Note

Non-approximability of precedence-constrained sequencing to minimize setups

Craig A. Tovey*

School of ISyE and College of Computing, Georgia Tech.
Atlanta, GA 30332-0205, USA

Received 3 July 2002; received in revised form 21 August 2003; accepted 26 August 2003

Abstract

It is a basic scheduling problem to sequence a set of precedence-constrained tasks to minimize the number of setups, where the tasks are partitioned into classes that require the same setup. We prove a conjecture in (Ph.D. Thesis, School of ISyE, Georgia Institute of Technology, August 1986; Oper. Res. 39 (1991) 1012) that no polynomial-time algorithm for this problem has constant worst-case performance ratio unless P = NP. A very simple algorithm has performance ratio \sqrt{n}.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Computational complexity; Scheduling; Approximability; Setup; Precedence constraint

1. Motivation and statement of results

The following process planning problem is introduced by Lofgren [4, Chapter VI] and Lofgren et al. [5].

Definition 1. **Precedence constrained class sequencing (PCCS).** A set of operations must be performed sequentially, subject to an acyclic directed graph of precedence constraints. The operations are partitioned into classes. A setup is required between consecutively sequenced operations from different classes, but not within a class. The problem is to sequence the operations so as to minimize the number of setups, while obeying the precedence constraints.

* The author was supported in part by NSF Grant DDM-9215467.
* Tel.: 404-894-3034; fax: 404-894-2301.
 E-mail address: ctovey@isye.gatech.edu (C.A. Tovey).

0166-218X/$ - see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2003.08.006
If there are no classes then the problem would typically be to minimize the latest completion time, assuming unit-processing time for each operation. This problem is trivial for one processor, polynomially solvable for two processors [1] or for tree precedence graphs [3], open for fixed $k \geqslant 3$ processors [2], and NP-complete in general [8], even with a deadline of three and no precedence chains of length more than one [7].

PCCS is a fundamental scheduling problem in systems where processors have the flexibility to perform more than one operation. In [5] PCCS is illustrated in the context of circuit card assembly. An operation is the insertion of an electronic component on a card at one of the assembly stations; each component required by a card has been assigned to one assembly station; two insertions are in the same class if they are to be performed at the same assembly station; a setup involves traveling from one station to another. In other contexts, different classes of operations might require different configurations on the same processor, and a setup might involve changes rather than travel.

NP-completeness of PCCS is shown in [5], and also several natural heuristics, including all critical path rules, are shown to have non-constant worst-case performance ratios. These results are followed by a theorem and a conjecture.

Theorem 1 (Lofgren et al. [5, Theorem 4.3]). *If there exists a polynomial time algorithm for PCCS with constant worst-case performance ratio, then there exists a polynomial approximation scheme for the problem.*

Conjecture 1 (Lofgren [4], Lofgren et al. [5]). *No polynomial time algorithm for PCCS with constant worst-case ratio exists unless $P = NP$.*

This paper proves (Theorem 3) that a known MAX-SNP-complete problem L-reduces to PCCS, and therefore PCCS has no polynomial approximation scheme. Combined with Theorem 1, this result proves Conjecture 1. Thus, though PCCS is a basic process planning problem, it is difficult to solve even approximately.

2. Proof of the conjecture

First, we give some terminology. An instance of PCCS consists of a directed acyclic graph and a partition of the nodes of the graph into classes. Instead of thinking of a solution as a sequence of nodes, let a solution be a sequence of classes which are applied to clear away nodes from the graph. When a class is applied, all the nodes in that class are cleared, except those that have an uncleared predecessor that is not in the same class. A feasible solution consists of a sequence of classes which, when applied, clears the entire graph. The value $v(s)$ of a solution s to an instance of PCCS is thus simply the number of steps in the sequence, $|s|$. It is easy to show that the schedules we get from such class sequences are dominant with respect to $v(s)$.

