \Rightarrow \psi)\) implies that value \(L\) definitely satisfies predicate \(P\), and unsatisfiability of \((\phi \land \psi)\) means value \(L\) definitely refutes \(P\). If neither can be determined, we return the conservative answer.
3.5 Constructing Counterexamples

For each answer reached by evaluation, the heap contains refinements to symbolic values in order to reach such result. In particular, refinements on the heap in an error case describes the condition under which the program goes wrong.

Specifically, at the end of evaluation, refinements on the heap are nearly concrete: higher-order symbolic values are broken down into a chain of argument deconstruction and mappings, and first-order symbolic values have precise constraints describing how to reproduce the current path. Indeed, a model to the first-order constraints on the heap yields a counterexample to the program. We simply plug first-order concrete values back into the heap.

The reader may wonder whether this process always generates actual counterexamples (sound), and it always succeeds if one exists (complete). The next section clarifies these points.

3.6 Soundness and Completeness of Counterexamples

We show that our method of finding counterexamples is sound, which means that any counterexample found by the system is real. In addition, we show that the method is complete up to the underlying first-order solver, which means that if any concrete program portion can cause an error and the underlying solver always finds a model for any satisfiable formula, then we can find a counterexample.

We first define what it means for one state to instantiate or abstract another.

3.6.1 Approximation Relation

We define an approximation relation between program states of the form \(\langle E, \Sigma \rangle \). We write \(\langle E_1, \Sigma \rangle \approx \langle E_2, \Sigma \rangle \) to mean “\(\langle E_2, \Sigma \rangle \) approximates the fully concrete state \(\langle E_1, \Sigma \rangle \)” or “\(\langle E_1, \Sigma \rangle \) refines \(\langle E_2, \Sigma \rangle \)”. For example, \(\langle (+ L_1 2), [L_1 \mapsto 0] \rangle \approx \langle (+ L_1 2), [L_1 \mapsto 0], L_1 \mapsto \text{nat}, L_2 \mapsto \text{nat} \rangle \).

Because only errors from concrete program portions are important in the analysis, we parameterize the approximation relation with a set of labels marking concrete source locations. This set can be computed straightforwardly as shown in figure 6. Hence, \(\langle E, \Sigma \rangle \approx \langle E', \hat{\Sigma} \rangle \) means that \(\langle E', \hat{\Sigma} \rangle \) approximates \(\langle E, \Sigma \rangle \) up to program portions marked by labels \(L \), predicting all possible errors coming from these sources, but stating nothing about errors from other portions.

Finally, to enforce that each symbolic value in the abstract state consistently approximates one concrete value, we parameterize the relation with a function \(F \) mapping each location from the abstract state to a concrete value (either a lambda or a number).

For example, in the following, the abstract state \((+ L_3 L_4) \) approximates the concrete state \((+ L_1 L_2) \), where function \(F = [L_1 \mapsto 1, L_2 \mapsto 2] \) prevents any label to ambiguously approximate two different values. In addition, the only concrete program portion considered is the application itself (labeled \(L \)).

\[((+ L_1 L_2)^L, [L_1 \mapsto 1, L_2 \mapsto 2]) \models^F ((+ L_3 L_4)^L, [L_3 \mapsto \text{nat}, L_4 \mapsto \text{nat}]) \]

Figure 7 shows selective rules for approximation between states. We omit straightforward structural rules. Rule Loc-Loc states that location \(L_2 \) approximates location \(L_1 \) if the value pointed to by \(L_2 \) approximates that by \(L_1 \), provided this approximation is consistent according to function \(F \). Rule Opg states that an opaque application approximates all non-answer expression up to labels reachable from the arguments. Rule Case1 states that an opaque mapping approximates any function on natural numbers as long as the function’s body contains no concrete label. Rule Case2 states that if a mapping approximates a function and we further know the result of applying the concrete function on another value, we can refine the mapping to remember this result and obtain another (tighter) approximation of the function. Finally, rule OpgErr allows us to ignore errors coming from unknown program portions.

