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Abstract

The cost and time to develop a drug continues to be a major barrier to widespread distribution of medication. Although the
genomic revolution appears to have had little impact on this problem, and might even have exacerbated it because of the
flood of additional and usually ineffective leads, the emergence of high throughput resources promises the possibility of
rapid, reliable and systematic identification of approved drugs for originally unintended uses. In this paper we develop and
apply a method for identifying such repositioned drug candidates against breast cancer, myelogenous leukemia and
prostate cancer by looking for inverse correlations between the most perturbed gene expression levels in human cancer
tissue and the most perturbed expression levels induced by bioactive compounds. The method uses variable gene
signatures to identify bioactive compounds that modulate a given disease. This is in contrast to previous methods that use
small and fixed signatures. This strategy is based on the observation that diseases stem from failed/modified cellular
functions, irrespective of the particular genes that contribute to the function, i.e., this strategy targets the functional
signatures for a given cancer. This function-based strategy broadens the search space for the effective drugs with an
impressive hit rate. Among the 79, 94 and 88 candidate drugs for breast cancer, myelogenous leukemia and prostate cancer,
32%, 13% and 17% respectively are either FDA-approved/in-clinical-trial drugs, or drugs with suggestive literature
evidences, with an FDR of 0.01. These findings indicate that the method presented here could lead to a substantial increase
in efficiency in drug discovery and development, and has potential application for the personalized medicine.
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Introduction

The average research and development (R&D) cost for the 10-

odd years to develop a new pharmaceutical now exceeds a billion

dollars [1,2]; anti-cancer drugs being especially costly [2]. The

process encompasses compound identification, toxicity testing in

animals, early phase clinical trails, and efficacy in late phase trials.

The failure of more than 90% of drugs during development [1], is

perhaps the single greatest contributor to overall cost of

pharmaceutical R&D. This cost in time and money can in

principle be substantially reduced by repositioning drugs that are

already approved for other purposes.

One way to screen approved drugs for new purposes is

computationally. Computational chemistry provides valuable

contributions in hit- and lead-compound discovery [3]. Systems

biology approaches have also been recently used to capture the

complexity of drug discovery and repositioning [4,5]. Computa-

tional approaches have rarely, however, been a key contributor to

drug discovery or repositioning [3]. This is in part because the

majority of the studies focus only a few genes/proteins [6], either

as the drug targets, or ‘‘disease signatures’’ while there is increasing

evidence that many effective drugs act on multiple rather than

single targets [4], and evidence is starting to emerge that

pathologies can be a consequence of small abnormalities in many

genes, rather than major abnormalities in a few genes [7,8]. In

addition, many existing methods constrain search space by

imposing similarity requirements–including similarity of ligand

structures [9], expression profile of drug response [10], topological

similarity of target-drug, drug-drug and disease-drug [11,12]

networks, and side-effect similarity [13], which diminishes the

effectiveness of de novo drug discovery.

The main idea underlying a number of current methods,

including the one presented here, is to identify genes whose

expressions are reverse correlated under disease and drug

perturbations [14,15,16]. Our approach, however, uses functional

signatures rather than gene signatures. Ideally a functional

signature would be represented by pathways or other functional

modules that are perturbed by the disease and restored by drugs.

The utility of such a definition is limited by lack of a

comprehensive set of functional modules/pathways. We therefore

adapted an alternative approach that identifies a drug for

repositioning when the reverse ordered lists of disease perturbed
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and drug perturbed genes has a statistically significant overlap. We

thereby remove the requirement for representing a disease by a

fixed number of genes. Because we use a large number of genes in

our analysis, we filter out genes that are expressed differently

between untreated cell line and disease samples; a step that is

generally not present in gene signature based methods.

Our approach allows the detection of heterogeneous drug

candidates that may restore cellular functions through different

paths, in keeping with the idea that drugs acting selectively on

multiple targets may be more efficacious than single-target agents,

and that a particular physiological process may be modulated by

multiple paths. This is in contrast to other approaches which either

use a fixed small number of genes as the disease signature

[14,15,16] or limit candidates to drugs whose properties (such as

expression profiles) are similar to those of existing drugs

[9,10,11,12,13].

As with other approaches [14,15,16] we utilize two databases:

the Connectivity Map (CMAP) which provides information on

expressed genes in cancer cell lines perturbed by bioactive

compounds [6,14], and the Gene Expression Omnibus (GEO)

[17], which stores transcript levels for various cancers. We

consider as potential candidates, compounds that down (up)-

regulate cell-line genes which are up (down)-regulated in

transformed tissue cells. We use a three-step strategy to identify

candidate compounds. First, we compare the expression of genes

in the untreated cell line and the cancer tissue sample, and retain

genes that are expressed in both. Second, we download the ranked

list of perturbed cell line genes from CMAP, and generate a

ranked list of genes from tissue samples ranked by differential

expression. Both steps are designed to make the expression data

comparable between cell lines and cancer samples. Finally, as

shown in Fig. 1, we compare the K (window size) most up-

regulated genes in the tissue (UC) against the K most down-

regulated genes in the cell line list (DB), for each compound. We

assume a compound is a candidate for repositioning if there is

significant number of overlapping genes between UC and DB, and

vice versa.

