A Compact Representation for Topological Decompositions of Non-Manifold Shapes

David Canino, Leila De Floriani

canino,deflo@disi.unige.it

Department of Computer Science (DIBRIS), Università degli Studi di Genova, Italy

8th International Joint Conference on Computer Vision, Imaging, and Computer Graphics Theory and Applications

February 23, 2013
Introduction

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.
Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a \textit{ball}, centered at p.
Introduction

Manifold shapes (Topological Manifold)
Each neighborhood of every point \(p \) is homeomorphic to one connected component of a \textit{ball}, centered at \(p \).

Properties

- simple structure \((\textit{topology})\)
Introduction

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Properties

- simple structure (*topology*)
- *efficient* representations
Introduction

Manifold shapes (Topological Manifold)
Each neighborhood of every point \(p \) is homeomorphic to one connected component of a \textit{ball}, centered at \(p \).

Properties
- simple structure (\textit{topology})
- \textit{efficient} representations
- many tools based on manifold shapes

Non-manifold Shapes
- non-manifold singularities, i.e., points at which the manifold condition is not satisfied
- parts of different dimensions
- assembly of components (FEM analysis)
Introduction

Manifold shapes (Topological Manifold)
Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Properties
- simple structure (*topology*)
- *efficient* representations
- many tools based on manifold shapes

But they are only a *subset* of all the possible shapes.
Manifold shapes (Topological Manifold)

Each neighborhood of every point \(p \) is homeomorphic to one connected component of a \(\text{ball} \), centered at \(p \).

Properties

- simple structure (\textit{topology})
- \textit{efficient} representations
- many tools based on manifold shapes

But they are only a \textit{subset} of all the possible shapes.

Non-manifold Shapes

- \textit{non-manifold singularities}, i.e., points at which the manifold condition is not satisfied
Introduction

Manifold shapes (Topological Manifold)

Each neighborhood of every point \(p \) is homeomorphic to one connected component of a \textit{ball}, centered at \(p \).

Properties

- simple structure (\textit{topology})
- \textit{efficient} representations
- many tools based on manifold shapes

But they are only a \textit{subset} of all the possible shapes.

Non-manifold Shapes

- \textit{non-manifold singularities}, i.e., points at which the manifold condition is not satisfied
- parts of \textit{different dimensions}
Introduction

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Properties

- simple structure (*topology*)
- *efficient* representations
- many tools based on manifold shapes

But they are only a *subset* of all the possible shapes.

Non-manifold Shapes

- *non-manifold singularities*, i.e., points at which the manifold condition is not satisfied
- parts of *different dimensions*
- *assembly* of components (FEM analysis)
Introduction

Manifold shapes (Topological Manifold)
Each neighborhood of every point p is homeomorphic to one connected component of a ball, centered at p.

Properties
- simple structure (topology)
- efficient representations
- many tools based on manifold shapes

But they are only a subset of all the possible shapes.

Non-manifold Shapes
- non-manifold singularities, i.e., points at which the manifold condition is not satisfied
- parts of different dimensions
- assembly of components (FEM analysis)
Representing Non-Manifold Shapes

Classical approach

- Discretized by **simplicial d-complexes** of any dimension, embedded in the Euclidean space

Drawbacks (wrt non-manifolds)

- Only local connectivity for every simplex, meaningful components are not exposed explicitly
- Non-manifold singularities are not exposed directly ($d > 5$, Nabutovski, 1996)

Structural Model

Connections among meaningful components (global structure)
Classical approach

- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:
Representing Non-Manifold Shapes

Classical approach

- Discretized by *simplicial d-complexes* of any dimension, embedded in the Euclidean space
- Represented by *topological data structures*:
 - *simplices* (vertices, edges, triangles, ...)

