
Implementation Experience with the OMG IN/CORBA

Interworking Specification

C. McArdle, R. Brennan, N. Jones, J. Vasic and T. Curran

Teltec Ireland

Contact: Conor McArdle, mcardlec@teltec.dcu.ie, Teltec, phone +353 1 7045569, fax +353 1 7045092

Teltec Ireland, Dublin City University, Glasnevin, Dublin 9, Ireland

ABSTRACT

The Object Management Group has recently adopted a

specification to standardise interworking between Signaling

System No.7 systems and CORBA-based systems. This

specification defines two types of interworking mechanism: 1.

Interworking between CORBA-based TC-User Application

Entities (such as CORBA-based Service Control Points) and

legacy TC-User Application Entities (such as Service

Switching Points), where communication between the

Signalling System No.7 and CORBA domains is through a

gateway mechanism that provides a CORBA view of a legacy

target and a legacy view of a CORBA target. This is specified

as the gateway approach; 2. Interworking between islands of

CORBA-based systems using the existing Signalling System

No.7 infrastructure as a transport network for CORBA

messages between Application Entities. This is specified as

the SCCP Inter-ORB Protocol. This paper reviews the current

specification for the gateway approach and presents some

enhancements that are based on practical implementation

experience. An implementation of the gateway specification is

outlined and performance characteristics are presented.

1. INTRODUCTION

In recent years, the deregulation of public

telecommunications networks has presented network

operators and service providers with a rapidly changing

environment. In this environment, service creation

strategies have been driven by the need for fast time to

market for new services and by the requirements for a

high degree of service customisation. However, as the

number of deployed services increases, the effort

involved in interworking new and existing services has

dominated the actual effort devoted to development of

new services. Furthermore, network intelligence has

been viewed and implemented as tightly coupled,

vertically integrated applications, with dialogue

capabilities in the form of standardised capability sets.

The disadvantages of this approach are little software re-

use, reduced scalability and performance, cumbersome

service management and limited interconnection

capabilities with external resources such as the Internet

and private databases.

For these reasons, many actors in the telecom arena are

currently considering solutions from the mainstream

computer industry to help solve key issues regarding the

future evolution of their systems. In particular, the need

to differentiate the offering of value-added services is

pushing network operators to consider the possibility of

introducing top-end software technologies for the

control of network intelligence. Equipment vendors are

increasingly employing object oriented design principles

and distributed processing platforms for the

implementation of new generation IN systems. Current

SCP platforms from many vendors are already

structured following a client/server model in which

UNIX-based servers are connected through high-speed

data networks, with back-end distributed computing.

New technologies in real-time database management

systems already provide effective solutions to data

replication issues, while distributed processing

environment standards, such as the Object Management

Group’s (OMG) Common Object Request Broker

Architecture (CORBA), are already in use for service

management applications.

Recent initiatives have also considered the application

of CORBA to real-time applications within IN and

wireless network elements with a view towards

standardising an open software creation and computing

environment. Middleware technologies such as CORBA

are increasingly seen as the appropriate infrastructure in

a value-added telecom network. The reasons for this

move towards the adoption of CORBA technology

include: the ability to provide flexible system scalability,

the ability to leverage commercial off-the-shelf IT

technologies, the advantages of an open standards

process, the ease of system integration with existing

working systems, the ability to leverage new

technologies as they emerge, and the avoidance of

technology and vendor lock-in. Much of the

investigation into the application of CORBA to IN

systems has been initiated by the Eurescom P508 project

[5], the goal of which was to determine the options for

evolving from legacy systems towards TINA. A major

result of the project was that the gradual introduction of

a TINA DPE (i.e. CORBA technology enhanced with

real-time capabilities) into the existing IN environment

represents a fundamental prerequisite for such an

evolution.

During the course of the P508 project, White Papers

were produced [1], [2] and submitted to the OMG in

order to support the then emerging activities on

IN/CORBA interworking. These White Papers were

targeted at providers of information technology

solutions and had the purpose of stimulating their

interest towards telecommunication operator specific

needs. They analyse a specific element of the problem

area the introduction of CORBA into the Intelligent

Network. The central idea put forward is to adopt the

OMG CORBA standard, enhancing it to make it suitable

for telecommunications systems, particularly IN.

Subsequent to the White Papers, the OMG issued a

Request for Proposals [3] that sought proposals for

interworking between CORBA and Intelligent Networks

systems. Subsequently, the work was continued within

the Telecommunications Domain Task Force of the

OMG, which has recently produced a standard [4],

which focuses on the interworking of CORBA-based

systems with TC-User applications, such as traditional

IN and mobile systems. This standard is a joint

submission from AT&T, GMD FOKUS, Nortel, IONA

Technologies and Teltec Ireland in collaboration with

Alcatel, Deutsche Telekom, Ericsson

Telecommunications, Humboldt University, Object

Oriented Concepts Inc. and Telenor. The standard is

currently being implemented and evaluated.

