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Abstract— Tree crown recognition with high spatial resolutiorrepresent individual trees or groups of trees. Tree objects
remotely sensed imagery provides useful information relatimgay be understood as regions of marked spatial
the number and distribution of trees in a forest. A commautocorrelation [4]. Individual trees may be discerned in high
technique used to identify tree locations uses a locgpatial resolution imagery as regions of high radiance values
maximum (LM) filter with a static-sized (user-specified)in the near infrared. The utility of tree crown recognition
moving window. LM techniques operate on the assumptidachniques is directly related to image scale: image spatial
that high local radiance values represent the centroid of a tresolution needs to be high enough in relation to the tree size
crown. The static nature of this technique is inconsistent witb allow for a sufficient number of pixels to represent the tree
both natural canopy structure and digital images. A variabteown or the shadow region surrounding a crown [4]; [5]; [6].
window size (VWS) LM technique operates under theOne of the simplest tree crown recognition procedures
assumption that there are multiple tree shapes and sizes witbientifies radiance maximums [7]; [8] in single channels.
an image and that the LM filter should be adjusted to arhis local maximum (LM) technique is particularly well
appropriate size, based on the spatial structure found wittdnited to identifying objects with a single, concentrated apex
the imagery. (i.e. conifers) versus those consisting of multiple, distributed
To compare the utility of the VWS LM technique versugpieces. The LM technique is based on the assumption that the
that of static LM techniques, tree location accuracy wawightest pixels correspond to the crowns of the dominant
evaluated for static 3x3, 5x5, 7x7 filters, VWS, and VMSrees (the portion of the tree with the greatest amount of
plus a false positive filter based on the Getis statistic. Thertical foliage overlap). However, the stem location may be
study site incorporates two stands of Douglas fidisplaced from this radiance maximum due to leaning and bi-
(Pseudostuga menzigsiia 40 year old planted site and adirectional reflectance effects [9].
>150 year naturally regenerating site. The imagery used wasSuccessful recognition of the trees using LM techniques
MEIS-II with 1 m ground resolution acquired in 1993 as parelies on careful selection of the filter window size. If the
of the SEIDAM project [1]. selected window is too small, errors of commission occur
The plantation site has a uniform distribution of tree sizéarough identification of non-existent trees or of multiple
and spacing, while the naturally regenerating stand iadiance peaks for an individual tree crown. In the case of
composed of irregularly sized and spaced trees. The spatiatip large a window, errors of omission increase.
sensitive VWS technique out-performs the static technique
when both plantation and naturally regenerating stands are IMAGE SPATIAL STRUCTURE
examined. False-positive filters are introduced to screen forlmage spatial structure is a two-dimensional representation
local radiance maxima which may not be representative of the forest structure. The horizontal variability of forest
tree centroids. canopy structure is captured in the spatial structure present in
the image. In texture analysis, as in peak radiance filtering, a
INTRODUCTION window size which captures the maximum amount of variance
Forest structure is the above ground organization & desired. In [9], the authors demonstrated the use of
vegetation [2]. The ground instantaneous field of viewemivariance to customize window sizes for use in texture
(GIFOV) dictates the amount of the original landscapanalysis. A similar methodology is applied in this study to
variance that is captured in a raster image. Low spatsliggest windows appropriate for the filtering of local peak
resolution imagery reduces the natural scene variance duegddiance values.
the inclusion of a variety of surface cover types within each
pixel. Airborne remote sensing with 1 m, and proposed higdemivariance
resolution satellite instruments [3] capture a greater amount ofDigital image semivariance generates values relating pixel
the original variance. For example, high resolution imageself-similarity over a transect of pixels. Semivariance is a
of a forest is composed of contiguous pixel regions whickell-understood and frequently applied image processing
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technique [10]. A variogram describes the magnitude, spat{@inus rubra), salal Gaultheria shallor), sword fern
scale, and general form of the variation in a given set of dgfolystichummunitun), Oregon grape Mahonia nervosa

[11]. Semivariograms are a graphical representation ahd Oregon beaked mos§&r{dbergiaoregang.

spatial variability and provide a means of measuring the

spatial dependency of continuously varying phenomenonMEIS-II Image Data

The semivariogram also displays the average change of ahe MEIS-II sensor [14] was flown at an altitude of 1428m
property with increasing lag, although the true variogram @ver the study site at 11:30 hr PST on September 2nd, 1993
continuous. Semivariance is the variance per site when sites part of the SEIDAM (System of Experts for Intelligent
are considered as profiles or areas of pixels, and is develofigata Management) project [1]. The resulting ground pixel
from the theory of regionalized variables [12]. The range &ze is 1 m, with 720 pixels across track. The raw data were
the point of the variogram where the spatial dependenggometrically corrected using BC Ministry of Environment
between the original pixel and the pixels along the transetérrain  Resource Information Management (TRIM)
begins to diminish. The range of the semivariogram, as planimetric data (horizontal accuracy of + 20m). Solar
indicator of a region of spatial dependence, may be appliedatitude and azimuth angles for the flight line were 52° and
suggest appropriate window sizes for peak radiance filteringl33°, respectively.