Drawbacks (wrt non-manifolds)

- Only local connectivity for every simplex
- Meaningful components are not exposed explicitly
- Non-manifold singularities are not exposed directly (non-recognizable for $d > 5$, Nabutovski, 1996)

Structural Model

Connections among meaningful components (global structure)
Representing Non-Manifold Shapes

Classical approach

- Discretized by *simplicial d-complexes* of any dimension, embedded in the Euclidean space
- Represented by *topological data structures*:
 - *simplices* (vertices, edges, triangles,...)
 - *topological relations* for each simplex:

Drawbacks (wrt non-manifolds)

- Only local connectivity for every simplex
- Meaningful components are not exposed explicitly
- Non-manifold singularities are not exposed directly (non-recognizable for $d > 5$, Nabutovski, 1996)
Representing Non-Manifold Shapes

Classical approach

- Discretized by *simplicial d-complexes* of any dimension, embedded in the Euclidean space
- Represented by *topological data structures*:
 - *simplices* (vertices, edges, triangles, ...)
 - *topological relations* for each simplex:
 - boundary, co-boundary, adjacency
Representing Non-Manifold Shapes

Classical approach

- Discretized by *simplicial d-complexes* of any dimension, embedded in the Euclidean space.
- Represented by *topological data structures*:
 - *simplices* (vertices, edges, triangles, ...)
 - *topological relations* for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of *topological queries*

There is a large amount of research in the literature, see De Floriani and Hui, 2005 and Botsch et al., 2010.
Representing Non-Manifold Shapes

Classical approach

- Discretized by *simplicial d-complexes* of any dimension, embedded in the Euclidean space
- Represented by *topological data structures*:
 - *simplices* (vertices, edges, triangles, ...)
 - *topological relations* for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of *topological queries*

There is a large amount of research in the literature, see *De Floriani and Hui, 2005* and *Botsch et al., 2010*

Drawbacks (wrt non-manifolds)

- only *local connectivity* for every simplex
Representing Non-Manifold Shapes

Classical approach

- Discretized by *simplicial d-complexes* of any dimension, embedded in the Euclidean space
- Represented by *topological data structures*:
 - *simplices* (vertices, edges, triangles, ...)
 - *topological relations* for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of *topological queries*

There is a large amount of research in the literature, see *De Floriani and Hui, 2005* and *Botsch et al., 2010*

Drawbacks (wrt non-manifolds)

- only *local connectivity* for every simplex
- *meaningful components* are not exposed explicitly
Representing Non-Manifold Shapes

Classical approach

- Discretized by **simplicial d-complexes** of any dimension, embedded in the Euclidean space
- Represented by **topological data structures**:
 - **simplices** (vertices, edges, triangles, ...)
 - **topological relations** for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of **topological queries**

There is a large amount of research in the literature, see De Floriani and Hui, 2005 and Botsch et al., 2010

Drawbacks (wrt non-manifolds)

- only **local connectivity** for every simplex
- **meaningful components** are not exposed explicitly
- **non-manifold singularities** are not exposed directly (non recognizable for $d > 5$, Nabutovski, 1996)
Representing Non-Manifold Shapes

Classical approach

- Discretized by *simplicial d-complexes* of any dimension, embedded in the Euclidean space
- Represented by *topological data structures*:
 - *simplices* (vertices, edges, triangles,...)
 - *topological relations* for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of *topological queries*

There is a large amount of research in the literature, see *De Floriani and Hui, 2005* and *Botsch et al., 2010*

Drawbacks (wrt non-manifolds)

- only *local connectivity* for every simplex
- *meaningful components* are not exposed explicitly
- *non-manifold singularities* are not exposed directly (*non recognizable for* \(d > 5, \) *Nabutovski, 1996*)

Structural Model

connections among meaningful components (*global structure*)
Our Proposal: a Decomposition Approach

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers *valuable information* for:

- Decomposing a shape into almost manifold components (simpler topology)
- These components are connected by non-manifold singularities

Related Work (see paper)

- Rossignac et al., 1989/1999
- Desaulniers and Stewart, 1992
- De Floriani et al., 2003
- Pesco et al., 2004
- Attene et al., 2009

