LIMITS AND INEQUALITIES ASSOCIATED WITH THE EULER-MASCHERONI CONSTANT

CHAO-PING CHEN AND CRISTINEL MORTICI

Abstract. (i) We present several limits associated with the Euler-Mascheroni constant. (ii) Let \(\gamma = 0.577215 \ldots \) be the Euler-Mascheroni constant, and let \(T_n = \sum_{k=1}^{n} \frac{1}{k} - \ln (n + \frac{1}{2}) \) and \(P_n = \sum_{k=1}^{n} \frac{2}{2k-1} - \ln(4n) \). We determine the best possible constants \(\alpha, \beta, a \) and \(b \) such that the inequalities

\[
\frac{1}{48(n + \alpha)} \leq \gamma - T_n < \frac{1}{48(n + \beta)}
\]

and

\[
\frac{1}{24(n + a)} \leq P_n - \gamma < \frac{1}{24(n + b)}
\]

are valid for all integers \(n \geq 1 \).

1. Introduction and preliminaries

The Euler-Mascheroni constant \(\gamma = 0.577215664 \ldots \) is defined as the limit of the sequence

\[
D_n = H_n - \ln n,
\]

where \(H_n \) denotes the \(n \)th harmonic number, defined for \(n \in \mathbb{N} := \{1, 2, 3, \ldots\} \) by

\[
H_n = \sum_{k=1}^{n} \frac{1}{k}.
\]

The first aim of this paper is to present several limits associated with the Euler-Mascheroni constant.

Theorem 1. Let

\[
e_n = \left(1 + \frac{1}{n}\right)^n \quad \text{and} \quad H_n = \sum_{k=1}^{n} \frac{1}{k}.
\]
Then

\[
\lim_{n \to \infty} \left(\frac{e_{H_n}}{n} \right) = e^\gamma, \quad (2)
\]

\[
\lim_{n \to \infty} \left(e_{H_{n+1}} - e_{H_n} \right) = e^\gamma \quad (3)
\]

and

\[
\lim_{n \to \infty} \left(2n \left(e_{H_n} - e_{H_{n+1}} + e^\gamma \right) \right) = e^\gamma. \quad (4)
\]

Several bounds for \(D_n - \gamma\) have been given in the literature [3, 5, 14, 15, 16, 17, 20]. For example, the following bounds for \(D_n - \gamma\) was established in [14, 20]:

\[
\frac{1}{2(n + 1)} < D_n - \gamma < \frac{1}{2n} \quad (n \in \mathbb{N}).
\]

The convergence of the sequence \(D_n\) to \(\gamma\) is very slow. Some quicker approximations to the Euler-Mascheroni constant were established in [6, 7, 8, 9, 10, 11, 12, 13, 18, 19]. For example, DeTemple [10] studied in 1993 the sequence

\[
R_n = \sum_{k=1}^{n} \frac{1}{k} \ln \left(n + \frac{1}{2} \right),
\]

and proved

\[
\frac{1}{24(n + 1)^2} < R_n - \gamma < \frac{1}{24n^2}. \quad (5)
\]

Recently, Chen [7] obtained the following sharp form of the inequality (5): For all integers \(n \geq 1\), then

\[
\frac{1}{24(n + a)^2} \leq R_n - \gamma < \frac{1}{24(n + b)^2} \quad (6)
\]

with the best possible constants

\[
a = \frac{1}{\sqrt{24[-\gamma + 1 - \ln(3/2)]}} - 1 = 0.55106 \ldots \quad \text{and} \quad b = \frac{1}{2}.
\]

In 1997, Negoi [13] proved that the sequence

\[
T_n = \sum_{k=1}^{n} \frac{1}{k} \ln \left(n + \frac{1}{2} + \frac{1}{24n} \right) \quad (7)
\]

is strictly increasing and convergent to \(\gamma\). Moreover, the author proved that

\[
\frac{1}{48(n + 1)^3} < \gamma - T_n < \frac{1}{48n^3}. \quad (8)
\]

In view of the inequality (8) it is natural to ask: What is the smallest number \(\alpha\) and what is the largest number \(\beta\) such that the inequality

\[
\frac{1}{48(n + \alpha)^3} \leq \gamma - T_n \leq \frac{1}{48(n + \beta)^3}
\]
limits and inequalities associated with the euler-mascheroni constant

holds for all integers \(n \geq 1 \). It is the second aim of this paper to answer this question.