Next we introduce a gadget, which is derived from [5, Fig. 2]. There are 18 nodes, six classes denoted A, B, \ldots, F, and a precedence graph of three paths arranged in six rows, as shown in Fig. 1.
Lemma 2. The gadget graph in Fig. 1 can be optimally cleared in 10 steps. If one or more nodes in the gadget’s top row are deleted, the resulting graph can be optimally cleared in nine steps.

Proof. First, the sequence ADBECFADBE clears the gadget in 10 steps. Second, if the A in the top row is removed, then omitting the first A in the sequence just given would clear the gadget in nine steps. By symmetry nine steps would suffice if a different node from the top row were removed. Third, it takes at least six steps for all the second elements in the three paths to be cleared. After the last of the second elements is cleared, the path below it is length four and requires at least four more steps. Hence, the gadget cannot be cleared in fewer than $6 + 4 = 10$ steps. Fourth, if the top row of the gadget is removed, a similar argument shows that at least $6 + 3$ steps are required to clear. □

The main idea of the gadget is that it is good to lop off one of the elements from the top row, but it does not help to lop off more than one.

Now we define 3MAX3SAT (called “3-OCCURRENCE MAX3SAT” in [6]), the known MAXSNP-complete problem that we will L-reduce to PCCS. An instance q of 3MAX3SAT is a set of Boolean variables x_1, \ldots, x_n and clauses c_1, \ldots, c_m where each clause contains exactly three literals. A literal is a variable appearing uncomplemented as x_i or complemented as $\overline{x_i}$. Each variable appears in at most three clauses, and can be assumed to appear in at least two clauses, whence $2n \leq 3m \leq 3n$. A clause is true iff at least one of its literals is true. The value $v(a, q)$ of a truth assignment a is the number of clauses that are true with respect to a. $OPT(q)$ is the maximum over a of $v(a, q)$.

We L-reduce 3MAX3SAT to PCCS to show that the latter cannot be approximated to arbitrary accuracy. To be specific, logspace functions R and T comprise an L-reduction [6, p. 309]) of 3MAX3SAT to PCCS if there exist positive constants α, β such that
• R transforms instances q of 3MAX3SAT to instances $R(q)$ of PCCS;
• for all instances q of 3MAX3SAT, $OPT(R(q)) \leq \alpha OPT(q)$;
• for an instance q and a feasible solution s to $R(q)$, $T(s)$ is a feasible solution to q
 such that $|OPT(q) - v(T(s), q)| \leq \beta|s - OPT(R(q))|$

Theorem 3. 3MAX3SAT L-reduces to PCCS.

Proof. The mapping R. We construct the instance of PCCS from an instance of 3MAX3SAT. The node classes in the graph are

• $X_{it}, \bar{X}_{it} : i = 1, \ldots, n; \ t = 1, 2, 3$. These represent three copies of the variables and their complements. The three copies balance the three occurrences of the variable in clauses. It will not be worth “cheating” a variable at cost three to gain a benefit of three on the clauses (that is, it will turn out that had we only one copy for a variable x_i it would be possible in effect to set both $x_i = TRUE$ and $x_i = FALSE$ at a cost of one in the PCCS instance, and thereby potentially satisfy more than one additional clause. With three copies per variable, the cost outweighs the potential benefit).

• $C_{ij}, D_{ij} : (i, j) : x_i \in c_j$ or $\bar{x}_i \in c_j; \ j = 1, \ldots, m$. For each occurrence of a variable x_i (or its complement) in clause c_j there is a class C_{ij}. There is also a dummy class D_{ij}. Exception: if a literal occurs twice in the same clause, create two classes C_{ij} and $C_{i'j}$, and similarly with the D’s, one for each occurrence.

• A single node class W.

The graph itself consists of three parts (see Fig. 2). The first part of the graph functions as a schedule controller. Its nodes are in four levels. There is a precedence arc from every node in every level to every node in the level below. There are no precedence relations between nodes in the same level.

Level I: One node of each class $X_{it}, \bar{X}_{it}; \forall i, t$,
Level II: One node of each class C_{ij},
Level III: One node of each class $X_{it}, \bar{X}_{it}; \forall i, t$,
Level IV: A single node W.

