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Abstract
Based on an innovative endogenous network hypothesis on cancer genesis and progression we
have been working towards a quantitative cancer theory along the systems biology perspective.
Here we give a brief report on our progress and illustrate that combing ideas from evolutionary
and molecular biology, mathematics, engineering, and physics, such quantitative approach is
feasible.
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1 Introduction
We have been advancing an evolutionary and stochastic dynamics formulation of
carcinogenesis. The novel biological hypothesis behind such formulation has been stated in
our previous publication (Ao et al., 2008): Cancer as an intrinsic robust state of the
endogenous network not optimized for the interest of whole organism. More explicitly, the
molecular and cellular agents, such as oncogenes and suppressor genes, and related growth
factors, hormones, cytokines, etc, form a nonlinear, stochastic, and collective dynamical
network, the endogenous molecular – cellular network. This endogenous network may be
specified by the expression or activity levels of a minimum set of endogenous agents,
resulting in a high dimensional stochastic dynamical system. The nonlinear dynamical
interactions among the endogenous agents can generate many locally stable states with
obvious or non-obvious biological functions. The endogenous network may stay in any of
such stable state for a considerably long time. In this manner the endogenous network is able
to autonomously decide its operational functioning state. Some states may be normal, such
as cell growth, apoptosis, arresting, etc. Others may be abnormal, such as growth with
elevated immune response and high energy consumption, likely the signature of cancer, or
of still useful functions to deal with occasional stressful situations. The stochasticity may
accidentally cause a transition from one stable state to another. If with a given condition the
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endogenous network is in a state not optimized for the interest of whole organism, the
organism is ‘sick’, though this state might be ‘normal’ under other conditions. Through the
identifying agents of this endogenous network, the delineating of its wiring rules among
endogenous agents, and the elucidating its global dynamical properties, a systems
understanding of both normal and abnormal behaviors on how a tissue functions may be
reached.

In this way, we envisage that the oncogenes and other molecular and cellular agents first
form pathways and modules. The pathways and modules then cross talk to each other to
form the endogenous network. Such a hierarchical structure is similar to the modular
organization principle. The essential pathways and modules (Greaves, 2001; Weinberg,
2007) are, for example, cell cycle pathway, Myc-p53 pathway, immune response, Ras-
MAPK pathway, invasion and metastasis, PTEN-Akt pathway, growth factors and their
receptors, hormones and their receptors, metabolism, and apoptosis. In short, we believe that
there is at least one more important, and nearly autonomous, layer of mechanism between
genetic (genomics, etc) and environmental factors. It is consistent with the systems biology
perspective (Auffray et al., 2009) but differs in focus from the current mainstream genomic
centric view of “cancer as disease of genome” (Heng et al., 2009). In the following sections
the feasible key steps leading to such quantitative formulation are explained: determining
endogenous network, establishing mathematical model, analyzing and predictions.

2 Determining key players of core endogenous network
Granted the validity of such hypothesis, the crucial question is on its quantitative realization
by a mathematical model. In the rest of this extended abstract a procedure to implement such
hypothesis is summarized: sorting through experimental data, establishing a set of stochastic
differential equations, and generating testable predictions.

Even for each pathway or module its mathematical description can be very complicated. A
full quantitative account has indeed been very difficult and subjected to extensive current
investigation. We thus further simplify each pathway or module to its most essential
endogenous agents, whose number may typically be 3–5. For example, for the cell cycle
pathway 5 endogenous agents, E2F, Myc, CyclinE/Cdk2, CyclinD/Cdk4,6, and Rb
reasonably describe the main features of this pathway. Therefore, for above mentioned
essential pathways and modules, we may expect about 40 endogenous agents, which, for a
mechanistic modeling point of view, still need a large number with numerous parameters to
be determined experimentally. A normalized procedure to reduce such dependence will be
explicitly stated below.