Theorem 2. For all integers \(n \geq 1 \), let the sequence \(T_n \) be defined by (7). Then

\[
\frac{1}{48(n + \alpha)^3} \leq \gamma - T_n < \frac{1}{48(n + \beta)^3}
\]

with the best possible constants

\[
\alpha = \frac{1}{\sqrt[3]{48[1 - \gamma + \ln(\frac{3\pi}{2})]}} - 1 = 0.27380525 \ldots \text{ and } \beta = \frac{83}{360} = 0.230555555 \ldots
\]

It is well-known \([1, \text{p.258}]\) that

\[
\psi \left(n + \frac{1}{2} \right) = -\gamma - 2 \ln 2 + \sum_{k=1}^{n} \frac{2}{2k - 1}.
\]

The third aim of this paper is to present the bounds for \(\sum_{k=1}^{n} \frac{2}{2k - 1} - \ln(4n) - \gamma \).

Theorem 3. Let \(n \in \mathbb{N} \). Then

\[
\frac{1}{24(n + a)^2} \leq \sum_{k=1}^{n} \frac{2}{2k - 1} - \ln(4n) - \gamma < \frac{1}{24(n + b)^2}
\]

with the best possible constants

\[
a = \frac{1}{\sqrt[2]{24(2 - 2\ln 2 - \gamma)}} - 1 = 0.06858 \ldots \text{ and } b = 0.
\]

Before we prove the main theorems, let us give some preliminary results.

The Euler-Mascheroni constant \(\gamma \) is deeply related to the gamma function \(\Gamma(z) \) thanks to the Weierstrass formula:

\[
\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{k=1}^{\infty} \left(1 + \frac{z}{k} \right)^{-1} e^{z/k} \quad (z \in \mathbb{C} \setminus \mathbb{Z}_0^-; \mathbb{Z}_0^- := \{-1, -2, -3, \ldots\}).
\]

The logarithmic derivative of the gamma function:

\[
\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)} \quad \text{or} \quad \ln \Gamma(z) = \int_{1}^{z} \psi(t) \, dt
\]

is known as the psi (or digamma) function. The successive derivatives of the psi function \(\psi(z) \):

\[
\psi^{(n)}(z) := \frac{d^n}{dz^n} \{\psi(z)\} \quad (n \in \mathbb{N})
\]

are called the polygamma functions.

The following recurrence and asymptotic formulas are well known \([1, \text{pp.258-261}]\):

\[
\psi(z + 1) = \psi(z) + \frac{1}{z},
\]
\[\psi(z) \sim \ln z - \frac{1}{2z} + \frac{1}{12z^2} + \frac{1}{120z^4} - \frac{1}{252z^5} + \ldots \quad (z \to \infty \text{ in } |\arg z| < \pi) \]

and

\[\psi'(z) \sim \frac{1}{z} + \frac{1}{6z^3} + \frac{1}{30z^5} + \frac{1}{42x^7} + \ldots \quad (z \to \infty \text{ in } |\arg z| < \pi), \]

from which we get

\[\psi(x + 1) \sim \ln x + \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6} + \ldots \quad (x \to \infty) \quad (12) \]

and

\[\psi'(x + 1) \sim \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{6x^3} + \frac{1}{30x^5} + \frac{1}{42x^7} + \ldots \quad (x \to \infty). \quad (13) \]

It is also known [1, p.258] that

\[\psi(n + 1) = -\gamma + \sum_{k=1}^{n} \frac{1}{k}. \quad (14) \]

It is easy to see that

\[\ln \left(x + \frac{1}{2} + \frac{1}{24x} \right) = \ln x + \ln \left(1 + \frac{1}{2x} + \frac{1}{24x^2} \right) \]

\[= \ln x + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \left(\frac{1}{2x} + \frac{1}{24x^2} \right)^k \]

\[= \ln x + \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{48x^3} - \frac{7}{1152x^4} + \frac{11}{5760x^5} \]

\[- \frac{13}{20730x^6} + O \left(\frac{1}{x^7} \right). \quad (15) \]

The following lemmas are needed in our present investigation.