This controller will force the solution to occur in five phases. In phase I, the solution must clear level I by scheduling all the copies of the variables and complements, in some order. Phase II clears all of the C_{ij} level II; phase III clears all the level III copies of the variables and their complements; phase IV clears the node W. Finally, phase V clears the clause gadgets.

The second part of the graph consists of the variable gadgets (see Fig. 3). There are n of these 12-node components, each representing a variable x_i. For every $i = 1, \ldots, n; \ t = 1, 2, 3$ the component consists of two rows of six nodes each. The upper row contains nodes from classes $X_{it} : t = 1, 2, 3$ followed by $\bar{X}_{it} : t = 1, 2, 3$. The lower row contains nodes from classes $\bar{X}_{it} : t = 1, 2, 3$ followed by $X_{it} : t = 1, 2, 3$. There are six precedence arcs, one from each node in the upper row to the node directly below it.
Fig. 2. The three parts of the graph are the schedule controller, the variable gadgets, and the clause gadgets.

Fig. 3. Variable gadget for x_7. Phase I will free up clauses that x_7 is in if \bar{x}_7 precedes x_7. The reverse order frees up clauses that \bar{x}_7 appears in.

If all three copies of the variables and their complements are sequenced, setting $x_i = \text{TRUE}$ (resp. FALSE) corresponds to X_{it} occurring later (resp. earlier) than \bar{X}_{it} in the sequence, for all t. For example, in Fig. 3, which depicts the variable gadget
Fig. 4. Clause gadget for clause $j = 4$ consisting of $\{x_5, \bar{x}_6, \bar{x}_7\}$.

for x_7, phase I will free up clauses containing the literal x_7 if the class sequence is $\bar{X}_71, \bar{X}_72, \bar{X}_73, X_71, X_72, X_73$. Phase I will free up clauses containing the literal \bar{x}_7 if the class sequence is $X_71, \bar{X}_71, X_72, \bar{X}_72, X_73, X_73$.

The third part of the graph consists of the clause gadgets (see Fig. 4). These have the internal form depicted in Fig. 1 and analyzed in Lemma 2, where A, B and C denote the three variable occurrences C_{ij} in the clause, and D, E and F denote the three dummy classes D_{ij}. Besides the precedences within the columns already stated, there are precedences from the other two parts of the graph:

- An arc from W to every D_{ij} node in the second row of each clause gadget.
- If $x_i \in c_j$, an arc from each X_{it} : $t = 1, 2, 3$ in the second row of the x_i variable gadget to C_{ij} in the first row of the clause gadget c_j. Similarly, if $\bar{x}_i \in c_j$, an arc from the second row \bar{X}_{it} : $t = 1, 2, 3$ to the first row C_{ij}.

Fig. 4 helps us see how satisfying a clause corresponds to getting a shorter feasible schedule in the constructed graph. If clause $j = 4$ is $\{x_5, \bar{x}_6, \bar{x}_7\}$, then if for all t class \bar{x}_5t precedes x_5t, or class x_6t precedes \bar{x}_6t, or class x_7t precedes \bar{x}_7t, at least one node in the top row of the $j = 4$ clause gadget will clear during phase II. The node W prevents any nodes in the second row from clearing until phase V. Therefore, by Lemma 2, during phase V the clause gadget will require nine steps to clear. If none of these
three precedences occurs, then the $j = 4$ clause gadget is completely intact at the end of phase II, and will require 10 steps to clear in phase V.

Lemma 4. Let a be a truth assignment satisfying $v(a, q)$ clauses of the instance q on n variables and m clauses. Then there exists a corresponding solution $f(a, q)$ that is feasible for $R(q)$, of value $|f(a, q)| = 12n + 13m + 1 - v(a, q)$. Moreover, $f()$ is logspace computable.