Key Idea of our Approach

Expose explicitly and combine combinatorial and structural information

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the MC-decomposition, Hui and De Floriani, 2007
Our Proposal: a Decomposition Approach

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers *valuable information* for:

- decomposing a shape into *almost manifold* components (simpler *topology*)
Our Proposal: a Decomposition Approach

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers *valuable information* for:

- decomposing a shape into *almost manifold* components (simpler *topology*)
- these components are connected by *non-manifold singularities*
Our Proposal: a Decomposition Approach

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers *valuable information* for:

- decomposing a shape into *almost manifold* components (simpler *topology*)
- these components are connected by *non-manifold singularities*

Related Work (see paper)

- *Rossignac et al., 1989/1999*
- *Desaulniers and Stewart, 1992*
- *De Floriani et al., 2003*
- *Pesco et al., 2004*
- *Attene et al., 2009*
Our Proposal: a Decomposition Approach

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers *valuable information* for:

- decomposing a shape into *almost manifold* components (simpler *topology*)
- these components are connected by *non-manifold singularities*

Related Work (see paper)

- Rossignac et al., 1989/1999
- Desaulniers and Stewart, 1992
- De Floriani et al., 2003
- Pesco et al., 2004
- Attene et al., 2009

Topological data structure (Local Connectivity)

Structural Model (Global Structure)
Our Proposal: a Decomposition Approach

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers *valuable information* for:

- decomposing a shape into *almost manifold* components (simpler *topology*)
- these components are connected by *non-manifold singularities*

Related Work (see paper)

- Rossignac et al., 1989/1999
- Desaulniers and Stewart, 1992
- De Floriani et al., 2003
- Pesco et al., 2004
- Attene et al., 2009

Key Idea of our Approach

Expose explicitly and combine *combinatorial* and *structural* information

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the *MC-decomposition*, *Hui and De Floriani, 2007*
Manifold-Connected (MC) Complexes

Hui and De Floriani, 2007

Given a simplicial d-complex Σ and $k \leq d$:

- **Top k-simplex**: Does not bound any other simplex.
- **Manifold** $(k-1)$-path (MC-Adjacency): Sequence of top k-simplices in Σ, where each simplex is adjacent through a $(k-1)$-simplex, bounding at most two top k-simplices.
- **Always decidable and dimension-independent**
- **MC-complex of dimension k**:
 - **Maximal manifold** $(k-1)$-path, starting from a top k-simplex σ.
 - **Representative top simplex** σ (arbitrary).
 - **Equivalence class** $[\sigma] \text{ wrt to MC-adjacency}$

Superclass of manifolds, they may contain non-manifold singularities.
Manifold-Connected (MC) Complexes Hui and De Floriani, 2007

Given a simplicial d-complex Σ and $k \leq d$:

Top k-simplex

Does not *bound* any other simplex
Manifold-Connected (MC) Complexes Hui and De Floriani, 2007

Given a simplicial d-complex Σ and $k \leq d$:

Top k-simplex

Does not *bound* any other simplex

Manifold $(k - 1)$-path (MC-Adjacency)

Sequence of top k-simplices in Σ, where each simplex is *adjacent* through a $(k - 1)$-simplex, bounding *at most two* top k-simplices
Manifold-Connected (MC) Complexes

Given a simplicial d-complex Σ and $k \leq d$:

- **Top k-simplex**
 Does not *bound* any other simplex

- **Manifold $(k - 1)$-path (MC-Adjacency)**
 Sequence of top k-simplices in Σ, where each simplex is *adjacent* through a $(k - 1)$-simplex, bounding *at most two* top k-simplices

Always *decidable* and dimension-independent
Manifold-Connected (MC) Complexes \cite{HuiDeFloriani2007}

Given a simplicial d-complex Σ and $k \leq d$:

Top k-simplex

Does not *bound* any other simplex

Manifold ($k - 1$)-path (MC-Adjacency)

Sequence of top k-simplices in Σ, where each simplex is *adjacent* through a $(k - 1)$-simplex, bounding *at most two* top k-simplices