Section 2 of this paper briefly outlines IN-CORBA

Interworking as proposed in the standard. Section 3

discusses some enhancements, which are to be submitted

to the OMG Finalisation Task Force for the

specification. These enhancements are based upon

practical implementation experience with the

specification. In Section 4, an implementation of a

practical SS7/TC-User to CORBA Gateway, which is

conformant to the specification, is examined in terms of

performance issues. Section 5 concludes the paper.

2. OVERVIEW OF IN/CORBA

INTERWORKING

The OMG specification for interworking between

CORBA-based and SS.7/TC Systems [4] defines two

types of interworking mechanism:

Interworking between CORBA-based TC-User

Application Entities (e.g. CORBA-based Service

Control Points (SCP), and legacy TC-User Application

Entities (e.g. Service Switching Points (SSP)) through a

gateway mechanism that provides a CORBA view of a

legacy target and a legacy view of a CORBA target.

This is specified as the gateway approach.

Interworking between islands of CORBA-based systems

using the existing Signalling System No.7 (SS7)

infrastructure as a transport network for GIOP messages.

This is specified as the SCCP Inter-ORB Protocol

(SIOP).

These interworking mechanisms correspond to the

EURESCOM P508 conclusion that there is a need to

standardise both a gateway and a kernel transport

network [5]. An overview of the gateway interworking

standard is provided here as background to the work

discussed in this paper. For a more complete

introduction to the standard, see [8].

2.1 The Gateway Approach

The gateway approach is similar to earlier work on using

CORBA for telecommunications management, which

was jointly carried out by the NMF and X/Open [6]. In

Figure 1, the CORBA-based TC-User Application

Entity has IDL interfaces that are created through

Specification Translation of the ASN.1 specifications of

the TC-User protocol. This IDL-based specification

provides a uniform interface that may be used when

implementing either native CORBA-based Application

Entities (AEs) or AE proxy CORBA objects at a TC-

CORBA gateway. This uniformity is essential to ensure

location transparency and eliminate the need for proxy

objects for native CORBA to CORBA interactions. The

translation algorithm is an extension of the previous

NMF/The Open Group Joint Inter-Domain Management

Task Force (JIDM) work on ASN.1 to IDL specification

translation [6].

In order to support TC-User interaction semantics

(naming, dialogues, etc.) in the CORBA domain,

CORBA TC-User Facilities have been defined that reuse

some of the CORBA Object Services (this is the

Interaction Translation part of the specification). This

allows maximum re-use of the CORBA infrastructure

when using it as an environment for developing TC-User

applications. It also means that building an TC-User

application is simplified, as most of the TC-specific

functionality has been encapsulated by specialising the

CORBA Object Services and by provision CORBA TC-

User Facilities by the standard.

In addition to the interaction and specification

translations defined in the standard, a CORBA-IDL API

for access to the TC service of a TC/SS.7 stack is

defined. These TC PDU-oriented interfaces are

designed to standardize access by TC-aware CORBA

objects (such as proxy objects at a gateway) to a TC/SS7

protocol stack. This allows implementations of gateways

that are independent of a particular SS7 stack vendor. At

ORB

TC-User CORBA Facilities (e.g. Naming)

Supporting Standard CORBA Services

Naming LifeCycle Messaging

IDL TC API

 TC/SS.7

 Protocol

 Stack

 TC/SS.7

 Protocol

 Stack

TC-User

AE
TC-User Operations TC-User Operations

CORBA
Domain

TC-CORBA
Gateway

SS.7
Domain

CORBA

Based

TC-User

AE Proxy

CORBA

Based
TC-User

AE

Figure 1: The Interworking Gateway

SS.7 Network

this time, most stack vendors offer proprietary APIs to

their TC/SS7 stack. It is not, of course, necessary to use

the TC PDU-oriented interfaces to implement a

TC/CORBA gateway, as the custom mapping onto a

particular TC/SS7 stack may be a part of the

implementation of the proxy interface generated during

Specification Translation. However, these interfaces can

be useful if there is a need to build a distributed gateway

which is not too closely coupled with the stack platform

and hardware. These interfaces represent a low-level

mapping that requires users to be aware of the TC

service primitive interface defined in ITU-T Rec. Q.771

[7]. They also requires users to encode/decode

ASN.1/BER data based on ITU-T Rec. Q.773 [7]. These

interfaces can also be used to build TC-aware CORBA

applications that do not rely on the ASN.1 to IDL

translation algorithms specified but instead use some

proprietary mechanism.

