Integral feedback generically achieves perfect adaptation in stochastic biochemical networks

Corentin Briat*, Ankit Gupta* and Mustafa Khammash*

Abstract—Homeostasis is a running theme in biology. Often achieved through feedback regulation strategies, homeostasis allows living cells to control their internal environment as a means for surviving changing and unfavourable environments. While many endogenous homeostatic motifs have been studied in living cells, synthetic homeostatic circuits have received far less attention. The tight regulation of the abundance of cellular products and intermediates in the noisy environment of the cell is now recognized as a critical requirement for several biotechnology and therapeutic applications. Here we lay the foundation for a regulation theory at the molecular level that explicitly takes into account the noisy nature of biochemical reactions and provides novel tools for the analysis and design of robust stochastic homeostatic circuits. Using these ideas, we propose a new regulation motif that implements an integral feedback strategy which can generically and effectively regulate a wide class of reaction networks. By combining tools from probability and control theory, we show that the proposed control motif preserves the therapeutically relevant property of a biological system (e.g. a cell), that enables it to adapt to an external stimulus and maintain its responsiveness to further stimuli. To be efficient, such an adaptation mechanism must be robust, i.e. work for a wide range of stimulus levels and system parameters. It was shown in [1] that robust perfect adaptation in bacterial chemotaxis was achieved due to an integral feedback control mechanism, which was structurally inherent in the prevalent chemotaxis model [2]. Other homeostatic systems have also been shown to possess the mechanism of integral feedback control. For instance, it was demonstrated in [3] that calcium homeostasis in mammals relies on an integral feedback strategy that achieves perfect adaptation to persistent changes in plasma calcium clearance or influx. In this case the dynamical interactions between the hormones PTH and 1,25 Vitamin D, implement the integral feedback control. This enables mammals to maintain physiological levels of plasma calcium within tight tolerances in spite of the increased demand for calcium to meet the requirements of milk production. In [4], integral feedback is also implicated in the robust regulation of membrane turgor pressure in Saccharomyces cerevisiae. Following an osmotic shock, nuclear enrichment of the MAP kinase Hog1 adapts perfectly to changes in external osmolarity, a result of an integral feedback action that requires Hog1 kinase activity. Adaptation, however, may not be necessarily related to integral control as some theoretical studies have suggested [5, 6].

In engineering applications, integral feedback is recognized as a key strategy for regulation. The Proportional-Integral-Derivative (PID) control architecture, which utilizes integral feedback as an essential element, is the workhorse of industrial control and is implemented in the majority of all automatic control applications [7]. Undoubtedly, the prevalence of such a control strategy in natural and man-made systems is due to the inherent property of integral feedback control to robustly steer a regulated system variable to a desired set point, while achieving perfect adaptation to disturbances (or stimuli), regardless of the model parameters. Perhaps surprisingly, engineered biological circuits displaying perfect adaptation have received little attention so far and current synthetic circuits only rely on simpler feedback strategies. For example, several control loops for controlling the level of biofuel production in bacteria while still maintaining a low toxicity level are theoretically analyzed in [8]. Another synthetic negative feedback loop is also designed in [9] for the control of protein translation. Instead of integral feedback strategies, these circuits rely on the simpler proportional feedback strategy. Consequently, they require a cumbersome tuning of parameters for achieving their goals. Such a tuning is very difficult to realize in a biological setting and, even if a proportional feedback strategy is perfectly implemented, it will unavoidably fail to demonstrate perfect adaptation unlike any integral feedback strategy.

In a deterministic setting, integral feedback control is well-understood and its ability to achieve robust tracking and perfect adaptation is well-known. Analogous strategies are, however, unknown for cellular environments in which low molecular abundances render the dynamics intrinsically noisy. In this setting, where stochastic processes (e.g. continuous-time discrete-state Markov processes) describe the dynamics, determining what constitutes integral feedback is still uncertain. As in the deterministic case, a "stochastic integral feedback" strategy must achieve closed-loop stability of the overall system, robust tracking and robust perfect adaptation with the difference that the robustness property will not only refer to model parameters, but also to the very low and highly fluctuating species abundances. One way to attempt the construction of a "stochastic integral feedback" is to use statistical moments to describe the process to be regulated, and then to design feedback regulation strategies that steer these moments to desired values while achieving perfect adaptation [10]. While this approach brings the problem back to the deterministic domain (statistical moments evolve according to deterministic dynamics), one is immediately faced with the moment closure problem, whereby an infinite set of differential equations is needed to determine even the first two moments; see e.g. [11]. Similar difficulties arise if one works with the chemical master equation.