MC-complex of dimension k

- *Maximal* manifold $(k - 1)$-path, starting from a top k-simplex σ

Always *decidable* and dimension-independent
Manifold-Connected (MC) Complexes Hui and De Floriani, 2007

Given a simplicial d-complex Σ and $k \leq d$:

Top k-simplex
Does not *bound* any other simplex

Manifold $(k - 1)$-path (MC-Adjacency)
Sequence of top k-simplices in Σ, where each simplex is *adjacent* through a $(k - 1)$-simplex, bounding *at most two* top k-simplices

MC-complex of dimension k
- *Maximal* manifold $(k - 1)$-path, starting from a top k-simplex σ
- *Representative* top simplex σ (arbitrary)

Always *decidable* and dimension-independent
Manifold-Connected (MC) Complexes Hui and De Floriani, 2007

Given a simplicial d-complex Σ and $k \leq d$:

- **Top k-simplex**

 Does not **bound** any other simplex

- **Manifold $(k - 1)$-path (MC-Adjacency)**

 Sequence of top k-simplices in Σ, where each simplex is **adjacent** through a $(k - 1)$-simplex, bounding at **most two** top k-simplices

- **MC-complex of dimension k**

 - **Maximal** manifold $(k - 1)$-path, starting from a top k-simplex σ
 - **Representative** top simplex σ (arbitrary)
 - Equivalence class $[\sigma]$ wrt to MC-adjacency

Always **decidable** and dimension-independent
Manifold-Connected (MC) Complexes
Hui and De Floriani, 2007

Given a simplicial d-complex Σ and $k \leq d$:

Top k-simplex

Does not *bound* any other simplex

Manifold $(k - 1)$-path (MC-Adjacency)

Sequence of top k-simplices in Σ, where each simplex is *adjacent* through a $(k - 1)$-simplex, bounding *at most two* top k-simplices

MC-complex of dimension k

- *Maximal* manifold $(k - 1)$-path, starting from a top k-simplex σ
- *Representative* top simplex σ (arbitrary)
- Equivalence class $[\sigma]$ wrt to MC-adjacency

Superclass of manifolds, they may contain *non-manifold singularities*
Manifold-Connected (MC) Decomposition

MC-Decomposition

- Decomposition of a simplicial complex Σ into its $\textit{MC-complexes (MC-components)}$
Manifold-Connected (MC) Decomposition

MC-Decomposition

- Decomposition of a simplicial complex Σ into its *MC-complexes* (*MC-components*)
- Unique, decidable, and dimension-independent (also for high dimensions)
Manifold-Connected (MC) Decomposition

MC-Decomposition
- Decomposition of a simplicial complex Σ into its **MC-complexes (MC-components)**
- Unique, decidable, and dimension-independent (also for high dimensions)

Examples:
- 1 MC-component
 - 1 MC-component (for manifolds)
- 6 MC-components
- 8 MC-components
- 3 MC-components
 - Common subcomplex of some non-manifold singularities
Manifold-Connected (MC) Decomposition

MC-Decomposition

- Decomposition of a simplicial complex Σ into its **MC-complexes** (MC-components)
- Unique, decidable, and dimension-independent (also for high dimensions)

MC-components’ Intersection

Common subcomplex of some **non-manifold singularities**
The Compact Manifold-Connected (MC-) graph

A two-level representation of the MC-decomposition, which integrates \textit{combinatorial} and \textit{structural} aspects.
The Compact Manifold-Connected (MC-) graph

A two-level representation of the MC-decomposition, which integrates *combinatorial* and *structural* aspects.

Lower Level (Combinatorial Aspects)

Describes a non-manifold shape by any topological data structure M_Σ *(unique)*:

- the *Incidence Simplicial (IS) data structure*, De Floriani et al., 2010
- the *Generalized Indexed data structure with Adjacencies (IA*)*, Canino et al., 2011
- *any* topological data structure for *non-manifolds* can be exploited

The Mangrove TDS Framework (Canino, 2012 - PhD. Thesis)

Tool for the fast prototyping of topological data structures

Extensible through dynamic plugins (*mangroves*)

Any type of complexes is supported

The Mangrove TDS Library is released as GPL v3 software for the scientific community at http://mangrovetds.sourceforge.net
The Compact Manifold-Connected (MC-) graph

A two-level representation of the MC-decomposition, which integrates *combinatorial* and *structural* aspects.