Getis Statistic Radiance Peak Filtering

In contrast to semivariance, the Getis statisi@ )( Tree crown locations were extracted with five filters on two
generates values which relate variatiomishin patterns of different image spectral channels. Of the five different filters,
spatial dependence. Thus, it has the potential to uncodwere fixed, square windows with sides of 3, 5, and 7 pixels.
discrete spatial regimes which might be overlooked by he two remaining filters were variable in size based upon
existing techniques. Semivariance af&{ values are the mean semivariance range at each pixel. In the variable
complementary techniques with semivariance computing anndow size (VWS) technique, prior to LM filtering, a
indication of a region of pixel similarity ar® providing the window size appropriate to each location is calculated by
strength of pixel association within this region of spatiahveraging the semivariance range in 4 orthogonal directions.
dependence. A mode filter was then passed over the resultant mean

Wulder and Boots [13], have adapted the Getis statistic feemivariance range image to remove any noise which may
processing remotely sensed imagery. The Getis statBtjc, have been present. The semivariance range values were then
yields a standardized value which indicates both the degreentdpped to window sizes ranging from 3 to 7 pixels square
autocorrelation in the values of the digital numbers center§@iable 1). The second VWS filter uses the same semivariance
on a given pixel and the magnitude of these values in relatim window size mapping, but uses Getis statistic generated
to those of the entire image. TI& values measure the spatial dependence values to screen for false positives.
extent to which a pixel is surrounded by a cluster of high or Two channels were chosen for analysis; a red edge channel
low values of a particular variable (e.g. DN). Large positiveentered at approximately 675nm, and a near infrared channel
G, values denote a cluster of high DN values; large negaticentered at 875nm. The tree crown location results from the
G, values denote a cluster of low DN values. In a higtadiance peak filtering were compared for commission and
spatial resolution forestry contex@ values indicate the omission errors using a detailed ground survey map. The
spatial dependence within a tree crown or between shadswvey map includes all trees greater than 25cm dbh within
elements. High positive values generated from infrardtie study area.
wavelength image data indicate the presence of a tree object

whereas high negative values relate a non-tree feature. RESULTS AND CONCLUSIONS
On aper stand basis (Table 2), the best static filter sizes
DATA AND METHODS would be 3x3 for the immature and 5x5 for the natural
Study Area regeneration stand. However, when the image as a whole is

The Greater Victoria Watershed is located at 48° 23rocessed, the mismatching of window-size to image structure
latitude and 123° 41’ longitude. Within this watershed, eesults in high commission and omission errors (Table 3 & 4).
study area was selected composed of a 40 year old plantatibables 3 and 4 show results from different semivariance and
and a 150 year old naturally regenerating stand. The
plantation stand (planted in 1965 and spaced in 1975), Tiable 1. Semivariance range conversion to window size key

composed of trees ranging in height from 11m to 25m., whie Semivariance Window | Semivariance Window
the naturally regenerating stand contains trees from 140|tRange (this study) Size Range [9] Size
250 years with heights from 20m to 70m. The dominaft 1,2,3,4 3 1,2 3
species are Douglas fiP$eudotsuganenzies)i and Western 5,6 5 3 5
Red Cedar Thuja plicata). A dense layer of understory >7 7 >4 7

consists of HemlockTisugaheterophylld, some Red Alder
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window size choices detailed in Table 1. Table 3 resulf3] P. Aplin, P. Atkinson, and P. Curran, “Fine spatial

reveal that the technique used in [9], which moves quickly to resolution satellite sensors for the next decale,’J.

larger window sizes, results in an unacceptable omission rate.Rem. Sensvol. 18, pp. 3873-3881, 1997.

In this study, the conversion heuristic was set so that tfg M. Wulder, “Image spectral and spatial information in the

window size was too slow in moving to the larger size (i.e. assessment of forest structural and biophysical data,”

too loose). The result was that most of the image was filtered Proc. Int. Forum on Auto. Interp. of High Spatial Res.

using a 3x3 window (and hence the similarity between the Dig. Imagery for Forestry, (in press), Pacific Forestry

VWS results and the static 3x3 results: i.e. large numbers of Centre, Victoria, BC, 1998.

commissions). The most appropriate method lies somewh¢s¢ R. J. Pollock, “The automatic recognition of individual

in between. trees in aerial images of forests based on a synthetic tree
With a minimum of 25% of the plantation trees being crown image model,” i€omputer Scienc&/ancouver,

missed with LM techniques in this study, it appears that 1 m Canada: University of British Columbia, 1996.