We adopt in this paper a completely novel approach for designing a stochastic integral feedback strategy that exhibits robust tracking and robust perfect adaptation. Rather than dealing with deterministic dynamics, we work with the stochastic chemical reaction network directly, thereby circumventing the moment closure problem. Our control objective is to bring the mean of a single species to a desired set-point. To achieve this, a new set of stochastic chemical reactions is introduced in a way that effectively implements a "stochastic integral feedback network". Collectively, the two sets of reactions generate stochastic dynamics that achieves the properties of closed-loop stability, robust tracking, and robust perfect adaptation. To

*Corentin Briat, Ankit Gupta and Mustafa Khammash

Department of Biosystems Science and Engineering (D-BSSSE), Swiss Federal Institute of Technology–Zürich (ETH-Z), 4058 Basel, Switzerland.
email: {corentin.briat,ankit.gupta,mustafa.khammash}@bsse.ethz.ch
analyze such stochastic systems and to guarantee that they achieve these objectives, a new theory, that we outline in what follows, turns out to be needed. We indeed show that for a large class of networks, a certain feedback control motif can be used to achieve the desirable properties of “stochastic integral feedback”. We rigorously prove that such a motif robustly achieves the desired closed-loop stability (ergodicity) property. We additionally show that it achieves robust set-point tracking and robust perfect adaptation under mild conditions on the uncontrolled network. Intriguingly, our “stochastic integral control” motif can provably achieve all the desired properties mentioned above, even when very low molecular copy numbers exist anywhere in the network. This presents a clear advantage in synthetic biology applications, where synthetic control loops involving large molecular counts can impose a debilitating metabolic load on the cell. Surprisingly our control scheme can be shown to possess very convenient stabilizing properties that are not found in deterministic implementations of the same circuit. This presents an example, where instead of being a nuisance, the intrinsic stochastic noise helps in stabilizing a system which would be unstable otherwise. To the best of our knowledge, such a beneficial effect of noise, in the context of control theory, is reported for the first time in this paper. Note that many other benefits of noise, such as stochastic focusing [12], noise-induced oscillators [13] and noise-induced switches [14], [15], have appeared in the literature in recent years.

In what follows, we expose the considered control problem, the proposed controller, along with some technical results stating the conditions under which the proposed controller solves the considered control problem. Interestingly, these conditions obtained from probability theory elegantly connect to well-known concepts of control theory, such as stability and controllability. Some additional properties, such as robustness and innocuousness, are also discussed. The theoretical results are finally demonstrated by simulations.

II. FEEDBACK CONTROL OF BIOCHEMICAL STOCHASTIC REACTIONS

A. The open-loop network

We describe here the reaction network we aim to control. Let us consider the Markovian model of a reaction network with mass-action kinetics involving d molecular species denoted by X_1, \ldots, X_d. Under the well-stirred assumption [16], the state of the system is given, at any time, by the vector of molecular counts of the d species. The state evolution is described by K reaction channels: if the state is x, then the k-th reaction firing at rate $\lambda_k(x)$ displaces the state by the stoichiometric vector $\zeta_k \in \mathbb{Z}^d$. Here λ_k is called the propensity function of the k-th reaction and is assumed to verify that if, for any $x \in \mathbb{N}_0^d$, we have $x + \zeta_k \not\in \mathbb{N}_0^d$, then $\lambda_k(x) = 0$.

Let S be a non-empty subset of \mathbb{N}_0^d which is closed under the reaction dynamics: for any $x \in S$ if $\lambda_k(x) > 0$ then $x + \zeta_k \in S$. Once such a S is fixed [17], it serves as the state-space for all Markov processes describing the reaction kinetics and starting at an initial state in S. Let $\{(X(t) = (X_1(t), \ldots, X_d(t)) : t \geq 0)\}$ be the continuous time Markov process representing the reaction dynamics with an initial state $x_0 \in S$.

From a control theoretic point of view, it is necessary to define input and output nodes of the above network. We assume here that the species X_1, is the actuated species which is the species we can act on. The controlled species is X_ℓ, for $\ell \in \{1, \ldots, d\}$, is the species we would like to control. Finally, the measured species, which will defined later, is the species we can measure the population.

The way we act on the actuated species as well as the way we want to control the controlled species will be explained more clearly in the next sections.