Lower Level (Combinatorial Aspects)

Describes a non-manifold shape by any topological data structure M_Σ (*unique*):

- the *Incidence Simplicial (IS)* data structure, *De Floriani et al., 2010*
- the *Generalized Indexed data structure with Adjacencies (IA*)*, *Canino et al., 2011*
- *any* topological data structure for *non-manifolds* can be exploited

The Mangrove TDS Framework (Canino, 2012 - PhD. Thesis)

- Tool for the *fast prototyping* of topological data structures
- *Extensible* through dynamic plugins (*mangroves*)
- *Any* type of complexes is supported

The *Mangrove TDS Library* is released as GPL v3 software for the scientific community at

http://mangrovetds.sourceforge.net
The Compact MC-graph (Structural Aspects)

Describes the *connectivity* of MC-components by a hypergraph $G^C_\Sigma = (N_\Sigma, A^C_\Sigma)$.
The Compact MC-graph (Structural Aspects)

Describes the *connectivity* of MC-components by a hypergraph $G^C_\Sigma = (\mathcal{N}_\Sigma, \mathcal{A}^C_\Sigma)$

A hypernode in \mathcal{N}_Σ
- Corresponds to one *MC-component* C
- Reference to the *representative simplex* of C
The Compact MC-graph (Structural Aspects)

Describes the *connectivity* of MC-components by a hypergraph $G^C_{\Sigma} = (\mathcal{N}_\Sigma, \mathcal{A}^C_{\Sigma})$

A hypernode in \mathcal{N}_Σ
- Corresponds to one **MC-component** C
- Reference to the **representative simplex** of C

A hyperarc a in \mathcal{A}^C_{Σ}
- Describes the **maximal** subcomplex S of non-manifold singularities, shared by a maximal list C_1, \ldots, C_k of MC-components
- References to s_a **non-manifold singularities** in S
- References to all the **representative simplices** of C_1, \ldots, C_k
The Compact MC-graph (Structural Aspects)

Describes the *connectivity* of MC-components by a hypergraph $G_C^\Sigma = (\mathcal{N}_\Sigma, \mathcal{A}_\Sigma^C)$

A hypernode in \mathcal{N}_Σ
- Corresponds to one *MC-component* C
- Reference to the *representative simplex* of C

A hyperarc a in \mathcal{A}_Σ^C
- Describes the *maximal* subcomplex S of non-manifold singularities, shared by a maximal list C_1, \ldots, C_k of MC-components
- References to s_a *non-manifold singularities* in S
- References to all the *representative simplices* of C_1, \ldots, C_k

References are directed toward simplices in \mathcal{M}_Σ

Similar to a *spatial index* on any non-manifold shape

Storage Cost

$$S_C = n_C + \sum_{a \in \mathcal{A}_\Sigma^C} (k_a + s_a)$$
Other Representations of the MC-decomposition

Properties of our Compact MC-graph

- Few hyperarcs
- Minimizes duplications of intersections
- Maximal list of MC-components in hyperarcs
Other Representations of the MC-decomposition

Our Compact MC-graph resolves all the drawbacks of:

- Pairwise MC-Graph (Boltcheva, Canino, et al., 2011)
 - Arcs \(\equiv \) intersections of only two MC-components, formed by a subcomplex of non-manifold singularities
 -Verbose due to cliques
 -Less robust wrt to simmetry

- Exploded MC-Graph (Canino and De Floriani, 2011)
 - A hyper-arc \(\equiv \) one non-manifold singularity \(\sigma \), and connects all the MC-components, bounded by \(\sigma \)
 -Too much hyperarcs
 -Many duplications of the same MC-components in hyperarcs