We illustrate that this new strategy with database integration

and straightforward statistical analysis is able to identify a

remarkably large number of plausible candidates for myelogenous

leukemia, prostate and breast cancer. Of the more than 1300

CMAP compounds, 4 are currently in use against breast cancer, 5

against myelogenous leukemia and 3 against prostate cancer. Our

analysis returned 1 of the 4, 2 of the 5 and 1 of the 3. The relative

plausibility of the candidates is further indicated by the fact that

11/45, 5/50 and 6/50 candidates for repositioning against breast

cancer, myelogenous leukemia and prostate cancer, respectively,

are currently in clinical trials for those diseases, these statistics

summarizing the most important indicators of performance. These

results not only demonstrate the effectiveness of the approach, but

also hint the potential application of the approach for the

personalized medicine by reverse-correlating of patient’s expres-

sion profile against the expression profiles of all available drugs, as

detailed in the discussion section.

Results

Statistics of significant bioactive compounds
Breast cancer. As shown in Table 1, we detected 28

bioactive compounds from correlations between genes that are

up-regulated in cancer (UC) and down-regulated in response to

bioactive compounds (DB), and another 62 by comparing genes

down-regulated in cancer (DC) to those up-regulated by bioactive

compounds (UB). Of the 90, 80 either up-regulate down-regulated

cancer genes (DC/UB), or down-regulate up-regulated cancer

genes (UC/DB); another 10 display duality; i.e. they do both.

Consequently, we identified 80 distinct compounds; 46 of them are

FDA approved. CMAP includes 4 FDA approved drugs for breast

cancer. We recovered one of them, fulvestrant, which displays

duality (Table 2 and Table S1); i.e. it down-regulates genes that

are highly up-regulated in breast cancer, and also up-regulates

genes that are highly down-regulated. The remaining 45 are FDA

approved for diseases other than breast cancer and are therefore

candidates for repositioning.

Myelogenous leukemia. We detected 89 (UC/DB) and 26

(DC/UB) bioactive compounds for myelogenous leukemia, 96 of

which are distinct (19 show duality), and of those, 52 are FDA

approved. Of the five CMAP compounds currently in use against

myelogenous leukemia, we recovered 2 (etoposide and

prednisone), leaving 50 candidates for repositioning.

Prostate cancer. We detected 83 (UC/DB) and 88 (DC/UB)

bioactive compounds for prostate cancer. Of the 171, 89 are

distinct and 51 of these are FDA approved. We recovered one of

the 3 compounds in CMAP, which are FDA approved for prostate

cancer (diethylstidbestrol), leaving 50 potential candidates for

repositioning.

Supporting evidence
(i) Recall. As indicated above, our method recovered 1/4, 2/

5 and 1/3 of the CMAP compounds that are FDA approved for

breast cancer, myelogenous leukemia and prostate cancer,

respectively. We also note, as outlined below (iii), less direct, but

nonetheless important supporting evidence for potential efficacy of

a substantial number of identified compounds.

(ii) Clinical trials. Twenty-two of the predicted distinct

compounds that are FDA approved, and are consequently

candidates for repositioning, are in fact in clinical trials: 11 for

breast cancer, 5 for leukemia and 6 for prostate cancer,

representing 24% (11/45), 10% (5/50) and 12% (6/50) of the

distinct candidates for those diseases.

(iii) Other evidence. As summarized in Tables 1 and S1,

published results provide suggestive evidence for the potential

efficacy of an additional 13 distinct breast cancer candidates, 5

distinct leukemia candidates and 8 distinct prostate cancer

candidates. Six of the 13, three of the 5 and seven of the 8 are

FDA approved drugs, and are therefore candidates for

repositioning.

Author Summary

The effective drug of a given disease is aimed to bring
abnormal functions associated with disease back to the
normal state. Using expression profile as the surrogate
marker of the cellular function, we introduce a novel
procedure to identify candidate therapeutics by searching
for those bioactive compounds that either down-regulate
abnormally over-expressed genes, or up-regulate those
that are abnormally under-expressed. We show that the
approach detects a pool of plausible candidates as
repositioning/new drugs. In contrast to previous studies,
our approach uses a variable big number of genes and/or
gene combinations as a representation of functional
signatures to identify bioactive compounds that modulate
a given disease, irrespective of the particular genes that
contribute to the cellular functions; therefore it covers
potential drugs with heterogeneous properties. The
method may also have potential application for the
personalized medicine.

Functional Signatures for Drug Repositioning
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(iv) Functional plausibility. We defined perturbed

pathways as over-represented in genes that are significantly up

or down-regulated in diseased relative normal tissue, as

explained in Methods. We expect and find that for a given

disease, a number of pathways is perturbed by multiple

compounds. As elaborated below, identification of common

Figure 1. The comparison of up- or down-regulated genes between each pair of the gene-expression signature from the CMAP and
the gene-expression signature from the GEO. The parameter k indicates the preselected number of up- or down-regulated genes. UC (Top
ranking genes in a Cancer type) and UB (Top ranking genes with a Bioactive compound) represent up-regulated genes in the GEO and the CMAP
respectively, whereas DC (Botom ranking genes in a Cancer type) and DB (Bottom ranking gene with a Bioactive compound) represent down-
regulated genes in the GEO and the CMAPs respectively.
doi:10.1371/journal.pcbi.1002347.g001

Table 1. Bioactive compounds identified with optimal parameters.