imagery is too coarse for individual tree crown recognition if6] F. Gougeon, “A crown-following approach to the

a 40 year old Douglas fir stand. In addition, 5 of the ten automatic delineation of individual tree crowns in high

omitted trees in the naturally regenerating stand are known to spatial resolution aerial image€dn. J. Rem. Sensol.

be closely paired with neighboring trees and it is 21, pp.274-284, 1995.

unreasonable to expect that a simple LM technique would pg F. Gougeon, “Individual tree classification using MEIS-II

able to distinguish these as separate tree objects. This pairingmagery,” Proc. IGARSS'88, Edinburgh, UK, 1988.

situation requires an analysis of the shape or spectral qualitjigsG. J. Hay and K. O. Niemann, “Visualizing 3-D texture: a

of the crown. three-dimensional structural approach to model forest
The Getis statistic filter reduces the commission error in texture,”Cdn. J. Rem. Sensol. 20, pp. 90-101, 1996.

the naturally regenerating stand, but performs poorly when[&] C. N. Burnett, M. Wulder, N. M. A. Daley, K. O.

encounters immature trees in a shadowed area. This highNiemann, and D. G. Goodenough, “Comparison of

omission rate may be acceptable if the goal of the tree generalized and scale-sensitive windows for the estimation

location is signature extraction of tree crown position using local maximum filters,” Proc.
This research has suggested a future change to the LM-Workshop on Scale, (in press), University of Montreal,

technique in which one uses a two-phase system of conifer Montreal, Quebec, 1998.

identification using high-resolution imagery. In the firsf10] S. Franklin, M. Wulder, and M. Lavigne, “Automated

stage, a broad VWS LM tree location technique is adopted derivation of geographic windows for use in remote

wherein the goal is to preserve as many potential scene sensing digital image analysi€Comp. & Gea.vol. 22,

objects as possible. In the second phase, the tree candidatepp. 665-673, 1996.

are sorted through a series of spatial filters based on 4] G. Ramstein and M. Raffy, “Analysis of the structure of

directional slope, shape, and semivariance range around theradiometric remotely sensed imagdsf. J. Rem. Sens.

object’'s LM centroid. The authors are actively exploring the vol. 10, pp. 1049-1073, 1989.

image spatial relationships which will underpin the rules fdiu2] G. Matheron, “Principles of geostatisticEton. Geq.

the second phase filters [16]. vol. 58, pp. 1246-1266, 1963.
[13] P. Curran, “The semivariogram in remote sensing: An
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Table 2. Results for each technique run on staid separately

Channel Stand Algorithm # Treesin | # Local Trees - Trees - |[Commission| Omission
Groundtruth | Maximas | # Correct | % Correct Errors Errors
3x3 94 74 70 74 4 24
Plantation 5x5 94 46 43 46 3 51
40y X7 94 27 25 27 2 69
VWS 94 74 70 74 4 24
VWS + Gi* 94 57 53 56 4 41
3x3 34 28 24 71 4 10
Chn7 Plantation 5x5 34 16 15 44 1 19
675 nm 40y X7 34 6 6 18 0 28
Shadow VWS 34 27 23 68 4 11
VWS + Gi* 34 0 0 0 0 34
3x3 48 83 38 79 45 10
Natural 5x5 48 47 33 69 14 15
Regeneration X7 48 38 29 60 9 19
>150y VWS 48 82 38 79 44 10
VWS + Gi* 48 43 35 73 8 13
Table 3.Results from [9] for each algorithm run on theage as a wholgsee Table 1 for mapping key)
Channel Stand Algorithm # Trees in # Local Trees - Trees - |[Commission| Omission
Groundtruth [ Maximas | # Correct | % Correct Errors Errors
3x3 176 185 132 75 53 44
Chn7 All 3 5x5 176 109 91 52 18 85
675 nm Stands X7 176 71 60 34 11 116
VWS 176 138 112 64 26 64
VWS + Gi* 176 81 75 43 6 101
3x3 176 161 129 73 32 47
Chn 3 All 3 5x5 176 105 97 55 8 79
875 nm Stands X7 176 60 57 32 3 119
VWS 176 105 86 49 19 97
VWS + Gi* 176 73 71 40 2 112
Table 4. Results for each algorithm run onithage as a whole (see Table 1 for mapping key)
Channel Stand Algorithm # Treesin | # Local Trees - Trees - [Commission| Omission
Groundtruth [ Maximas | # Correct | % Correct Errors Errors
3x3 176 185 132 75 53 44
Chn7 All 3 5x5 176 109 91 52 18 85
675 nm Stands X7 176 71 60 34 11 116
VWS 176 183 131 74 52 45
VWS + Gi* 176 100 88 50 12 88
3x3 176 161 129 73 32 47
Chn 3 All 3 5x5 176 105 97 55 8 79
875 nm Stands X7 176 60 57 32 3 119
VWS 176 154 123 70 31 53
VWS + Gi* 176 66 82 47 4 94
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