Properties of our Compact MC-graph

- Few hyperarcs
- Minimizes duplications of intersections
- Maximal list of MC-components in hyperarcs

Our Compact MC-graph resolves all the drawbacks of:
Other Representations of the MC-decomposition

Properties of our Compact MC-graph
- Few hyperarcs
- Minimizes duplications of intersections
- Maximal list of MC-components in hyperarcs

Our Compact MC-graph resolves all the drawbacks of:

Pairwise MC-Graph (Boltcheva, Canino, et al., 2011)
Arcs \equiv intersections of only two MC-Components, formed by a subcomplex of non-manifold singularities

Verbose due to cliques
Less robust wrt to symmetry
Other Representations of the MC-decomposition

Properties of our Compact MC-graph
- Few hyperarcs
- Minimizes duplications of intersections
- Maximal list of MC-components in hyperarcs

Our Compact MC-graph resolves all the drawbacks of:

Pairwise MC-Graph (Boltcheva, Canino, et al., 2011)
Arcs \equiv intersections of only two MC-Components, formed by a subcomplex of non-manifold singularities
- Verbose due to cliques
- Less robust wrt to symmetry

Exploded MC-Graph (Canino and De Floriani, 2011)
A hyper-arc \equiv one non-manifold singularity σ, and connects all the MC-components, bounded by σ
- Too much hyperarcs
- Many duplications of the same MC-components in hyperarcs
Experimental Results (with our Mangrove TDS Library)

Digital shapes are freely available from http://indy.disi.unige.it/nmcollection

2D shapes (Storage cost and Properties of MC-graphs)

<table>
<thead>
<tr>
<th>Shape</th>
<th>n_C</th>
<th>a_E</th>
<th>a_P</th>
<th>a_C</th>
<th>S_E</th>
<th>S_P</th>
<th>S_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter</td>
<td>45</td>
<td>641</td>
<td>79</td>
<td>48</td>
<td>3.8k</td>
<td>2.6k</td>
<td>1.2k</td>
</tr>
<tr>
<td>Chandelier</td>
<td>130</td>
<td>616</td>
<td>328</td>
<td>96</td>
<td>2.6k</td>
<td>2.6k</td>
<td>1k</td>
</tr>
<tr>
<td>Pinched Pie</td>
<td>120</td>
<td>1.4k</td>
<td>1.4k</td>
<td>192</td>
<td>4.8k</td>
<td>9.6k</td>
<td>1.9k</td>
</tr>
<tr>
<td>Tower</td>
<td>169</td>
<td>1.4k</td>
<td>13k</td>
<td>165</td>
<td>5.9k</td>
<td>43k</td>
<td>2.1k</td>
</tr>
</tbody>
</table>

n_C: #MC-components
a_E, a_P, a_C: #(hyper)arcs
S_E, S_P, S_C: storage costs

For 2D shapes:

\[
a_E \approx 8.9 \times a_C, \ a_P \approx 23 \times a_C
\]

\[
S_E \approx 2.8 \times S_C, \ S_P \approx 7.7 \times S_C
\]

3D shapes (Storage cost and Properties of MC-graphs)

<table>
<thead>
<tr>
<th>Shape</th>
<th>n_C</th>
<th>a_E</th>
<th>a_P</th>
<th>a_C</th>
<th>S_E</th>
<th>S_P</th>
<th>S_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chime</td>
<td>27</td>
<td>29</td>
<td>47</td>
<td>28</td>
<td>133</td>
<td>210</td>
<td>127</td>
</tr>
<tr>
<td>Flasks</td>
<td>8</td>
<td>76</td>
<td>10</td>
<td>6</td>
<td>300</td>
<td>232</td>
<td>98</td>
</tr>
<tr>
<td>Teapot</td>
<td>2.9k</td>
<td>1.2k</td>
<td>18.1k</td>
<td>1k</td>
<td>10.4k</td>
<td>57.5k</td>
<td>10.1k</td>
</tr>
<tr>
<td>Wheel</td>
<td>115</td>
<td>136</td>
<td>520</td>
<td>88</td>
<td>675</td>
<td>1.7k</td>
<td>563</td>
</tr>
</tbody>
</table>