Total compounds in CMAP 911 840 858

Target Disease Breast Cancer Myelogenous leukemia Prostate Cancer

Compounds that are FDA drugs 509 460 482

UC/DB

FDA drug in CMAP for target disease 4 5 3

Optimized parameter size 1200 700 7000

Total Predictions (a) 28 89 83

Predictions that are FDA drugs for other disease 12 47 44

Predicted FDA drugs for target disease (b) 1 2 1

Predictions with other supporting evidence (c) 9 (4 in clinical trials) 8 (5 in clinical trial) 13 (5 in clinical trials)

Total no. of predictions having supporting evidence (b+c) 10 10 14

Predictions for which trials failed (d) 2 1 1

Predicted compounds of unknown efficacy (f) [a = b+c+d+f] 16 78 68

DC/UB

Optimized parameter size 1400 800 5200

Total predictions (a) 62 26 88

Predictions that are FDA drugs for other disease 38 11 50

Predicted FDA drugs for target disease (b) 1 1 1

Predictions with other supporting evidence (c) 19 (10 in clinical trials) 4 13 (6 in clinical trials)

Total no. of predictions having supporting evidence (b+c) 20 5 14

Predictions for which trials failed (d) 3 1 1

Predicted compounds of unknown efficacy (f) [a = b+c+d+f] 39 20 73

Among total 1309 compounds in CMAP, 913 (510 are FDA approved drugs) were used in this study. Supporting evidence is based on direct literature search or the
ClinicalTrial.gov database. ‘‘Total compounds in CMAP’’ indicates the number of compounds used in the CMAP. ‘‘Compounds that are FDA drugs’’ counts number of
FDA approved drugs in the ‘‘Total compounds in CMAP’’. ‘‘Predicted FDA drugs for target disease’’ counts in-use drugs for the target disease in CMAP.
doi:10.1371/journal.pcbi.1002347.t001

Functional Signatures for Drug Repositioning
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processes could provide clues about cancer biogenesis,

mechanism and treatment. We look for common processes

using a tandem approach: starting with pathway analysis for the

most specific relations, and Gene Ontology analysis to search for

higher order connections. We show that although the gene sets

used for reverse-correlation may be different for different drug

candidates, these genes involve many functions common to the

target cancer.

Table 2. List of repositioning candidates for three cancers.

Results of UC/DB Results of DC/UB

Breast Cancer Fulvestrant*1, Amiloride*, Dizocilpine1, Estradiol* (Ph3),
Irinotecan* (Ph 2)1, Metergoline, Nocodaole,
Sirolimus* (Ph 2)1,Thioridazine*, Valproic acid*(Ph2)1,
Amoxicillin*, Promethazine*, Adenosine phosphate,
Benperidol1, Benserazide, Chlortetracycline*1,
Desoxycortone1, Dexibuprofen, Domperidone*,
Galantamine, Nilutamide*1, Pirinixic acid,
Propranolol*, Rolitetracycline, Tiletamine,
Troleandomycin*, Xylazine, Zaprinast

Fulvestrant*1, Artemisinn, Bupropion*(Ph4), Dexamethasone*(Ph3),
Dizocilpine1, Dydrogesterone*, Etoposide*(Ph2), Gabapentin*(Ph3),
Irinotecan*(Ph 2)1, Mestranol, Methotrexate*(Ph3), Nimesulide,
Nomegestrol, Novobiocin*, Prochlorperazine*(Ph3), Sirolimus*(Ph2)1,
Testosterone*(Ph2), Valproic acid* (Ph2)1, Trifluoperazine*, Troglitazone*,
Amiodarone*, Fluoxetine*, Hycanthone, Acenocoumarol, Amikacin*,
Azacitidine*, Benperidol1, Betazole*, Cetirizine*, Chlorpropamide*,
Chlortetracycline*1, Chlorzoxazone*, Clenbuterol, Clozapine*,
Debrisoquine, Desoxycortone1, Dinoprostone*, Dioxybenzone,
Domperidone1, Etynodiol*, Eucatropine, Felodipine*, Gentamicin*,
Guaifenesin*, Guanadrel*, Iohexol, Ketanserin, Lorglumide,
Mefexamide, Metampicillin, Moroxydine, Mycophenolic acid*,
Naphazolin, Nicardipine*, Nifenazone, Nilutamide*1, Nimodipine*,
Phenoxybenzamine*, Primaquine*, Tetroquinone, Topiramate*,
Tubocurarine chloride*

Acute myeloid
leukemia

Etoposide*1, Prednisone*, Alvespimycin(Ph1), Ascorbic
acid(Ph2), Disulfiram*1, Estradiol*1, Etodolac*(Ph2),
Nabumetone*, Tanespimycin(Ph1), Thalidomide*(Ph2),
Tranexamid acid*1, Acemetacin, Acenocoumarol,
Alfuzosin*, Alprostadil*, Amikacin*, Astemizole, Atropine
methonitrate, Atropine oxide1, Benzocaine, Brinzolamide*1,
Chloroquine*, Chlorphenamine*1, Chlorpromazine*,
Ciprofloxacin*, Clenbuterol1, Clorgiline, Colforsin1,
Cotinine, Dehydrocholic acid, Desipramine, Diazoxide*,
Dihydroergotamine*, Dinoprost, Diperodon1, Dosulepin,
Doxylamine, Enoxacin*, Furosemide*, Glafenine, Glipizide*,
Haloperidol*, Hycanthone, Isoconazole, Isoniazid*, Ivermectin*,
Loxapine*, Mafenide1, Mefloquine*1, Mepacrine1, Mepenzolate
bromide*, Metergoline, Methylergometrine*1, Metitepine,
Metrizamide*, Miconazole*, Minocycline*, Minoxidil*,
Molsidomine, Mometasone*, Naltrexone*, Nicardipine*,
Nicergoline, Nomifensine1, Norfloxacin*, Orciprenaline*,
Oxolinic acid1, Oxybuprocaine*, Oxybutynin*,
Pentetrazol, Pergolide*, Perphenazine*, Phenindione*, Pindolol*,
Puromycin, Pyrantel1, Pyridoxine*, Pyrithyldione, Quinpirole,
Streptomycin*, Sulfadiazine*, Sulpiride, Tamoxifen*, Thioproperazine,
Thioridazine*1, Ticlopidine*, Triflusal, Yohimbic acid, Zaprinast1