3 From experimental data to mathematical model
The next step is how to construct a mathematical description corresponding to those
endogenous agents based on experimental input. Evidently, there are at least two very
different kinds of experimental data: those of high throughput, which may determine the
whole structure of the mathematical equations governing the dynamical evolution of
endogenous agents at once, and those of local and pair-wise classical molecular and
biochemical experiments. We believe that the current high throughput data are not ideal to
construct a reliable dynamical model because they are too noisy. Even if this problem would
be overcome soon, we believe the amount of data alone in the foreseeable future would be
not enough to determine the nonlinear and stochastic network with multiple stable states.
Instead, we make an effort to construct the whole network solely based on local and targeted
biochemical and molecular biology experimental data accumulated during past 6 decades,
and will use the high throughput data as experimental check for theoretical predictions. In
order to obtain a most consensus among experimental input, we further limit the
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experimental data to the most essential types which can be rather reliably established in a
given experiment: those of activation and inhibition. Indeed, based on a reading of the
literature we are able to construct the corresponding endogenous network (Zhu et al., 2010).
A sampling of such collection is shown in Table 1, and its graphical representation is in Fig.
1.

Functional diagram as depicted in Fig. 1 can be turned into a set of stochastic dynamics
equations of the form,

(1)

For example, the deterministic force f can be obtained by modeling the activation as
sigmoidal or S-shaped typical in engineering, threshold functions varying between 0 and 1
(Zhu et al., 2010), a procedure similar to those in fuzzy cognitive maps (Kosco, 1997; Miao
et al., 2001; Weinreb et al., 2006). Our own convenient choice is, for activation,

(2)

and for inhibition,

(3)

with numerical values are chosen to be a = 10 and n = 3. This implies that the variables,
largely the activity levels of endogenous agents, are normalized to minimize the demand in
input parameters: the strength of interaction is varying between 0 and 1, as well as those
dynamical variations. The degradation time τ is set to be constant to begin with. The
stochastic term can be modeled by a diffusion matrix D dictated by biological
considerations. For simplicity we will choose D to be diagonal.

4 Analyzing Stochastic Dynamical Model
Once such a set of stochastic differential equations is obtained (Zhu et al., 2010), an
adaptive landscape quantified by a potential function (a Lyapunov function) can be
constructed by a procedure similar to that of recent study on phage lambda genetic switch
and others (Zhu et al., 2004; Wang et al., 2006; Zhang et al., 2006; Morelli et al., 2008; Cao
and Liang, 2008). The rudimental mathematical elaborations have been done recently (Ao,
2004; Kwon et al., 2005; Yin and Ao, 2006; Ao et al., 2007), involving feedbacks, multiple
stability and other nonlinear stochastic dynamical features (Zhu et al., 2004; Zhang et al.,
2006; Karmakar and Bose, 2007; Qian et al., 2009). The dimension corresponding to the
wiring diagram similar to Fig. 1 for finally obtained network is 37, which is not easy to be
visualized. A schematic representation is given in Fig. 2.

Given the existence of multiple stable states, we may postulate that there are some states
may correspond to healthy states under normal conditions, some to deal with rare stressful
situations, and a few others would be the “disease” states or states as illustrated in Fig. 2.
Table 2 lists the positions of such land markers in the functional landscape, minima,
mountain pass, computed according the procedure outlined above, for endogenous agents in
Table 1. For our minimum model, the values are given in Table 2. Here it may be
worthwhile to mention that the landscape idea has already explored early on in biology in
other contexts: for example, the adaptive landscape in population genetics and the
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developmental landscape in developmental biology. Such idea has already been considered
quantitatively in biology (Onuchic et al., 1999; Bar-Yam et al., 2009; Ao, 2009).

We emphasize that there should be a minimum set of endogenous molecular and cellular
agents in order to give a comprehensive description of the endogenous network to describe
the complexity of cancer phenomena. In our current minimum mathematical model (Zhu et
al., 2010), the number of endogenous agents is 37. Though still incomplete, we believe it
represent a part of core endogenous agents in prostate cancer, and perhaps shared by most, if
not all, other cancers.

Finally, we discuss two experimental implications in the present endogenous network cancer
theory. Both Fig. 2 and Table 2 imply that there is a finite probability, though very small, for
cancer to occur spontaneously, even without mutations and other harmful effects. Such
suggestion implies that cancer is a property of the endogenous network, though not a
welcome prediction. While this possibility may be difficult to check experimentally, its
reverse effect, the spontaneous cancer regression is also implied. Careful examining
experimental and clinical data indeed shows that such phenomena indeed exist (Dinulos et
al., 1997; Reynolds, 2002; Abedelrazeq, 2007). This may be regarded as a zero-one type
validation of present nonlinear stochastic modeling.