Proof. We construct $f(a, q)$ in five phases, corresponding to the five phases of a solution. Phase I: For all $i = 1, \ldots, n$ and $t = 1, 2, 3$ put X_{it} followed by X_{it} if $x_i = \text{TRUE}$ in the assignment a, and in the reverse order if $x_i = \text{FALSE}$. In the variables gadgets, this clears all the X_{it} corresponding to TRUE variables, and all the \bar{X}_{it} corresponding to FALSE variables. In the control part of the graph, this clears all of level I. This phase costs $6n$.

Phase II: Put C_{ij} for all i, j. This clears all of level II in the control part of the graph, and clears every node in the top row of each clause gadget that corresponds to a literal made true by the assignment a. This phase costs $3m$.

Phase III: Put \bar{X}_{it} and X_{it} for all $i = 1, \ldots, n$ and $t = 1, 2, 3$. This clears all of level III in the control part of the graph and clears all remaining nodes in the variables gadgets. This phase costs $6n$.

Phase IV: Put W in the sequence. At this point all remaining nodes are in clause gadgets.

Phase V: Sequence the nodes in each clause gadget according to Lemma 2. Each clause costs either 9 or 10 to clear, depending on whether any of its nodes were cleared in step II or not. The cost for this phase is therefore $10m - v(a, q)$.

Each phase is logspace computable, and the total cost of the schedule constructed is $12n + 1 + 13m - v(a, q)$. \square

For all q there are a for which $v(a, q) > 0$. By Lemma 4, there are solutions to $R(q)$ of length $12n + 1 + 13m - v(a, q) \leq 12n + 13m \leq 31m$. Therefore, for an instance q with m clauses, $OPT(R(q)) \leq 31m$.

For any instance q of 3MAX3SAT with m clauses, $OPT(q) \geq m/2$ because any truth assignment a and its complement \bar{a} has $v(a, q) + v(\bar{a}, q) \geq m$.

Combining the upper bound on $OPT(R(q))$ and the lower bound on $OPT(q)$ we get

$$OPT(R(q)) \leq 31m \leq 62OPT(q).$$

Thus the first inequality of an L-reduction is satisfied by our mapping R (with $z = 62$).

The mapping T. Now we develop the function T which transforms every feasible solution s for $R(q)$ to a feasible solution for q.

Until now, we have applied the idea of phases only to our own constructed schedules. We now make a definition that separates any feasible schedule into five phases. If s is a feasible solution to $R(q)$ it must clear all of level I of the control portion of the graph. Define s_1, the first phase of s, to be from the beginning of s until level I is cleared. The first phase has length $|s_1| \geq 6n$ because it must contain (at least one) \bar{X}_{it} and X_{it} for all $i = 1, \ldots, n$ and $t = 1, 2, 3$. Let the “extra” part of phase I, e_1, denote the
been partly cleared at the start of phase V. By Lemma 2, \(v \in \text{Lemma} \) on complements, suppose without loss of generality the literal \(e \) precedes \(IYY". \)

Let \(\text{s} \) be a feasible solution to \(\text{Lemma} 5 \). Feasibility follows from Lemma 4. By the same lemma, \(|s\) = 12n + 13m − \(v(T(s)), q \) \). Let \(V(s) \) denote the number of clause gadgets in \(R(q) \) that have already been partly cleared at the start of phase V. By Lemma 2, \(|s\) \(s[II] \) \(s[III] \) \(s[IV] \) + 10m − \(V(s) \). Therefore it suffices to prove that \(V(s) − v(T(s)), q \) \(|s[IV]| \) \(|s[III]| \) \(|s[II]| \) \(|e[II]| \) \(|e[III]| \) \(|e[IV]| \). To prove this it suffices to show that there are at least as many extra terms in \(e[II] \cup e[III] \cup e[IV] \), as there are clauses \(c_j \) that are not satisfied by \(T(s) \) but whose gadgets are partly cleared at the start of phase V.