Etoposide*1, Estradiol*1, Disulfiram*1, Nicrosamide,
Nocodazole, Tranexamic acid*1, Atropine oxide1, Brinzolamide*1,
Bromocriptine*, Chlorphenamine*1, Clenbuterol1, Colforsin1,
Diflunisal*, Diperodon1, Lanatoside c, Mefloquine*1,
Mepacrine1, Methylergometrine*1, Neomycin*, Nomifensine1,
Oxolinic acid1, Pyrantel1, Suloctidil, Thioridazine*1, Zaprinast1

Prostate
Cancer

Diethylstilbestrol*1, Alprostadil*(Ph2)1, Chenodeoxycholic
acid*1, Danazol*1, Deferoxamine*1, Desipramine1, Disulfiram*1,
Fluvastatin*1, Hydrocortisone*(Ph3)1, Mycophenolic acid*1,
Paclitaxel*(Ph3)1, Sirolimus*(Ph2)1, Sulindac*1,
Tanespimycin(Ph2)1, Nifedipine*1, Adiphenine1,
Alprenolol1, Alverine,Amiprilose1, Articaine1, Azapropazone1,
Beclometasone*1, Benzathine benzylpenicillin1, Biotin1,
Brompheniramine*1, Cefalotin*1, Chlormezanone*1,
Chlortalidone*1, Clorsulon1,Dapsone*1, Debrisoquine1,
Dihydroergotamine*1, Dioxybenzone1, Disopyramide*1,
Dizocilpine1, Domperidone1, Ethaverine1, Ethionamide*1,
Flecainide*1, Guanabenz*1, Guanadrel*1, Homochlorcyclizine1,
Iohexol1, Isoniazid*1, Isoxicam1, Levocabastine*1, Lidocaine*1,
Lynestrenol1, Mafenide1, Mefexamide1, Memantine*1,
Metampicillin1, Metergoline1, Metixene*1, Mianserin1,
Mometasone*1, Moxonidine1, Naftifine*, Nicergoline1,
Niclosamide1, Nicotinic acid*1, Ondansetron*1, Orphenadrine*1,
Oxantel1, Oxyphenbutazone*1, Pergolide*1,
Perphenazine*1, Pimozide*1, Propoxycaine1, Pyrithyldione1,
Ribavirin*1, Sisomicin1, Spiperone1, Spiramycin1,
Spironolactone*1, Sulfacetamide*1, Tacrine*1, Terguride1,
Thioproperazine1, Tolazamide*1, Tolbutamide*1,
Triflupromazine1, Urapidil1

Diethylstilbestrol*1, Alprostadil*(Ph2)1, Chenodeoxycholic acid*1,
Ciclosporin*(Ph3), Danazol*1, Deferoxamine*1, Desipramine1,
Disulfiram*1, Hydrocortisone*(Ph3)1, Mycophenolic acid*1,
Paclitaxel*(Ph3)1, Sirolimus*(Ph2)1, Sulindac*1, Tanespimycin(Ph 2)1,
Nifedipine*1, Adiphenine1, Alprenolol1, Amiprilose1, Articaine1,
Azapropazone1, Beclometasone*1, Benzathine benzylpenicillin1,
Biotin1, Brompheniramine*1, Cefalotin*1, Chlormezanone*1,
Chlortalidone*1, Clorsulon1, Dapsone*1, Debrisoquine1,
Demeclocycline*, Dihydroergotamine*1, Dioxybenzone1, Disopyramide*1,
Dizocilpine1, Domperidone1, Ethaverine1, Ethionamide*1,
Flecainide*1, Fluvastatin*1, Guanabenz*1, Guanadrel*1,
Homochlorcyclizine1, Iohexol1, Isoniazid*1, Isoxicam1, Levocabastine*1,
Lidocaine*1, Lynestrenol1, Mafenide1, Mefexamide1, Memantine*1,
Metampicillin1, Metergoline1, Metixene*1, Mianserin1, Mometasone*1,
Moxonidine1, Naftifine*1, Netilmicin*, Nicergoline1, Niclosamide1,
Nicotinic acid*1, Ondansetron*1, Orphenadrine*1, Oxantel1,
Oxyphenbutazone*1, Pergolide*, Perphenazine*1, Pimozide*1,
Propoxycaine1, Pyrithyldione1, Ribavirin*1, Rifampicin*, Sisomicin1,
Spiperone1, Spiramycin1,S pironolactone*1, Sulfacetamide*1,
Sulfadiazine*, Tacrine*, Terguride1, Thioproperazine1,Tolazamide*1,
Tolbutamide*, Triamterene*, Triflupromazine1, Urapidil1

FDA approved compounds are marked with (*); Compounds showing duality with (1); Color of candidates match to the FDA-approved drug for the corresponding
cancer, e.g. Tamoxifen is FDA-approved drug for breast cancer and is predicted as a repositioning candidate for acute myeloid leukemia. Words such as ‘‘Ph2’’ in the
bracket of some predictions indicate that the corresponding drug is in the phase 2 clinical trial according to ClinicalTrial.gov at the time when the manuscript is
prepared.
doi:10.1371/journal.pcbi.1002347.t002

Functional Signatures for Drug Repositioning
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Pathways. We mapped highly up/down regulated genes (i.e.

those that are within our optimized windows (Table 1)) for a given

cancer onto KEGG pathways [18], and computed the Fisher

probability of chance allocation for each pathway, accepting only

pathways with p-values below 0.05. We found 9 pathways over-

represented in breast cancer with 7 in UC/DB and 2 in DC/UB.