B. The control problem

It is important to state now the control problem we are interested in.

Theorem 2.1: Find a controller such that, by suitably acting on the actuated species X_1, we have the following properties for the closed-loop network (defined here as the interconnection of the network (X, λ, ζ) defined above with the controller):

1) the closed-loop network is ergodic;
2) the first and second-order moments of $X(t)$ exist and are uniformly bounded and globally converging to their unique stationary value;
3) we have that $\mathbb{E}[X_i(t)] \rightarrow \mu^*$ globally as $t \rightarrow \infty$ for some desired set-point $\mu^* > 0$.

The first and third statements are standard in control theory. Ergodicity is the analogue of having a globally attracting fixed point for deterministic dynamics (i.e. global stability) and is required here so that the closed-loop network is well-behaved (in the sense that it reaches stationarity). The second one is more specific to stochastic processes as even if the means converge, the variance can still go unbounded which would mean that the actual dynamics of the process (its sample-paths) is not well-behaved and, therefore, that the controller is of little practical utility. Finally, the third statement encapsulates the standard desired tracking objective.

C. Controller network

We propose the following controller network (see Fig. 1) inspired from the deterministic networks proposed in [18]:

\[
\begin{align*}
0 & \xrightarrow{\mu} Z_1, & 0 & \xrightarrow{\theta X_1} Z_2, \\
Z_1 + Z_2 & \xrightarrow{\eta} 0, & 0 & \xrightarrow{\theta Z_2} \chi_1.
\end{align*}
\]

Above X_ℓ is the measured species which turn out to be identical to the controlled species in the current setup. The species Z_1 and Z_2 are referred to as the controller species. More specifically, Z_1 is the control input species since it acts on the birth rate of the actuated species X_1 while Z_2 is the comparative species since it annihilates with Z_1. Although inspired from [18], the above network has a different philosophy. Besides the fact that the current setting is stochastic, the main difference lies in the way the network interacts with the environment. While the goal of [18] was the biomolecular implementation of linear input-output systems, the goal here is the control a chemical reaction network. In this regard, the birth-reactions of Z_1 and Z_2 clearly differ from the way they are defined in [18].

We now clarify the role and meaning of each of these reactions:

1) The first reaction is the reference reaction (or set-point) which (partially) sets the value of the reference $\mu^* = \mu/\theta$. This value is implemented as the birth-rate of species Z_1.
2) The second reaction is the measurement reaction and takes the form of a pure-birth reaction with a rate proportional to the current population of the controlled/measured species X_ℓ. It is referred to as the measurement reaction as the rate of increase of the population of Z_2 reflects the population of X_ℓ.
3) The third reaction implements the comparison reaction decreasing by one the respective populations of Z_1 and Z_2, at a rate η that can be tuned. The main role of this reaction is to correlate both the populations of Z_1 and Z_2 and to prevent them

\footnote{Note that it can also be implemented in terms of the catalytic reaction $X_\ell \xrightarrow{\theta} X_\ell + Z_2$.}
from growing without bounds. This reaction can be viewed as a comparison and substraction operation since when both Z_1 and Z_2 have positive populations (comparison), then we decrement their respective population, thereby preserving the same difference level $Z_1 - Z_2$.

4) The last reaction is the actuation reaction which implements the way the controller acts on the system, i.e. by acting on the birth-rate of the actuated species X_1. The parameter k is also a tuning parameter of the controller.

![Schematic representation of the closed-loop network controlled by the proposed integral controller (2.1).](image)

The “hidden” integral action. It seems important to identify the source of the integral action. From the stationary moments equations of the controller network (2.1)

\[
\begin{align*}
0 &= \mu - \eta E^*[Z_t | Z_2] \\
0 &= \theta E[X_t] - \eta E^*[Z_t | Z_2]
\end{align*}
\]

we get that $\mu - \theta E^*[X_t] = 0$, and thus that $E^*[X_t] = \mu/\theta$, where E^* denotes expectation at stationarity. Therefore, the controller automatically imposes the value μ/θ to $E^*[X_t]$ regardless of the values of all the other parameters, which is the main rationale for integral control. In this regard, proving that the closed-loop network reaches stationarity will automatically imply that $E[X_t(t)] \to \mu/\theta$ as $t \to \infty$, without the need for solving any moments equations.