Because of normalized nature of the minimum cancer model, any two measurements of a set
of endogenous agents are directly testable. For example, for p53, from normal to tumor-like
state, its activity level is predicted to decrease, as listed in Table 2. The opposite trend can
be said for androgen receptor. If agreeing with further experimental observation, it is an
additional validation for the current modeling. If a disagreement would occur, further
research would be naturally suggested, experimentally and/or theoretically. Regardless of
outcome, it would be exciting because we may finally on the way to have a quantitative,
predictive and mechanistic cancer theory interacting directly with both genetic and
epigenetic experiments.

5 Conclusions
Rooting firmly in biological observations, with adaptive landscape concept from
evolutionary biology, typical engineering modeling techniques, and the recent progresses in
stochastic processes, we believe a feasible way for quantitative modeling of cancer genesis
and progression is possible and the resulting predictions are experimentally testable. The
preliminary results reported here support such vision.
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Fig. 1.
The directed graph representation of endogenous interaction corresponding to Table 1.
Biological experimental data are typically in this way, too.
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Fig. 2.
Three typical situations of the functional landscape, modified from Fig. 2 in (Ao et al.,
2008). (a) The healthy state is a globally stable under normal conditions; (b) due to genetic
and epidemiologic influence on the endogenous network, tumor or cancer states may
become more stable than healthy state. Such metastable healthy state may still have a long
life time for the whole organism being viable; (c) a very “damaged” endogenous network
may not be able to produce a locally stable healthy state. The vertical scale illustrates the
relative stability of robust states, healthy, tumor and others, in the multiple dimensional state
space, along an optimal trajectory passing through a “mountain pass”. The ball indicates the
state in the functional landscape.
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Table 1

A sampling directed interactions among endogenous agents from targeted pair-wise experimental data.
Prostate cancer is the focus, represented by the presence of androgen receptor (AR) and the insulin-like
growth factor receptor (IGF-1R).

Endogenous agent Activated by Inhibited by

Cyclin E/Cdk2 Myc, E2F p21, p27

Myc pRb(+), E2F, Akt, MAPK P53, TGF-β

p53 Myc, PTEN Akt

Cytochrome c Caspase 3, Bad, Bax Bcl-2, Bcl-xL

Bad p21, Akt, MAPK

Bax Myc, p53, Bim

Ras VEGF, IL-6, Integrin, Androgen R

Akt NF-κB, HIF, Ras, IGF-1R PTEN

VEGF Akt, HIF, COX-2, IL-6, Androgen R

IGF-1R Androgen R p53

Androgen R(AR) EGF, IL-6 PTEN

Integrin EGF, TNF-α, VEGF

E-cadherin TNF-α, EGF, HIF, TGF-β

HIF Akt p53

TNF-α NF-κB IL-10

IL-10 TNF-α, Fas IL-10

COX-2 NF-κB, MAPK
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Table 2

Three functional states in the functional landscape: normal state, tumor-like state, and saddle point
configuration connection them. Values are given in terms of their “maximum” activities, respectively. Though
the construction of the present mathematical model is based on local and targeted experimental data, the
predictions given in the form of this table are clearly testable by both targeted and high-through put
experiments.

Normal
growth

“Mountain
pass”

Tumor-like
state

Cytochrome c 0.08 0.01 0

Myc 0.84 0.60 0.53

CyclinE/CDK2 0.92 0.80 0.84

p53 0.16 0.05 0.01

Bad 0.26 0.11 0.06

Bax 0.29 0.10 0.07

Akt 0.02 0.37 0.63

HIF 0.00 0.34 0.72

TNF-α 0.16 0.37 0.44

Ras 0.18 0.73 0.81

COX-2 0.26 0.66 0.74

VEGF 0.19 0.83 0.93

IL-10 0.04 0.28 0.34

Integrin 0.39 0.57 0.65

Androgen R 0.13 0.36 0.54

IGF-1R 0.02 0.31 0.61

E-Cadherin 0.36 0.15 0.07
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