The same analysis for myelogenous leukemia yielded 8 pathways –

5 in UC/DB and 3 in DC/UB (Fig. 2 and Table S6). The

pathways, as well as the corresponding top-ranking genes for the

two cancers for identified compounds are listed in Table S2 and

Table S3. For both cancers, there are no overlapping pathways

between UC/DB and DC/UB, indicating clear separation of up-

regulated and down-regulated pathways. The bacterial invasion of

epithelial cells, ErbB signaling, and focal adhesion pathways

appear to be strongly implicated in breast cancer, since almost all

identified compounds strongly perturb genes that fall into each of

those pathways (Fig. 2). For myelogenous leukemia, on the other

hand, the most strongly implicated pathways—apoptosis and the

cell cycle—each have genes that are perturbed by only slightly

more than 70% of the identified compounds. There is no overlap

of pathways between breast cancer and myelogenous leukemia,

even though alterations appear in a number of processes common

to both [19].

Over-represented pathways for breast cancer. Predicted

drug candidates for breast cancer are aimed at restoring

expression of genes that are up-regulated by the disease in seven

pathways: adherens junction, focal adhesion, ErbB signaling,

riboflavin metabolism, thiamine metabolism, nucleotide excision

repair and bacterial invasion of epithelial cells. The inhibition of

over-expressed genes in both the adherens junction and focal

adhesion pathways hints at the critical role of endothelial barrier

enhancement [20] to impede cancer cell extravasation. The over-

representation of the bacterial invasion pathway, on the other

hand, indicates augmented breast cancer cell invasiveness and

adhesiveness under conditions of bacterial infection. This suggests

that the increased risk of metastasis due to infection could be the

result of direct interaction of infectious bacteria, and not just

bacterially induced inflammation [21].

The involvement of the ErbB signaling pathway is not surprising

– it is well-known that the ErbB protein family or epidermal

growth factor receptor (EGFR) family, especially ErbB-2 (HER-2),

is often over-expressed with aggressive clinical behavior and poor

outcome in patients with breast cancer [22]. In addition, the dual

inhibition of the focal adhesion and EGFR signaling pathways can

cooperatively enhance apoptosis in breast cancers [23]. The

identification of these pathways is consistent with the recent

development of therapy for breast cancer, i.e., targeting of ErbB-2

with trastuzumab, and vascular endothelial growth factor

(VEGFA) with bevacizumab in combination with chemotherapy

has proven to be a milestone in molecular targeted therapy for

breast cancer [24].

The over-representation of both the riboflavin (vitamin B2)

metabolism and thiamine (vitamin B1) metabolism pathways is

consistent with previously noted connections between vitamin B

complex and breast cancer [25]. In addition the serum levels of the

estrogen inducible riboflavin carrier protein, which occupies a key

position in riboflavin metabolism, may be useful as a new marker

to predict early-stage breast cancer [26].

Finally, the nucleotide excision repair pathway corrects DNA

damage caused by environmental toxins including cigarette smoke

and ultraviolet radiation. Polymorphisms in this pathway have

been reported in breast cancer patients [27], suggesting the

possibility of impaired repair and consequent accumulation of

mutations. More specifically a number of genes in this pathway,

such as ERCC4 (Table S2), are tightly associated with breast

cancer [28]. In addition, one of the important cancer-related

genes, P53, regulates excision repair through DNA damage

response genes such as GADD45 [29].

Genes whose expression is repressed by breast cancer and

increased by predicted drug candidates (DC/UB) are over-

Figure 2. Over-represented pathways for breast cancer and myelogenous leukemia. The horizontal axis lists the pathways and the vertical
axis represents the percentage of identified compounds that perturb the pathway. AD: Adherens junction, B: Bacterial invasion of epithelial cells, E:
ErbB signaling pathway, F: Focal adhesion, M: Riboflavin metabolism, N: Nucleotide excision repair, R: Ribosome, T: Thiamine metabolism, D: Drug
metabolism - cytochrome P450, G: Glycerolipid metabolism, GL: Glycerophospholipid metabolism, GPI: Glycosylphosphatidylinositol (GPI)-anchor
biosynthesis, VA: Vascular smooth muscle contraction, TGF: TGF-bsignaling pathway, C: Cell cycle, A: Apoptosis, TC: T cell receptor signaling.
doi:10.1371/journal.pcbi.1002347.g002

Functional Signatures for Drug Repositioning
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represented in only two pathways. The involvement of the

cytochrome P450 (CYPs) pathway indicates that the CYPs may

be key enzymes in breast cancer formation and cancer treatment.

Their importance lies in the fact that they metabolize drugs used

for cancer treatment, and are therefore potential targets for

anticancer therapy [30]. Among our top ranking genes for

predicted breast cancer drugs are CYP2A6, and CYP2C19. Their

pronounced polymorphic [30] suggests that for any strategy

targeting them, individualized, or stratified therapy, could be

especially critical.