For 3D shapes:

\[
a_E \approx 4.1 \times a_C, \ a_P \approx 6.8 \times a_C
\]

\[
S_E \approx 1.6 \times S_C, \ S_P \approx 3.2 \times S_C
\]

Our experimental results confirm properties of the Compact MC-graph
Experimental Results (cont’d)

Comparisons with the Incidence Graph, Edelsbrunner, 1987

<table>
<thead>
<tr>
<th>Shape</th>
<th>S_C</th>
<th>S_{IA^*}</th>
<th>S_{IG}</th>
<th>$S_C + S_{IA^*}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter</td>
<td>1.2k</td>
<td>52k</td>
<td>95k</td>
<td>53.2k</td>
</tr>
<tr>
<td>Chandelier</td>
<td>1k</td>
<td>120k</td>
<td>220k</td>
<td>121k</td>
</tr>
<tr>
<td>Tower</td>
<td>2.1k</td>
<td>124k</td>
<td>221k</td>
<td>126.1k</td>
</tr>
<tr>
<td>Flasks</td>
<td>98</td>
<td>29k</td>
<td>104k</td>
<td>29.1k</td>
</tr>
<tr>
<td>Teapot</td>
<td>10.1k</td>
<td>85k</td>
<td>220k</td>
<td>95.1k</td>
</tr>
<tr>
<td>Sierpinski 3D</td>
<td>458k</td>
<td>524k</td>
<td>3.67M</td>
<td>0.98M</td>
</tr>
<tr>
<td>Sierpinski 4D</td>
<td>664k</td>
<td>781k</td>
<td>11.6M</td>
<td>1.44M</td>
</tr>
<tr>
<td>Sierpinski 5D</td>
<td>467k</td>
<td>559.6k</td>
<td>7.7M</td>
<td>1M</td>
</tr>
</tbody>
</table>

Combined with the IA* data structure, *Canino et al., 2011*

S_{IA^*}: storage cost of the IA*

S_{IG}: storage cost of the IG

For 2D shapes: $S_{IG} \approx 1.45 \times S_{IA^*}$
For 3D shapes: $S_{IG} \approx 3.2 \times S_{IA^*}$
For 4D shapes: $S_{IG} \approx 8 \times S_{IA^*}$
For 5D shapes: $S_{IG} \approx 7.7 \times S_{IA^*}$
Experimental Results (cont’d)

Comparisons with the Incidence Graph, Edelsbrunner, 1987

<table>
<thead>
<tr>
<th>Shape</th>
<th>S_C</th>
<th>S_{IA^*}</th>
<th>S_{IG}</th>
<th>$S_C + S_{IA^*}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter</td>
<td>1.2k</td>
<td>52k</td>
<td>95k</td>
<td>53.2k</td>
</tr>
<tr>
<td>Chandelier</td>
<td>1k</td>
<td>120k</td>
<td>220k</td>
<td>121k</td>
</tr>
<tr>
<td>Tower</td>
<td>2.1k</td>
<td>124k</td>
<td>221k</td>
<td>126.1k</td>
</tr>
<tr>
<td>Flasks</td>
<td>98</td>
<td>29k</td>
<td>104k</td>
<td>29.1k</td>
</tr>
<tr>
<td>Teapot</td>
<td>10.1k</td>
<td>85k</td>
<td>220k</td>
<td>95.1k</td>
</tr>
<tr>
<td>Sierpinski 3D</td>
<td>458k</td>
<td>524k</td>
<td>3.67M</td>
<td>0.98M</td>
</tr>
<tr>
<td>Sierpinski 4D</td>
<td>664k</td>
<td>781k</td>
<td>11.6M</td>
<td>1.44M</td>
</tr>
<tr>
<td>Sierpinski 5D</td>
<td>467k</td>
<td>559.6k</td>
<td>7.7M</td>
<td>1M</td>
</tr>
</tbody>
</table>