Let \(c_j \) be such a clause; we will assign a distinct extra term to it. By symmetry on complements, suppose without loss of generality the literal \(x_i \in c_j \) is cleared by \(s \) before phase V. We know \(T(s) \) assigns \(x_i = \text{FALSE} \) (else \(T(s) \) would satisfy \(c_j \)), so the literal \(x_i \) must appear in at least one clause (else \(T \) would trivially have assigned \(x_i = \text{TRUE} \)). The variable has at most three occurrences, hence the literal \(x_i \) appears in at most one clause of the desired type other than \(c_j \). Also, by construction of \(T \), \(X_{it} \) precedes \(X_{it} \) for at least two values of \(t \), among the six non-extra terms of \(s_i \).

Were it not for the terms in \(e[II], \ldots, e[IV] \), at least two \(X_{it} \) nodes in the \(x_i \) variable gadget would not be cleared at the end of phase I, and \(C_{ij} \) in the \(c_j \) gadget would not clear in phase II of \(s \). The easy way for \(C_{ij} \) to be cleared is by an extra \(C_{ij} \) term late in \(e[III] \) (after \(X_{ij} \)) or in \(e[IV] \) Such an extra \(C_{ij} \) term cannot help clear any other clause gadget, hence it can be assigned to \(c_j \). The more complicated way for \(C_{ij} \) to be cleared is by extra \(X_{it} \) terms for at least two values of \(t \), in \(e_1 \) or early in \(e[II] \) (prior to \(C_{ij} \).
Assign one of these extra X_{id} terms to clause c_j. If the literal x_i appears in another clause (it can appear in at most one other), there is another extra X_{id} term available to be assigned to it. Therefore, each clause can be assigned a distinct extra term, proving the lemma.

Let s be feasible for $R(q)$. Let $s' = f(T(s), q)$ and let s^* be optimal for $R(q)$. Then by Lemma 5 $|s^*| \leq |s'| \leq |s|$. So $|s' - |s^*|| \leq |s| - |s^*| = |s| - OPT(R(q))$. Now $|s'| = 12n + 13m + 1 - v(T(s), q)$ by Lemma 4.

Apply Lemma 4 to $OPT(q)$ to get a feasible sequence of length $12n + 13m + 1 - OPT(q)$. By optimality of s^*, $|s^*| \leq 12n + 13m + 1 - OPT(q)$. Rearranging, and substituting for $|s'|$ with the equation preceding, $OPT(q) \leq 12n + 13m + 1 - |s^*| = |s'| + v(T(s), q) - |s^*|$. Rearranging again gives $OPT(q) - v(T(s), q) \leq |s'| - |s^*|$. Since q is an instance of a maximization problem and PCCS is a minimization problem, we can introduce absolute values to get $|OPT(q) - v(T(s), q)| \leq |s'| - |s^*| \leq |s| - OPT(R(q))$ as desired, with $\beta = 1$. This completes the proof that R and TL-reduce 3MAX3SAT to PCCS.

Corollary 6. PCCS does not have a polynomial approximation scheme unless $P = NP$.

Proof. A polynomial approximation scheme for PCCS would provide one for 3MAX3SAT via the L-reduction of Theorem 3. But no such scheme exists for 3MAX3SAT unless $P = NP$ [6].

Combining Corollary 6 with Theorem 1 proves Conjecture 1.

Theorem 7. No polynomial time factor k approximation algorithm for PCCS exists, for any constant k, unless $P = NP$.

Finally we remark that there is a very simple factor \sqrt{n} approximation algorithm for PCCS, where n is the number of operations. Let c be the number of (nonempty) classes. Let z^* denote the optimal schedule length. Note $z^* \geq c$. If $c \leq \sqrt{n}$ then the sequence $\{1, \ldots, c\}$ repeatedly applied will clear the graph in at most z^* repetitions, at cost at most $cz^* \leq \sqrt{n}z^*$. On the other hand, if $c > \sqrt{n}$, any feasible solution of length n has cost $n \leq \sqrt{nc} \leq \sqrt{n}z^*$. The proof of Theorem 1 [5] gives no improvement on this performance ratio. This leaves an interesting gap between \sqrt{n} and Theorem 7.

References