3. SPECIFICATION ENHANCEMENTS BASED

ON IMPLEMENTATION EXPERIENCE

In this section we discuss some enhancements made to

the current specification of the TC PDU-oriented

interfaces. These enhancements are based upon practical

implementation experience and are to be submitted to

the OMG Finalization Task Force for the IN/CORBA

Interworking specification. One major improvement to

the current architecture and one additional clarification

are presented here.

3.1 The Enhanced TC-PDU-Oriented Interfaces

The current TC PDU-oriented architecture defines three

interfaces, two must be supported by the SS.7/TC stack

(a factory interface for TC sessions and a TC session

interface), one (a TC session call-back interface) must

be supported by the stack’s client application. Typical

operation consists of a client application starting a

session by requesting the factory to create a TC session

interface and calling methods on the session object

equivalent to TC dialog handling and component

handling primitives to start and control TC dialogs. This

is illustrated in the Figure 2 below.

This part of the specification works well, i.e. for

dialogues originating on the CORBA side of the

gateway. The solution is scaleable as any CORBA

application supporting the call back interface may create

new TC session (TcPduProvider) objects. However

there is a problem for calls originating on the SS.7 side,

in this case a TcPduUser object must register with the

TcPduProviderFactory object. Only one instance of a

TcPduUser may register for a given SS.7 Global Title

(GT) and Application Context (AC) pair. This does not

exactly match the architecture given for the interaction

translation of TC-User AEs. In the interaction

translation, the SS.7 address (GT and AC pair) maps to

a CORBA factory object for the AC type. This means

that there can be many instances of a CORBA

Application Context object type for a single SS.7 Global

Title. Interaction/specification translation proxy objects

at a TC/CORBA gateway that use the TC PDU-oriented

interfaces for communication to the SS.7 stack are thus

limited to one instance of the TcPduUser interface to

handle all call-backs from the stack. This has several

disadvantages, it is not as scaleable as allowing a one to

one mapping between call back interfaces and proxies, it

hinders distribution of proxy objects over multiple

CORBA network nodes and it increases the complexity

of implementation of a gateway which dynamically

supports a variety of proxy objects. The solution

suggested here is to modify the current IDL so that

instead of registering a TcPduUser object for a GT and

AC pair, a new interface TcPduUserFactory is registered

instead. All of the disadvantages currently encountered

are no longer present in this solution. Of course a small

extra cost is incurred in dialog setup as an additional

method call must now be made (create_tc_pdu_user).

This cost can be negated in practical implementations by

pre-creating a desired number of call-back objects for

each GT/AC pair supported. In addition to changing the

registration operation and adding a TcUserFactory

interface, it is necessary to modify the get_dialog_id

operation in the TcPduProvider interface. This is

because the TcPduProvider may now deal with multiple

TcPduUser objects and it must be able to associate

incoming TC service primitive requests with the correct

call-back interface. The modified IDL to support this

behaviour is listed below.

module TcSignaling {

// skip all unchanged definitions

interface TcPduProvider {

// skip unchanged definitions

// replace the current get_dialog_id operation

with the following:

DialogId get_dialog_id(TcPduUser user)

raises (NoMoreDialogs);

}; //end TcPduProvider

interface TcPduProviderFactory{

// skip unchanged definitions

TC/SS.7

Stack

ETSI CS-1

SSP

TC/SS7

1. create_tc_pdu_provider

4. BEGIN

(invoke) TcPdu

Provider

TcPdu

Provider

Factory

TcPdu

User6. continue_ind

2. invoke_req
5. CONTINUE

(result)

CORBA DomainSS.7 Domain

7. result_l_ind

3. begin_req

ASE

AC

ASE ASE

AC

Figure 2: The TC PDU-oriented interfaces

// replace the current register operation with

the following:

void register (in TcSignaling::TcAddress dest,

in ApplicationContext a_c,

in TcPduUserFactory user_factory)

raises(AlreadyBound);

}; //end TcPduProviderFactory

interface TcPduUserFactory{

TcPduUser create_tc_pdu_user

(in ApplicationContext application_context)

raises(NoMoreDialogs);

}; // end TcPduUserFactory

}; // end TcSignaling

A further suggested enhancement to the specification

involves a modification to the TcPduUser and

TcPduProvider primitive handling operations. Currently,

TC dialog and component handling operations on these

interfaces are distinct operations as shown in Figure 2. A

sample from the modified IDL shown below allows TC

dialog and component handling to be encapsulated in

one operation. This is expected to give a considerable

performance improvement.

void begin_ind (in GwTcPduHandler sender,

 in AeAddress orig,

 in AeAddress dest,

 in DialogQos qos,

 in DialogPortion d_p,

 in DialogId d_id,

 in ComponentList c_list)

3.2 Extended Support for SS.7 Addressing

In the current IN/CORBA Interworking specification,

there is a limitation on the types of SS.7 addresses that

can be used. In fact, only Global Title addressing is

supported. For some applications and network

environments this is not adequate where all three SS.7

addresses, (namely the Global Title, the Point Code and

the Sub-System Number) are required.