Combined with the IA* data structure, Canino et al., 2011

S_{IA^*}: storage cost of the IA*
S_{IG}: storage cost of the IG

For 2D shapes: $S_{IG} \approx 1.45 \times S_{IA^*}$
For 3D shapes: $S_{IG} \approx 3.2 \times S_{IA^*}$
For 4D shapes: $S_{IG} \approx 8 \times S_{IA^*}$
For 5D shapes: $S_{IG} \approx 7.7 \times S_{IA^*}$

Interesting result (wrt the Incidence Graph)

The Compact MC-graph, combined with the IA* data structure, is more compact than the incidence graph:

- our contribution is a structural model (topological + structural aspects)
- the IG data structure is a topological data structure (local connectivity)
Conclusions and Future Work

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the

MC-decomposition, Hui and De Floriani, 2007
Conclusions and Future Work

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the
MC-decomposition, Hui and De Floriani, 2007

Key Idea

Structural model, which integrates combinatorial and structural information of any non-manifold shape.
Conclusions and Future Work

Compact Manifold-Connected (MC-) graph
Two-level graph-based representation of the MC-decomposition, Hui and De Floriani, 2007

Key Idea
Structural model, which integrates combinatorial and structural information of any non-manifold shape

Topological data structure (Local Connectivity)
Structural model (Global Structure)
Semantic model (Future Work)
Conclusions and Future Work

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the Mc-decomposition, Hui and De Floriani, 2007

Key Idea

Structural model, which integrates combinatorial and structural information of any non-manifold shape

Topological data structure (Local Connectivity)

Structural model (Global Structure)

Semantic model (Future Work)

Current Work

- extension towards cell complexes
Conclusions and Future Work

Compact Manifold-Connected (MC-) graph
Two-level graph-based representation of the MC-decomposition, Hui and De Floriani, 2007

Key Idea
Structural model, which integrates combinatorial and structural information of any non-manifold shape

Topological data structure (Local Connectivity)
Structural model (Global Structure)
Semantic model (Future Work)

Current Work
- extension towards cell complexes
- common framework for structural models
Conclusions and Future Work

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the **MC-decomposition**, Hui and De Floriani, 2007

Key Idea

Structural model, which integrates **combinatorial** and **structural** information of any non-manifold shape

Topological data structure (Local Connectivity)
Structural model (Global Structure)
Semantic model (Future Work)

Current Work

- extension towards cell complexes
- common framework for structural models

Future Applications

- shape annotation and retrieval
Conclusions and Future Work

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the MC-decomposition, Hui and De Floriani, 2007

Key Idea

Structural model, which integrates combinatorial and structural information of any non-manifold shape

Topological data structure (Local Connectivity)

Structural model (Global Structure)

Semantic model (Future Work)

Current Work

• extension towards cell complexes
• common framework for structural models

Future Applications

• shape annotation and retrieval
• identification of form features
Conclusions and Future Work

Compact Manifold-Connected (MC-) graph
Two-level graph-based representation of the MC-decomposition, Hui and De Floriani, 2007

Key Idea

Structural model, which integrates **combinatorial** and **structural** information of any non-manifold shape

Topological data structure
(Local Connectivity)

Structural model
(Global Structure)

Semantic model
(Future Work)

Current Work
- extension towards cell complexes
- common framework for structural models

Future Applications
- shape annotation and retrieval
- identification of form features
- computation of \(\mathbb{Z} \)-homology
Acknowledgements

We thank:

- anonymous reviewers for their useful suggestions
- the Italian Ministry of Education and Research (the PRIN 2009 program)
- the National Science Foundation (contract IIS-1116747)

These slides are available on
http://www.disi.unige.it/person/CaninoD

Thank you much for your attention!
Interesting Papers and References

- M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, B. Lévy, *Polygon Mesh Processing*, CRC Press, 2010
Interesting Papers and References (cont’d)