3.6.2 Theorems

To prove soundness, we show that constraints on the heap is sufficiently precise that all instantiations follow the same execution branch. To prove (relative) completeness, we show that the abstract reduction semantics is sound and assume the solver can answer all our first-order queries.
Proof. By inspection of δ and cases of O and the approximation relation.

Theorem 2 (Relative Completeness of Counterexamples). If \(\langle E, \Sigma \rangle \leadsto^* \langle \text{err}^L, \Sigma' \rangle \) and \(\langle E, \Sigma \rangle \subseteq_L (E, \Sigma) \) then \(\langle E, \Sigma \rangle \leadsto^* \langle \text{err}^L, \Sigma'' \rangle \) such that \(\exists \Sigma''', \Sigma'' \subseteq \Sigma' \) and \(\langle E, \Sigma''' \rangle \leadsto^* \langle \text{err}^L, \Sigma''' \rangle \).

Proof. Soundness (lemma\[3\] of reduction relation ensures the error is reached in the abstract program, and completeness of the solver ensures a model is produced for the error case.

Lemma 3 (Soundness of SPCF). If \(\langle E, \emptyset \rangle \leadsto^* \langle A, \Sigma \rangle \) and \(\langle E, \emptyset \rangle \subseteq \langle E_1, \emptyset \rangle \), then \(\langle E_1, \emptyset \rangle \leadsto^* \langle A', \Sigma \rangle \) such that \(\langle A, \Sigma \rangle \subseteq \langle A', \Sigma \rangle \).

Proof. By lemma\[4\]

Lemma 4 (Soundness of Reduction). If \(\langle E_1, \Sigma_1 \rangle \leadsto \langle E_2, \Sigma_2 \rangle \) and \(\langle E_1, \Sigma_1 \rangle \subseteq_L (E_2, \Sigma_2) \), then \(\langle E_1', \Sigma_1 \rangle \leadsto_\Sigma \langle E_2', \Sigma_2 \rangle \) such that \(\langle E_2, \Sigma_2 \rangle \subseteq_L (E_2', \Sigma_2) \) and \(E' \) is consistent with \(E \).

Proof. By case analysis of the approximation and reduction relations. The only non-straightforward case comes from approximation rule \(\text{Opq} \).

- Case \(E_1 \neq A \) and \(E' = (L_0 \downarrow L_1) \) where \(\hat{\Sigma}(L_0) = \bullet \)
 - If \(E_1 \neq A \), the opaque application continues to approximate it by rule \(\text{Opq} \).
 - If \(E_1' = \text{err}^L \) where \(L' \notin \text{lab}_\Sigma(L_1) \), any expression approximates it by rule \(\text{OpqErr} \).
 - If \(E_1' = \text{err}^L \) where \(L' \in \text{lab}_\Sigma(L_1) \), lemma\[5\] shows the error will be reached.
 - If \(E_1' = L' \), the opaque application returns a fresh opaque value and refines the unknown function at \(L_0 \) appropriately depending on the shape of \(F(L_0) \).

Lemma 5 (Soundness of Demonic Context). If there exists a context \(\mathcal{E} \) such that \(\langle \mathcal{E}[L], \Sigma \rangle \leadsto^* \langle \text{err}^L, \Sigma' \rangle \), then \(\langle (L, \Sigma) \rangle \leadsto^* \langle \text{err}^L, \Sigma'' \rangle \).

Proof. Any context \(\mathcal{E} \) triggering the error has the canonical form of \(\mathcal{E} ::= [\cdot] \mid (\mathcal{E} \downarrow L) \). Rule \text{AppHavoc} produces an approximation of this of the form \(\mathcal{E} ::= [\cdot] \mid (\mathcal{E} \bullet i) \).
4. Beyond PCF

We discuss three important extensions to our system for finding counterexamples in a realistic language: dynamic typing, contracts, and mutable states.