Implementation of the controller. The proposed controller (2.1) has been chosen with an implementability constraint in mind as it is expressed as plausible reactions that may be implemented in-vivo to perform in-vivo control. It will be shown later that the proposed controller exhibits very strong robustness properties which make its implementation much easier than other types of controllers which require the fine tuning of their reaction rates (see also the supplementary material). In-vitro control is also possible using, for instance, DNA strand displacement [19]. In-silico control [10], [20], finally, can also be considered whenever the population of controlled species X_t can be measured from the outside of the cell(s) using, for instance, time-lapse microscopy.

Fig. 1. Schematic representation of the closed-loop network controlled by the proposed integral controller (2.1). The controller (left side) acts on the network (right side) by influencing the rate of production of the actuated species X_3 by means of the control input species Z_1. The controlled species X_t will be influenced by the increase or decrease of the actuated species X_3 and, in turn, will influence the rate of production of the comparative species Z_2, that will, finally, annihilate with the control input species Z_1, thereby implementing a negative feedback control loop. The integral action is encoded in all the reactions of the controller network.

III. MAIN RESULTS

A. Unimolecular networks case

The following result, proved in the supplementary material, establishes conditions under which a stochastic unimolecular reaction network can be controlled using the controller network (2.1):

Theorem 3.1: Assume that the state-space of the reaction network is irreducible. Let us further define $A \in \mathbb{R}^{d \times d}$ and $b_0 \in \mathbb{R}^d_2$ as

\[
v^T A x + v^T b_0 := \sum_{i=1}^{K} \lambda_i(x) v^T \zeta_k
\]

where A has nonnegative off-diagonals entries. Then, the following statements are equivalent:

1) There exist vectors $v \in \mathbb{R}^d_2$, $w \in \mathbb{R}^d_2$, $w_1 > 0$, such that $v^T A < 0$ and $w^T A + e_1^T = 0$.

2) The positive linear system describing the dynamics of the first-order moments given by

\[
\begin{align*}
\frac{dE[X(t)]}{dt} &= AE[X(t)] + e_1 u(t) + b_0 \\
\gamma(t) &= e_1^T E[X(t)]
\end{align*}
\]

is asymptotically stable and output controllable; i.e. A is Hurwitz-stable and

\[
\text{rank } [e_1^T e_1 A e_1 \ldots e_1^T A^{d-1} e_1] = 1.
\]

Moreover, when one of the above statements holds, then

1) The closed-loop reaction network is ergodic;

2) the first- and second-order moments of $X(t)$ exist and are uniformly bounded and globally converging;

3) we have that

\[
E[X_t(t)] \to \mu/\theta \text{ as } t \to \infty
\]

provided that

\[
\frac{\mu}{\theta} > \frac{v^T b_0}{e_2 v^T e_1}
\]

holds for some scalar $c > 0$ and some vector $v \in \mathbb{R}^d_2$ satisfying $v^T (A + cI) \leq 0$.

Whereas the second statement involves standard control theoretic concepts such as stability and controllability, the first one is purely algebraic and can be cast as a scalable linear program [21] since the complexity of the problem grows linearly with respect to the number of species d involved in the network. The above result is extended to a class of biomolecular networks in the supplementary material.

B. Properties of the closed-loop network

In light of Theorem 3.1, several striking properties for the closed-loop network and the controller itself can be stated.

Ergodicity, tracking and bounded first- and second-order moments. These are the main properties stated in the considered control problem, i.e. Problem 2.1.

Robustness. Robustness is another fundamental property ensuring that some properties for the closed-loop network are preserved, even in presence of model uncertainties. This concept is critical in biology as the environment is fluctuating (noise) and poorly known models are only available. The obtained results can automatically guarantee the preservation of all the properties stated in Theorem 3.1, even in...
such constraining conditions.

Single-cell behavior and population behavior. Ergodicity ensures that the population average at stationarity is equal to the asymptotic value of the time-average of any single-cell trajectory; see e.g. [17]. We can therefore conclude that the proposed controller achieves two goals simultaneously as it can, at the same time, ensures robust tracking at both a population and a single-cell level. As a consequence, the controller will also ensure single-cell tracking in presence of cell events such as cell-division and cell-growth (see the supplementary material).

Innocuousness of the controller. Innocuousness is a non-standard property of the proposed controller meaning that it can safely be implemented to achieve the control objectives regardless of the values of its parameters k, η (the conditions of Theorem 3.1 are independent of k, η). This property is quite uncommon (see the supplementary material) as an incorrect implementation of control laws usually result in the incapacity of ensuring the control objectives. This is known as *fragility*. This suggests that the proposed controller can be implemented without any clear knowledge of both the network and the controller parameters. This is crucial in biology as identifying models and implementing specific reaction rates (even approximately) both remain an elusive task.