Lemma 1 ([4, Theorem 9]). Let \(k \geq 1 \) and \(n \geq 0 \) be integers. Then for all real numbers \(x > 0 \):

\[S_k(2n; x) < (-1)^{k+1} \psi^{(k)}(x) < S_k(2n + 1; x), \quad (16) \]

where

\[S_k(p; x) = \frac{(k - 1)!}{x^k} + \frac{k!}{2x^{k+1}} + \sum_{i=1}^{p} \left[B_{2i} \prod_{j=1}^{k-1} (2i + j) \right] \frac{1}{x^{2i+k}}, \]

\(B_i \ (i = 0, 1, 2, \ldots) \) are Bernoulli numbers, defined by

\[\frac{t}{e^t - 1} = \sum_{i=0}^{\infty} B_i \frac{t^i}{i!}. \]
It follows from (16) that
\[
\frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} \psi'(x) < \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} \quad (x > 0),
\]
from which it follows that
\[
\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} \psi'(x + 1) < \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} \quad (x > 0).
\]

Lemma 2. Let
\[
v(x) = 48 \left(\ln \left(x + \frac{1}{2} + \frac{1}{24x} \right) - \psi(x + 1) \right). \tag{18}
\]
Then, for \(x \geq 5, \)
\[
4 \left(-v'(x) \right)^2 > 3v(x)v''(x). \tag{19}
\]

Proof. We first show that for \(x > 0, \)
\[
v(x) < \frac{1}{x^3} - \frac{83}{120x^4} + \frac{11}{120x^5} + \frac{485}{3024x^6} + \frac{41}{4032x^7}, \tag{20}
v''(x) < \frac{12}{x^5} - \frac{83}{6x^6} + \frac{11}{4x^7} + \frac{485}{72x^8} + \frac{41}{72x^9}, \tag{21}
-v'(x) > \frac{3}{x^4} - \frac{83}{30x^5} + \frac{11}{24x^6} + \frac{485}{504x^7} + \frac{41}{576x^8} - \frac{28133}{17280x^9}. \tag{22}
\]

Define the function \(S \) by
\[
S(x) = v(x) - \left(\frac{1}{x^3} - \frac{83}{120x^4} + \frac{11}{120x^5} + \frac{485}{3024x^6} + \frac{41}{4032x^7} \right).
\]
From (12) and (15), we conclude that
\[
\lim_{x \to \infty} S(x) = \lim_{x \to \infty} \left(-\frac{28133}{138240x^8} + O(x^{-9}) \right) = 0.
\]
Differentiation and applying the right-hand inequality of (17) yields
\[
S'(x) = \frac{48(24x^2 - 1)}{x(24x^2 + 12x + 1)} + \frac{3}{x^4} - \frac{83}{30x^5} + \frac{11}{24x^6} + \frac{485}{504x^7} + \frac{41}{576x^8} - 48\psi'(x + 1) > \frac{48(24x^2 - 1)}{x(24x^2 + 12x + 1)} + \frac{3}{x^4} - \frac{83}{30x^5} + \frac{11}{24x^6} + \frac{485}{504x^7} + \frac{41}{576x^8} - 48\psi'(x + 1)
\]
\[
= \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7}
\]
\[
= \frac{388x + 41}{576x^8(24x^2 + 12x + 1)} > 0 \quad (x > 0).
\]
This yields
\[S(x) < \lim_{x \to \infty} S(x) = 0 \quad (x > 0). \]
This proves (20).

The proofs of (21) and (22) are similar, we leave it to readers. Consequently,
\[
4 \left(-v'(x) \right)^2 - 3v(x)v''(x) \\
> 4 \left(3 \frac{x^4}{2} - \frac{83}{30x^3} + \frac{11}{24x^6} + \frac{485}{504x^7} + \frac{41}{576x^8} - \frac{28133}{17280x^9} \right)^2 \\
- 3 \left(\frac{1}{x^3} - \frac{83}{120x^4} + \frac{11}{120x^5} + \frac{485}{3024x^6} + \frac{41}{4032x^7} \right) \left(\frac{12}{x^5} - \frac{83}{6x^6} + \frac{11}{4x^7} + \frac{485}{72x^8} + \frac{41}{72x^9} \right)
\]
\[
= \frac{1}{3657830400x^{18}} (525430177982161 + 1266203791908180(x - 5) \\
+ 1147261865648100(x - 5)^2 + 549749077117560(x - 5)^3 \\
+ 157168724355792(x - 5)^4 + 27908026040160(x - 5)^5 \\
+ 303720340160(x - 5)^6 + 186635352960(x - 5)^7 \\
+ 4987858176(x - 5)^8) > 0 \quad (x \geq 5).
\]
Therefore, the inequality (19) holds for \(x \geq 5 \). \(\square \)

2. Proofs of Theorems 1–3

We are now in a position to prove our Theorems 1–3.