4.1 Dynamic Typing

Dynamically typed languages defer safety checks to runtime to avoid conservative rejection of good programs. Such languages have mechanisms for run-time inspection of data’s type tag. We model this feature by extending primitive predicates with run-time type tests as in figure 8. Changes to data’s type tag. We model this feature by extending primitive operations, such as pairs, strings, and Racket’s full numeric tower. This also introduces more error sources and interesting counterexamples. Third, we allow user-defined structures at the top-level. Fourth, we employ a module

4.3 Mutable States

We support stateful programs by extending the language with primitives for mutable boxes as shown in figure 11.

The major change appears in rules for applying unknown functions as shown in figure 12. If the argument is a mutable box, the unknown function may invoke its content and perform arbitrary changes to the box. Second, if its argument is a function, the unknown context may apply the function any number of times, affecting its internal state arbitrarily. Finally, in the presence of mutable states, the system can no longer assume that the unknown function depends solely on its argument and yields equal outputs for equal inputs, so a memoized mapping is no longer applicable. Because this last change can be too conservative for reasoning about idiomatic functional programs, where programmers often think of functions as pure and use mutable boxes judiciously, it is useful in a practical system to have a special annotation for marking an unknown function as pure.

One challenge introduced by mutable states is aliasing. For example, a result from applying an unknown function can either be a fresh value, or any previous value on the heap. Future side effects performed on this unknown result may or may not affect some existing mutable box. To soundly execute symbolic programs with mutable states, we modify the behavior of primitive box?. When an unknown value L is determined to be a mutable box, we either decide it is a distinct box (box L’) from any previous one on the heap, or an alias to one previous box L_i by substituting each occurrence of L for L_i in the entire program. Although this process is expensive, mutable boxes are sparse in idiomatic functional programs. Programs with no invocation of box? (which is implicit in unbox and set-box!) do not pay for this penalty. More efficient handling of aliasing of large imperative programs is one direction of our future work.

5. Implementation

To validate our approach, we implement a tool generating counterexamples for erroneous programs written in a subset of Racket [Flatt and PLT 2010]. The implementation handles a much more realistic set of language features beyond SPCF. We discuss results on some benchmarks below.

5.1 Language features

First, our implementation supports all extensions discussed in section 4. Second, we extend the set of base values and primitive operations, such as pairs, strings, and Racket’s full numeric tower. This also introduces more error sources and interesting counterexamples. Third, we allow user-defined structures at the top-level. Fourth, we employ a module.

First-class contracts can have internal states and enforce equal outputs for equal inputs, which symbolic execution can make use of.
system to let users organize code. A module can export multiple values as well as define private ones for internal use. Finally, we support more contract combinators such as conjunction, disjunction, recursion, and contracts are first class values in our implementation, meaning they can be composed at run-time.

5.2 Evaluation

We test our tool’s effectiveness in finding bugs from a collection of faulty programs, obtained by either introducing subtle but easy to make programming mistakes or weakening a contracts’ preconditions. The tool is able to return with a concrete counterexample for each such program in a reasonable amount of time: the most complicated invariant violation takes 2 seconds to detect, and large typical programs take less than a second.

First, we find the approach more effective in generating counterexamples than random testing, thanks to knowledge of the program’s source code. For example, the tool finds a counterexample to the following program quickly and automatically:

```scheme
(f n = (/ 1 (- 100 n)))
```

In contrast, without further customization, QuickCheck fails to find the easily seen counterexample for an equivalent Haskell program after 10,000 attempts.