Circumventing moment closure difficulties. Finally, we emphasize that using the proposed approach, the moment closure problem does not arise as the conclusion (i.e. ergodicity, tracking and robustness) directly follows from stochastic analysis tools and the structure of the controller, thereby avoiding altogether the framework of the moment equations (see the supplementary material).

C. Proportional action vs. integral control

To illustrate the difference between proportional and integral action, we consider here the following gene-expression network

$$X_1 \xrightarrow{\gamma_1} \emptyset, \quad X_1 \xrightarrow{k_2} X_1 + X_2, \quad X_2 \xrightarrow{\gamma_2} \emptyset$$

(3.6)

where X_1 denotes the mRNA and X_2 the corresponding protein. We compare now by simulation (see Fig. III-C) the performance of these controllers:

- The integral controller (2.1) where X_1 is the actuated species and X_2 the measured/controlled species.
- The proportional controller described by the reaction

$$\emptyset \xrightarrow{f(X_2)} X_1 \quad \text{with} \quad f(X_2) = \frac{\alpha K^n}{K^n + X_2^n}$$

(3.7)

where K, α are positive parameters and n is a positive integer.

Even though the comparison is based on these specific networks, it is a matter of fact that proportional controller can not ensure adaptation; see the supplementary material for some theoretical arguments and different proportional schemes.

D. Gene expression control - Output tracking and perfect adaptation

The goal of this example is to demonstrate that tracking and perfect adaptation can be ensured with respect to any change in the network parameters for the gene expression network (3.6) where X_1 is again the actuated species and X_2 the measured/controlled species (see Fig. 3). The following result is proved in the supplementary material:

Proposition 3.2: For any positive values of the parameters $k, k_2, \gamma_1, \gamma_2, \eta, \theta$ and μ, the controlled gene expression network (3.6)-(2.1) is ergodic, has bounded and globally converging first- and second-order moments and

$$E[X_2(t)] \to \frac{\mu}{\theta} \quad \text{as} \quad t \to \infty.$$

(3.8)

E. Deterministic vs. stochastic control

It seems important to compare the results that we obtain here to those we would have obtained in the deterministic setting (see Fig. 4). To this aim, we consider again the gene expression network (3.6) to which we set $k_2 = \gamma_1 = \gamma_2 = 1$ for simplicity. We then get the deterministic and stochastic models depicted in Fig. 4-A and Fig. 4-B, respectively. The stochastic mean model has been obtained using the identity $E[Z_1Z_2] = E[Z_1]E[Z_2] + \text{Cov}(Z_1, Z_2)$ where the covariance term is nonzero as the random variables are not independent. If such a term would be zero, then we would recover the deterministic dynamics, but, due to noise, we can see in Fig. 4-C that while the deterministic dynamics may exhibit oscillations, the dynamics of the first-order moment is always globally converging to the desired steady-state value. As a final comment, we note that if we were closing the moments equation in Fig. 4-C by neglecting the second-order cumulant, then we would fail in predicting the correct behavior of the first-order moments. This demonstrates the central role of the noise in the stabilizing properties of the proposed stochastic integral controller.

IV. DISCUSSION

A general control theory for stochastic biochemical reaction networks with tailored mathematical concepts and tools has been missing. We believe that a well-grounded *biomolecular control theory* could pave the way for an efficient and systematic rational design of synthetic in vivo regulatory motifs, in the same way that classical control theory opened the way for numerous novel applications in various engineering disciplines. In this article, we aimed to lay the foundation for such a theory by addressing one of the central feedback control motifs: integral feedback. The methods we developed are the product of a synthesis of ideas from control theory, probability theory, linear algebra, and optimization theory. Even though our findings are
Integral control ensures robust tracking and perfect adaptation

A The controlled gene expression network (3.6) with the proposed integral controller (2.1). **B** The closed-loop reaction network shows perfect adaptation (at stationarity) with respect to any changes in the parameters of the network as we have that \(E^* [X_2] = \mu / \theta \) for any values of the parameters \(k, \eta, k_2, \gamma_1 \) and \(\gamma_2 \) where \(E^* [X_2] \) denotes the mean number of molecules of \(X_2 \) at stationarity. **C** The controlled-output \(E[X_2(t)] \) of the closed-loop network tracks the reference value (in black-dash). The mean population of input species \(E[Z_1(t)] \) adapts automatically to changes in the reference value \(\mu^* = \mu / \theta \) without requiring re-implementation. **D** Single-cell trajectories, although strongly affected by noise, still have an underlying regularity ensuring the convergence of the moments at the population level. All simulations have been performed using Gillespie’s stochastic simulation algorithm with the parameters \(k = 1, \gamma_1 = 3, k_2 = 2, \gamma_2 = 1, \theta = 1 \) and \(\eta = 50 \).