Disease genes that are highly perturbed are over-represented in

the ribosomal pathway. Many studies report that the morpholog-

ical and functional changes in the nucleolus are a consequence of

both the increased demand for ribosome biogenesis, and changes

in the mechanisms controlling cell proliferation. The loss or

functional changes in the two major tumor suppressor proteins,

retinoblastoma protein (pRB) and p53, cause an up-regulation of

ribosome biogenesis in many cancer tissues including breast cancer

[31]. On the other hand, some down-regulated ribosomal proteins,

such as RPL35A, RPL18 and RPL14 (Table S2) that we find in

both the breast cancer tissue and cell lines have received relatively

little attention [32] and might be worth pursuing.

Over-represented pathways for myelogenous leuke-

mia. We identified five pathways with gene sets that are

highly up-regulated in myelogenous leukemia, and highly down-

regulated by compounds: glycerolipid (triglyceride) metabolism,

glycerophospholipid metabolism, glycosylphosphatidylinositol

(GPI-anchor) biosynthesis, vascular smooth muscle contraction,

and transforming growth factor b (TGF-b) signaling. The first

three are components of lipid metabolism whose close association

to leukemia has been studied for decades [33]. Although abnormal

glycerolipid metabolism is well-known to be associated with

cardiovascular disease and diabetes, there is also strong evidence

that alkyl glycerolipids induce apoptosis of leukemia cell lines [34].

Disordered glycerophospholipid metabolism has been reported in

the leukemia cell line and retinoic acid treatment will suppress

the synthesis of ethanolamine-containing glycerophospholipids

[35]. The reported connection between the synthesis of GPI-

anchor and leukemia is indirect and uncommon: the deficiency of

GPI-anchor occurs in rare diseases including hemolytic anemia

and paroxysmal nocturnal hemoglobinuria (PNH). PNH often

develops in people with aplastic anemia which occasionally

transforms into leukemia [36].

The association between the TGF-b signaling pathway and

cancer is well known. The pathway is involved in tumor

suppression, as well as in tumor progression and invasion [37].

Its over-representation among over-expressed genes indicates that

in myelogenous leukemia it more likely behaves as a promoter.

This is consistent with recent observations that support a

permissive role for TGF-b in growth [38] and metastasis [39] of

established tumors.

There seems to be no direct association between the vascular

smooth muscle (VSM) contraction pathway and leukemia/cancer;

its over-representation may be the result of over-representation of

genes shared by relevant pathways. In particular examination of

the genes involved in the VSM pathway (Table S3) indicates that

the two most frequently appearing genes: PLA2G6 and ROCK2

are also genes in GPI-anchor biosynthesis pathway and the TGF-b
pathway respectively; and TGF-b is known to promote the

contractile phenotype in VSM cells [40].

Three pathways have been reported among DC/UB genes; two

of them, apoptosis [41] and cell cycle [42] pathways, are well

known to be cancer-associated, and have been studied extensively

for myelogenous leukemia. While molecular defects in apoptotic

pathways are thought to often contribute to the abnormal

expansion of malignant cells and their resistance to chemotherapy,

the abnormality of the cell cycle pathway usually produces cells

with too many or too few chromosomes (aneuploidy), which is

frequently associated with the transition to leukemia. The third

pathway, the T-Cell receptor signaling pathway, is central to cell-

mediated immunity, which is invariably activated by tumor

associated antigens [43]. The down regulated T-cell receptor

signaling genes which are reactivated by the predicted drug

candidates include PTPRC, CD8A, CD3D and src family protein

kinase (FYN), all of which play key roles as triggering intracellular

signaling including activation-induced cell death [44].

Gene ontology (GO) term enrichment analysis. In order

to obtain broader insight we examined enriched GO terms among

the identified gene sets using the GO Term Enrichment Analysis

(GOTEA) and batch mode of VisANT system [45]. For the

purpose of comparison, we use informative GO terms under which

there are more than 400 annotated genes with FDR,0.01, and

mark the terms using the abbreviation of corresponding KEGG

pathways whenever they can be matched. The detailed results are

listed in Table S4, S5. As expected, this analysis reveals more

cellular functions, as well as the cellular compartments where these

functions are carried out. Most of the over-represented pathways

are reproduced. More interestingly, this analysis also finds the GO

terms that are shared between UC/DB and DC/UB, probably

because some of the terms, such as ‘‘regulation of transport’’, are

not specific enough. We also find some GO terms common to

Tables S4 and Table S5, which may hint at how the drugs can be

repositioned between breast cancer and myelogenous leukemia.

Discussion

We introduced a novel procedure for identifying candidate

therapeutics from gene expression profiles. The general idea is that

viable drug candidates will be among those bioactive compounds

that either down-regulate abnormally over-expressed genes, or up-

regulate those that are abnormally under-expressed. We show that

the idea leads to a pool of plausible candidates for repositioning.

Targeting functions
One distinguishing feature of our method is that it targets

cellular functions rather than genes, i.e., the focus of the

method is to bring abnormal functions associated with disease

back to the normal state. This strategy is based on the

observation that diseases stem from failed/modified cellular

functions, regardless of which of the particular genes contrib-

uting to the function are aberrant [19]. For the purpose of

finding therapeutics, we do not have a fixed list of signature

genes for a given disease. Instead from a large set of ranked

differentially expressed genes for a particular disease, we find

compounds whose effect on the expression of most perturbed

genes is opposite that of the disease. This results in a number of

overlapping but different (for different compounds) subsets of

genes. On the other hand, for a particular disease the functions

associated with the subsets are similar. This characteristic of

variability at the level of genes, with conservation at the level of

function can be partially seen in Table S2, S3 where for each

drug candidate the list of genes is very different while the list of

pathways is similar.