In general, we find the tool particularly useful in speeding up bug-finding in an untyped language. For example, it is easy for programmers to forget that Racket supports the full numeric tower [St-Amour et al. 2012], and predicate number? admits complex numbers. The following definition of argmin has a wrong contract requiring its first argument to be a function returning a number instead of a real number, which can violate min’s requirement of real arguments.

```
; (argmin proc lst) → any/c ; proc : (any/c → number?) ; lst : (and/c pair? list?) (define (argmin f xs) (cond [(empty? (rest xs)) (f (first xs))] [else (min (f (first xs)) (argmin f (rest xs))))])
```

Our tool generates a counterexample:

```
f : λx.0+1i xs : (list 0 0)
```

In contrast, contract-guided random testing in Racket does not find this error without a slight modification to the precondition, changing (and/c pair? list?) to (listof any/c). Otherwise the tool fails to generate inputs that satisfy the precondition in the first place due to the lack of generator for conjunctive contracts in the general case.

The tool finds bugs by performing a simple breadth-first search on the execution graph, then stops and reports on...
the first error encountered with a fully concrete counterexample. Even though the approach is prone to combinatorial explosion as inherent in symbolic execution, this problem rarely shows up in our tests, because a precise solver helps eliminating spurious branches greatly, and the tool stops as soon as it finds a counterexample, which is also the smallest one due to breadth-first search. Nevertheless, we encounter one benchmark triggering our tool’s initial weakness. In the following program, insert’s contract says the function preserves the Braun-tree invariant, but the implementation does not do so. The invariant is specified using ordinary code as in the recursive function braun-tree?

```scheme
(define (braun-tree? x)
  (cond
   [(node? bt)
    (node (insert (node-left bt) x)
          (node-right bt))]
   [else (node x #f #f)]))
)
```

```scheme
(define (braun-tree? x)
  (or (false? x)
      (and (node? x)
           (braun-tree? (node-left x))
           (braun-tree? (node-right x))
           (let ([l (height (node-left x))]
                  [r (height (node-right x))])
            (or (= l r) (= l (add1 r)))))))
)
```

The smallest counterexample breaking insert is a tree of height 1 with its left branch full.

```
(node (node #f #f) #f)
```

Even though execution can reach the error in theory, the frontier expands quickly, preventing graph exploration to reach the desired node in a practical amount of time. This is unintuitive at first, because the counterexample is a very small tree, and a breadth-first search should not take so long to reach a tree of that shape. However, the tool performs a breadth-first search on the execution graph, not just a graph of possible trees. In particular, the distance between the root to the node where insert’s input is concretized as the smallest counterexample is about 300 edges. However, it takes another 400 edges for the execution to detect that insert’s result, which is a bigger tree, does not satisfy the Braun-tree invariant. Along the way, the algorithm also considers numerous other trees that can be reached within the given number of edges, and the frontier becomes overwhelming.

Our first attempt at solving this problem is to detect states with abstract values of high depths and slow down their exploration. However, this approach is ineffective because there can be many real counterexamples generated from high-depthed abstract values, and it is not obvious what the depth threshold should be, which is likely to vary from program to program. Instead, we inspect the stacks to identify states that are highly likely to result in errors and speed up their exploration. When we find a state whose top-most contract checking stack frame has the positive party being a concrete component, we deem it as a suspect. We then “fast-forward” the reduction of this state by a constant number of steps or until the state is no longer a suspect. Even though this property is neither necessary nor sufficient to result in an error, we find it highly indicative in practice. In particular, for the Braun-tree example, the frontier’s size ranges from 500 to 5000, and the number of suspects stays at 1 or at most 2, and one of those is exactly the state that triggers insert’s violation. With this heuristic, we cut down the time of executing this program from non-terminating after 2 hours down to 2 seconds. In addition, this does not seem to be a trade off for our corpus of benchmarks: all the initial time for other programs either stay the same or reduce.

6. Related Work

We relate our work to four main lines of research: symbolic execution, counterexample guided abstraction refinement for dependent type inference, random testing, and contract verification.