Fig. 3. A. The controlled gene expression network (3.6) with the proposed integral controller (2.1). B. The closed-loop reaction network shows perfect adaptation (at stationarity) with respect to any changes in the parameters of the network as we have that \(E^* [X_2] = \mu / \theta \) for any values of the parameters \(k, \eta, k_2, \gamma_1 \) and \(\gamma_2 \) where \(E^* [X_2] \) denotes the mean number of molecules of \(X_2 \) at stationarity. C. The controlled-output \(E[X_2(t)] \) of the closed-loop network tracks the reference value (in black-dash). The mean population of input species \(E[Z_1(t)] \) adapts automatically to changes in the reference value \(\mu^* = \mu / \theta \) without requiring re-implementation. D. Single-cell trajectories, although strongly affected by noise, still have an underlying regularity ensuring the convergence of the moments at the population level. All simulations have been performed using Gillespie’s stochastic simulation algorithm with the parameters \(k = 1, \gamma_1 = 3, k_2 = 2, \gamma_2 = 1, \theta = 1 \) and \(\eta = 50 \).

specific to the class of integral controllers we consider, they may serve as the foundation on which to develop a more general bimolecular control theory— one that deals with a larger class of stochastic dynamic controllers and networks. Indeed, numerical experiments performed on more general networks lying outside the scope of the developed theory tend to support this claim (see the supplementary material).

Until now, most of the synthetic regulatory circuits have relied on proportional action—a control scheme that fails to ensure perfect adaptation in many practical situations. Moreover, existing theoretical studies of synthetic biological circuits mainly considered the deterministic setting, and hence they implicitly assumed large molecular species abundances. However, the implementation of control circuits that rely on high component abundances severely impinges on the host circuit’s material and energy resources, leading to increased metabolic burden which can affect both function and viability. Fortunately, this is largely avoidable, as effective control is concerned more about information processing which need not require high energy or material resources. The novel regulatory motif that we propose exhibit characteristics that provably ensure robust stability, robust tracking, and robust perfect adaptation for the controlled network, achieved with molecular species that can have very low abundances. It can be used for both single-cell tracking (in average) and for population control. Thanks to the innocuousness of the controller, it does not need to be fine tuned, and can therefore be used in many practical situations, e.g. when the controlled network is very poorly known. In this regard, the proposed controller maintains clear implementability advantages over controllers requiring parameter tuning. This latter property emerges from the random nature of the reactions, as its deterministic counterpart leads to oscillating trajectories when the controller parameters are located in a certain instability region.

The proposed controller structure may find several applications. An immediate one is the optimization of drug or fuel production in bioreactors; see e.g. [8]. Currently naive control strategies, such as proportional feedback or constitutive production, are used in these applications. By utilizing more sophisticated controllers, such as the one proposed here, dramatic improvements in the production process can be expected, thanks to their enhanced robustness properties. Another important application example is the design of insulators; see e.g. [22]. It has indeed been shown that loading effects are often detrimental to modular design. Insulators are therefore needed in order to preserve function modularity. The proposed controller can
be used as a buffering element in order to drive the output of a module to the input of another one. Finally, the controller can also be used as a constant signal generator that can be used to act on a network to be analyzed. The amplitude can be tuned by acting on the reference, which can be modified from outside the cell using light-induced techniques [10]. One major benefit of the proposed controller, in this case, lies in its versatility as it does not need to be specifically designed for any reference value.

The proposed controller, however, may have some drawbacks, as it seems to introduce some additional variance to the controlled process. Even though, this extra variance is not detrimental to the current control objectives, it may be a problem if one’s goal is to reduce the variance over a cell population. This, however, may be unavoidable, as fundamental limitations to variance reduction with feedback have been established [23]. When variance has to be reduced, cell-to-cell communication via quorum sensing might be a viable solution to compensate for the additional randomness the controller is introducing.

REFERENCES