We used mRNA expression as a surrogate measure of the

functional change because of its wide availability either for drug

response or disease perturbation. The method is, however,

applicable to other data types (protein expression, methylation

and so fourth).
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Since our method focuses on functional recovery and identifying

different but overlapping subsets of genes for different compounds,

it can cover potential drugs with heterogeneous properties. On the

other hand, we do find genes that are targeted by a large number

of our identified compounds. For example, LAMB1, CAV1 and

RPL35, tend to be targeted by most of predicted drugs for breast

cancer as shown in Table S2.

Mechanisms of action
The mechanisms and range of action of many current drugs are

poorly understood. Even drugs with known targets often have ‘‘off-

target’’ effects [5]. While many such effects are undesirable, some

of them provide the opportunity for repositioning. We have used

pathway analysis to interpret the functional rationale for

repositioning. The same analysis also provides some understand-

ing mechanism.

As an example, consider Tamoxifen, which is used extensively

for the treatment of both early and advanced estrogen receptor

positive (ER+) breast cancer [46]. Our results indicate that

tamoxifen is a candidate for repositioning to myelogenous

leukemia. In particular, the overrepresentation of genes in this

pathway, which are upregulated in myelogenous leukemia, and

down-regulated by Tamoxifen suggests the possibility that

aberrant TGF-b signaling plays a role in myelogenous leukemia.

Since TGF-b production is down-regulated by tamoxifen in other

tissues [47], tamoxifen might function as an anti-myelogenous

leukemia drug by repressing this pathway (Table S3).

This suggestion is supported by the fact that expression of

estrogen receptors ESR1 and ESR2 is relatively unaffected by

treatment with Tamoxifen (of the 20,469 ranked genes, ESR1 and

ESR2 ranked 4184 and 4734 respectively – well below the number

of top ranking genes used in the study: 700/800 for UC/DB and

DC/UB). Consequently it seems unlikely that the effect of

Tamoxifen on leukemic cells is mediated by these receptors.

We therefore speculate that tamoxifen acts similarly in breast

cancer, and thereby exerts its effects in a dual manner; i.e. through

inhibition of TGF-b, in addition to inhibition of estrogen.

Militating against this possibility are the facts that the TGF-b
pathway is not over-represented in UC/DB transcripts, and other

investigations did not find evidence for the regulation of TGF-b
genes/proteins by tamoxifen in breast cancer patients [48]. On the

other hand an increased expression of TGF-b1, which is often seen

in tumors of breast cancer patients, correlates with poor prognostic

outcome [49]. This apparent conflict might be resolved by the

recent discovery that tamoxifen decreases extracellular TGF-b1

proteins secreted from breast cancer cells, but not intracellular

ones [50]. This result is also compatible with our finding that the

adherens junction and focal adhesion pathways are both over-

represented in breast cancer cells, and these pathways are

potentially inducible by TGF-b [37]. These observation are in

line with other studies documenting decreased metastasis when

TGF-b signalling is blocked in high-grade breast tumor [51], and

suggest that tamoxifen represses the metastasis of breast cancer

cells by down regulating the TGF-b pathway and preventing loss

of polarity and cell–cell contacts.

Taken collectively, the functional analysis of our results suggests

a potential mechanism for tamoxifen, which is independent of an

interaction with the estrogen receptor, and has tamoxifen

suppressing tumor metastasis and growth by down-regulating

TGF-b signaling.

Beyond repositioning
Our results also suggest that some exploration of the identified non-

FDA approve drugs (new drug candidates) could be fruitful. If the

fraction of FDA approved drugs in clinical trials is taken as a measure

of what is worth exploring (i.e. we conservatively neglect other

supporting evidence), then we’d expect 8 of the 34 non-FDA approved

drugs for breast cancer to be ultimately worthy of clinical trials; and 4

of the 44 for myelogenous leukemia and 5 of the 38 for prostate cancer

(i.e. we’d expect this number to get through animal toxicity tests, and

efficacy tests when available, and enter phase 1 trials).

Limitation and future development
There are several issues that may limit the future development

of the approach. First, the optimization of the window size requires

availability of the known FDA-approved drugs in CMAP, which

may not always the case especially when expanding this approach

to the other diseases that are functionally close to the three

cancers. Second, the sensitivity of the approach to the subtype, or

the different stage, of the same disease needs to be studied further.

The approach will have great application to the personalized

medicine if it is able to identify different drugs for the disease at

different stages/subtype because the relative cheap price to get the

patient expression profile. Finally, although mRNA expression is

used to measure the functional change of the cell, we expected the

better results using the other data that may be more representative

of the cellular functions, such as protein expressions.

Materials and Methods

Transcript expression
Expression data in response to bioactive compounds for breast

cancer, prostate cancer and myelogenous leukemia cell lines were

obtained from the connectivity map (http://www.broad.mit.edu/

CMAP/) (Build 02) [6,14]. Differential expression data in response

to breast cancer (GDS2617), leukemia (GDS2908), and prostate

cancer (GDS1439) were obtained from the National Center for

Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO) [17]. The data sets are picked in such a way that there is

fairly big number of samples and the expressions are normalized

by GEO database. The ranked list of differentially expressed genes

for a given cancer is calculated using t-statistic.