Proof of Theorem 1. Define the sequence \(u_n \) by
\[u_n = e^{H_n}. \]

Then
\[\ln u_n = \psi(n + 1)n \ln \left(1 + \frac{1}{n} \right) + \gamma n \ln \left(1 + \frac{1}{n} \right). \quad (23) \]

It is known that
\[\ln \left(1 + \frac{1}{n} \right) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} - \frac{1}{4n^4} + O \left(\frac{1}{n^5} \right). \quad (24) \]

Upon substituting from (12) and (24) into (23), we get
\[
\ln u_n = \ln(n) + \gamma + \frac{-\frac{1}{2} \ln(n) + \frac{1}{2} - \frac{1}{2} \gamma}{n} + \frac{\frac{1}{3} \gamma - \frac{1}{3} + \frac{1}{3} \ln n}{n^2} + O \left(\frac{1}{n^3} \right),
\]
which implies
\[
 u_n = e^n + e^n \left(\frac{1}{2} \ln(n) + \frac{1}{2} - \frac{1}{2} \gamma \right) + e^n \left(\frac{1}{3} \gamma - \frac{1}{3} + \frac{1}{3} \ln n + \frac{1}{2} \left(- \frac{1}{2} \ln(n) + \frac{1}{2} - \frac{1}{2} \gamma \right)^2 \right) + O \left(\frac{1}{n^2} \right). \tag{25}
\]
From (25), we imply (2).

We write \(u_{n+1} - u_n \) as asymptotic representation:
\[
 u_{n+1} - u_n = e^n - \frac{e^n}{2n} + O \left(\frac{1}{n^2} \right). \tag{26}
\]
From (26), we imply (3) and (4).

Proof of Theorem 2. The inequality (9) can be written as
\[
 \alpha \geq \frac{1}{\sqrt[3]{48 \left(\ln (n + \frac{1}{2} + \frac{1}{3} \pi n) - \psi(n + 1) \right)}} - n \beta.
\]
In order to prove (9) we define the function \(f \) by
\[
 f(x) = (v(x))^{-1/3} - x,
\]
where \(v(x) \) is as in Lemma 2.

Differentiation yields
\[
 f'(x) = - \frac{v'(x)}{3(v(x))^{4/3}} - 1 \quad \text{and} \quad f''(x) = \frac{4(-v'(x))^2 - 3v(x)v''(x)}{9(v(x))^{7/3}}.
\]
From (12), (13) and (15), we conclude that
\[
 \lim_{x \to \infty} f'(x) = \lim_{x \to \infty} \left(- \frac{4909}{64800x^2} + O(x^{-3}) \right) = 0.
\]
By (19), we obtain \(f''(x) > 0 \) for \(x \geq 5 \). This implies that
\[
 f'(x) < \lim_{x \to \infty} f'(x) = 0 \quad (x \geq 5). \tag{27}
\]
From (27) and \(f(1) = 0.27380525 \ldots, f(2) = 0.2598408 \ldots, f(3) = 0.25212076 \ldots, f(4) = 0.24749774 \ldots, f(5) = 0.24447118 \ldots, \) we conclude that the sequence
\[
 f(n) = \frac{1}{\sqrt[3]{48 \left(\ln (n + \frac{1}{2} + \frac{1}{3} \pi n) - \psi(n + 1) \right)}} - n \quad (n \in \mathbb{N})
\]
is strictly decreasing. This leads to

$$\lim_{n \to \infty} f(n) < f(1) = \frac{1}{\sqrt{48[1 - \gamma + \log(\frac{37}{32})]} - 1 = 0.27380525 \ldots}$$

It remains to prove that

$$\lim_{n \to \infty} f(n) = \frac{83}{360}.$$ \hspace{1cm} (28)

By using the asymptotic formulas (12) and (15), we conclude that

$$\frac{1}{\sqrt{48 \left(\ln (n + \frac{1}{2} + \frac{1}{24n}) - \psi(n + 1) \right)} - n = \frac{83}{360} + O(n^{-1})} = 1 + O(n^{-1}),$$

which implies (28). The proof of Theorem 2 is complete. \hspace{1cm} \(\square\)