6.1 First-order Symbolic Execution

Symbolic execution on first-order programs is mature and has been used to find bugs in real-world programs [Cadar et al. 2006, 2008]. Cadar et al. [Cadar et al. 2008] presents a symbolic execution engine for C that generates counterexamples of the form of mappings from addresses to bit-vectors. Later work extends the technique to generate comprehensive test cases that discover bugs in large programs interacting with the environment [Cadar et al. 2008].

6.2 Counterexample-guided Abstraction Refinement

Counterexample-guided abstraction refinement has been used in model checking and dependent type inference [Rondon et al. 2008; Kobayashi et al. 2011; Zhu and Jagannathan 2013], where the inference algorithm iteratively uses a counterexample given by the solver to refine preconditions attached to functions and values. In case the algorithm fails to infer a specification, the counterexample serves as a witness to a breaking input. Our work finds higher-order counterexamples by only integrating a first-order solver, and is applicable to both typed and untyped languages. In contrast, previous works on higher-order model checking do not consider symbolic functions, and dependent type inference relies on an extension to ML.

6.3 Random Testing

Random testing is a lightweight technique for finding counterexamples to program specifications through randomly generated inputs. QuickCheck for Haskell [Claessen and Hughes 2000] proves the approach highly practical in finding bugs for functional programs. Later works extend random testing to improve code coverage and scale the technique to more language features such as states and class
systems. Heiddegger and Thiemann [2010] use contracts to guide random testing for Javascript, allowing users to annotate inputs to combine different analyses for increasing the probability of hitting branches with highly constrained preconditions. Klein et al. [2010] also extend random testing to work on higher-order stateful programs, discovering many bugs in object-oriented programs in Racket. Seidel et al. [2014] use refinement types as generators for tests, significantly improving code coverage.

Compared to random testing, our approach has an important advantage of being more automated. By combining symbolic execution with an SMT solver, the tool takes advantage of conditions generated by ordinary program code and not just user-annotated contracts. In addition, the approach works well with highly constrained preconditions without further help from users. In contrast, random testing systems typically require programmers to implement custom generators [Claessen and Hughes 2000] or require user annotations to incorporate a specific analysis collecting all literals in the program to guide input construction [Heiddegger and Thiemann 2010]. Type-targeted testing [Seidel et al. 2014] is more lightweight and does not necessitate an extension to the existing semantics, but gives no guarantee about completeness, as inherent in random testing. Even though the tool rules out test cases that fail the preconditions, regular code and post-conditions do not help the test generation process. In contrast, we make use of both contracts and regular code to guide the execution to seek inputs that both satisfy pre-conditions and fail post-conditions.

6.4 Contract Verification and Refinement Type Checking

Contracts and refinement types are mechanisms for specifying much richer program invariants than those allowed in a typical type system. Verification systems either restrict the language of refinements to be decidable [Rondon et al. 2008] or allow arbitrary enforcements but leave unverifiable invariants as residual run-time checks [Flanagan 2006; Knowles and Flanagan 2010; Xu 2012; Tobin-Hochstadt and Van Horn 2012]. While verification proves the absence of errors but may give false positives, our tool aims to discover concrete, real counterexamples to faulty programs. Our work is a direct extension to previous work on symbolic execution of higher-order programs [Tobin-Hochstadt and Van Horn 2012] and can be viewed as a complement to contract verification.

7. Conclusion

We have presented a symbolic execution semantics for finding concrete counterexamples in higher-order programs and proved it to be sound and relatively complete. An early prototype shows that the approach can scale to realistically sized functional programs with practical features such as first-class contracts and mutable states. From the programmer’s perspective, the approach is lightweight and requires no custom annotation to get started. However, if contracts are present, they can help guide the search for counterexamples. Combined with previous work on contract verification, it is possible to construct a tool that not only guarantees the writing of correct programs but also eases the understanding of faulty programs, speeding up the development of reliable software.

References

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs. OSDI’08, 2008.
C. Klein, M. Flatt, and R. B. Findler. Random testing for higher-order, stateful programs. In Proceedings of the ACM Interna-