Gene filtering
The bioactive compound specific signatures fetched from CMAP

are based on cell lines (i.e. cancerous cells with and without

treatments), while those from GEO were based on tissue cells (i.e.

normal and cancer tissue cells). Since the different cell types are not

directly comparable, we first normalized gene-expressions accord-

ing to the untreated cell line and the cancer tissue samples. We

retain only genes that are expressed in both tissue and cell line. In

particular we applied the t-test to the normalized scores, and

calculated the corrected p-values for multiple testing by a false

discovery rate (FDR) procedure. The FDR is defined as the

expected proportion of false positives among the significant results

and is a more appropriate measure than the raw p-value for multiple

hypotheses testing. The FDR threshold was set as 0.01, and the

genes with clearly different gene-expressions were removed from

both samples. As a result, we retained 15572 genes (77%), 20469

genes (92%), and 12220 genes (55%) for breast cancer, myelogenous

leukemia, and prostate cancer, respectively.

Comparison of reverse-correlated cancer and bioactive
compound specific gene sets

We prepared two types of ranked lists of genes. One was

generated from tissue samples ranked by differential expression

between normal and cancer tissues from GEO data. The other

was obtained from the ranked list of perturbed cell line genes from
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CMAP. In the former case, the top and bottom k genes were

defined as up-regulated genes in cancer (UC) and down-regulated

genes in cancer (DC). In the latter case, the top and bottom k

genes were defined as up-regulated genes by bioactive compounds

(UB) and down-regulated genes by bioactive compounds (DB).

The genes of interest are the top and the bottom k genes in a

ranked list where k ranges from 100 to 10000 in increments of 100.

We counted overlapping genes in between UC and DB (UC/

DB) and in between DC and UB (DC/UB) to investigate

compounds up-regulating down-regulated cancer genes (DC/

UB), or down-regulating up-regulated cancer genes (UC/DB). We

performed the Fisher’s exact test to prove if the overlap is

significant by comparing the number of overlapping genes to that

of randomly selecting genes (background). The p-value was

transformed into FDA corrected for multiple hypotheses. The

FDR threshold was set as 0.01.

Choice of window size
For each value k, a compound is labeled as bioactive if the

number of overlapping genes (as explained in Fig. 1) is statistically

significant. The sensitivity and specificity were calculated by

measuring the proportions of true positives (fraction of FDA drugs

identified) and true negatives (fraction of identified compounds

that failed clinical trials). For each cancer, we chose values of k

(one for UC/DB and one for DC/UB) that gave maximum

specificity, subject to the constraint of non zero sensitivity (at least

1 correct prediction), non zero duality and a FDR less than 0.01.

In this way we identified for further investigation, a total of 90

compounds (and associated genes) for breast cancer (28 suppres-

sors of up-regulated cancer genes; 62 enhancers of down-regulated

genes); 36 compounds for myelogenous leukemia (10 suppressors;

26 enhancers), and 171 compounds for prostate cancer (83

suppressors; 88 activators). The results regarding different window

size are presented in Table S7 and Fig. S1.

Pathway over-representation analysis
We mapped correlated genes in UC/DB and in DC/UB onto

the KEGG pathways and counted the number of genes mapped

and total number of existing genes with respect to each pathway.

Given the number of genes and total number of all of genes we

used, a p-value is calculated with hypergeometic distribution [52];

we accepted only pathways with the p-values below 0.05 as over-

represented pathways [53].

Drug and clinical trail information retrieval
We collected data from KEGG DRUG Database (http://www.

genome.jp/kegg/drug/), DrugBank (http://www.drugbank.ca/)

and PharmGKB (http://www.pharmgkb.org/, email: ) to map

International Nonproprietary Name (INN) to generic names and

alias. FDA approved drugs were found from FDA service:

Drugs@FDA. All clinical trials data and references that we

checked for our predictions were shown in Table 2 and Table S1

with corresponding hyperlinks.

Supporting Information

Figure S1 The specificity and the sensitivity against bioactive

compounds identified in each parameter k with respect to each

cancer type for both with and without filtering out genes with

apparently different gene-expressions in between different cell

types. (A) Breast cancer with filtering (B) Breast cancer without

filtering (C) Leukemia with filtering (D) Leukemia without filtering

(E) Prostate cancer with filtering (F) Prostate cancer without

filtering.

(JPG)

Table S1 Candidates for repositioning for three cancers. FDA

approved compounds (*); Compounds showing duality (1); The 1st

number in the bracket associated with each compound is the p-

value, the 2nd number is the number of overlapping genes.

(DOC)

Table S2 KEGG pathways enriched in top up/down regulated

genes breast cancer tissue and corresponding down/up regulated

genes in response to cell line perturbations with bioactive

compounds (see Methods). AD: Adherens junction, B: Bacterial

invasion of epithelial cells, D: Drug metabolism - cytochrome

P450, E: ErbB signaling pathway, F: Focal adhesion, M:

Riboflavin metabolism, N: Nucleotide excision repair, R:

Ribosome, T: Thiamine metabolism.

(DOC)

Table S3 KEGG pathways enriched in top up/down regulated

genes leukemia and corresponding down/up regulated genes in

response to cell line perturbations with bioactive compounds (see

Methods). G: Glycerolipid metabolism, GL: Glycerophospholipid

metabolism, GPI: Glycosylphosphatidylinositol (GPI)-anchor bio-

synthesis, VA: Vascular smooth muscle contraction, TGF: TGF-

b signaling pathway, C: Cell cycle, A: Apoptosis, TC: T cell

receptor signaling.

(DOC)

Table S4 GO terms enriched in top up/down regulated genes in

breast cancer tissue for the window size specified in Table 1.

(DOC)

Table S5 GO terms enriched in top up/down regulated genes in

leukemic tissue for the window size specified in Table 1.

(DOC)

Table S6 Enriched KEGG pathways for breast cancer and

leukemia and the corresponding p-value.

(DOC)

Table S7 Sensitivity and the specificity for optimal values of

window size, k.

(DOC)
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