Proof of Theorem 3. By (10), the inequality (11) can be written as

$$a \geq \frac{1}{\sqrt{24\left[\psi(n + \frac{1}{2}) - \ln n\right]} - n > b.} \hspace{1cm} (29)$$

In order to prove (29) we define the function \(h\) by

$$h(x) = \frac{1}{\sqrt{24\left[\psi(x + \frac{1}{2}) - \ln x\right]} - x} \quad (x > 0).$$

It is known (see [8, p.86] and [7, p.163]) that for \(x > \frac{1}{2}\),

$$\frac{1}{24(x - \frac{1}{2})^2} - \frac{7}{960(x - \frac{1}{2})^4} < \psi(x) - \ln \left(x - \frac{1}{2} \right) \hspace{1cm} (30)$$

and

$$\frac{1}{x - \frac{1}{2}} - \psi'(x) < \frac{1}{12(x - \frac{1}{2})^3} - \frac{7}{240(x - \frac{1}{2})^5} + \frac{31}{1344(x - \frac{1}{2})^7}. \hspace{1cm} (31)$$

(We remark that the inequalities (30) and (31) were derived from [2].) It is well-known that let \(x \geq -1\), then for \(\alpha < 0\) or \(\alpha > 1\),

$$(1 + x)^\alpha \geq 1 + \alpha x, \hspace{1cm} (32)$$

the equal sign holds if and only if \(x = 0\).
Differentiation and applying the inequalities (30), (31) and (32), we obtain for $x \geq 2$:

$$- \left(24 \left(\psi \left(x + \frac{1}{2} \right) - \ln x \right) \right)^{3/2} \cdot h'(x)$$

$$= 12 \left(\psi' \left(x + \frac{1}{2} \right) - \frac{1}{x} \right) + \left(24 \left(\psi \left(x + \frac{1}{2} \right) - \ln x \right) \right)^{3/2}$$

$$> - \frac{1}{x^3} + \frac{7}{20x^5} - \frac{31}{112x^7} + \left(\frac{1}{x^3} - \frac{7}{40x^5} \right)^{3/2}$$

$$= - \frac{1}{x^3} + \frac{7}{20x^5} - \frac{31}{112x^7} + \frac{1}{x^3} \left(1 - \frac{7}{40x^2} \right)^{3/2}$$

$$> - \frac{1}{x^3} + \frac{7}{20x^5} - \frac{31}{112x^7} + \frac{1}{x^3} \left(1 - \frac{3}{2} \frac{7}{40x^2} \right)$$

$$= 41 + 196(x-2) + 49(x-2)^2 \quad \text{as} \quad x \to \infty.$$
we obtain

\[\frac{1}{\sqrt{24\left[\psi(x + \frac{1}{2}) - \ln x\right]}} - x = \frac{1 - x\sqrt{24\left[\psi(x + \frac{1}{2}) - \ln x\right]}}{\sqrt{24\left[\psi(x + \frac{1}{2}) - \ln x\right]}} = \frac{1 - x\sqrt{\frac{1}{x^5} - \frac{7}{40x^7} + O(x^{-6})}}{\sqrt{\frac{1}{x^5} - \frac{7}{40x^7} + O(x^{-6})}} = \frac{x - x\sqrt{1 - \frac{7}{40x^2} + O(x^{-4})}}{\sqrt{1 - \frac{7}{40x^2} + O(x^{-4})}} = \frac{x^2 + O(x^{-2})}{x + O(x^{-1})} \rightarrow 0 \quad \text{as} \quad x \rightarrow \infty, \]

which implies (33). This completes the proof of Theorem 3.

Remark 1. Some calculations in this work were performed by using the Maple software for symbolic calculations.

Remark 2. The work of the second author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI project number PN-II-ID-PCE-2011-3-0087.

References

LIMITS AND INEQUALITIES ASSOCIATED WITH THE EULER-MASCHERONI CONSTANT

(Chao-Ping Chen) School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City 454003, Henan Province, People’s Republic of China

E-mail address: chenchaoping@sohu.com

(Cristinel Mortici) Valahia University of Târgoviște, Department of Mathematics, Bd. Unirii 18, 130082 Târgoviște, Romania

E-mail address: cmortici@valahia.ro