The specification currently allows addressing of the

form:

typedef Istring TcAddress;

which was originally intended only to carry a Global

Title. This normally consists of dialed digits or the

Mobile Identification Number (MIN) of a mobile user.

In some cases, the Global Title is used to route messages

only up to a certain point in the network and is then

translated to provide more detailed addressing in the

form of Sub-System Numbers and Point Codes, which

complete the routing to the final location. The Point

Code may identify a particular SCP and the Sub-System

Number may identify a particular database associated

with that SCP, for example. In order to accommodate all

possible SS.7 addressing schemes, the TcAddress is

expanded to include the Sub-System number and the

Point Code as listed in the modified IDL listed below:

struct TcAddress {

 Istring global_title;

 Istring point_code;

 unsigned short sub_system_number;

 // note that sub_system_number is

 // constrained to the values 0-254

};

4 INITIAL PERFORMANCE TESTING

In the interest of evaluating the suitability of the TC-

CORBA Gateway approach for provisioning of

CORBA-based telecom applications, this section

presents some initial performance results for a TC-

CORBA Gateway implementation based on the TC-User

interfaces described in Section 2 and the enhancements

described in Section 3. The following sections describe

the test environment for the Gateway and define suitable

performance metrics for its evaluation.

4.1 The Gateway Test Environment

The execution environment for the initial performance

testing of the Gateway is shown in Figure 3. A comercial

ORB and SS.7 implementaion have been used for

testing. The TC-CORBA Gateway, SS.7 stack, test

application and the traffic generator are deployed across

three physical nodes, as shown. The traffic generator

provides a source of test messages to be passed to the

Gateway node over SS.7 and also acts as a sink for

messages from the Gateway. The SS.7 messages are

based on a simple IS41-MAP application, with the

application data being carried as ASN.1 BER encoded

MAP over TCAP. The generated messages are passed to

the SS.7 stack on the Gateway node via a V35 link.

The TC-CORBA Gateway module resides on the

Gateway node and interfaces with the SS.7 Stack

module at the TCAP level. TCAP messages arriving

from the stack are translated to their IDL equivalent by

the Gateway module and forwarded to the test

Sparc Ultra 1

Sparc Ultra 5

Application

Script

Traffic

Generator

TC-CORBA

Gateway

SS.7 Stack

Test

Application

MAP BER over CORBA

SS.7 over V35 link

Gateway Node

Statistics

Module

Application Node

Generator Node

Statistics

Module

Figure 3: The Gateway Test Environment

application via invocations on a standard

TcSignaling::TcPduUser CORBA object on the

Application Node. The TC-CORBA Gateway module

exposes a standard TcSignaling::TcPduProvider

CORBA interface through which the Test Application

may reply to invocations from the Gateway. The

Gateway module performs the extraction of the MAP

application data, which is carried in the received IDL,

and passes it back through the SS.7 stack. CORBA

invocations between the Gateway and Test nodes are

carried over a standard 10 Mb Ethernet link via TCP/IP.

A Statistics module at the Gateway node allows

recording of timing data related to the stack and

Gateway module that may be stored for use in off-line

analysis.

The Application node provides a platform for running

the CORBA-based MAP application. Invocations

arriving from the Gateway node are processed by the

Test Application according to a pre-programmed

message sequence, stored in an Application Script. The

Test Application then generates appropriate MAP

messages in response to messages received from the

Gateway and passes them back to the Gateway via the

TcSignaling::TcPduProvider CORBA interface. A

Statistics module on the Application node logs timing

data specific to the Test Application and the CORBA

communication to and from the Gateway node. The

timing measures recorded in the test environment are

discussed in Section 4.3.

Thus, the Gateway Test Environment allows simulated

test applications to run between the Application node

and the Traffic Generator via the Gateway and provides

a method for collection of performance statistics.

4.2 The Test Application

The test application, running on the platform described

above, consists of one MAP operation being passed

from the Generator to the Test Application through the

SS7 Stack and the Gateway node and a result message

being passed back from the Test Application to the

Generator via the reverse route. Thus, the Generator

initiates a simple TCAP dialogue with the application,

which responds by sending a result back to the

Generator thus ending the dialogue. The message

sequence for the application is shown in Figure 4.

The begin_ind operation is invoked on the TcPduUser

CORBA interface object that resides on the application

node. This operation carries the invoke which contains

the BER encoded MAP application data as an IDL octet

sequence. Similarly, in the reverse direction, the

end_req operation is invoked on the TcPduProvider

CORBA interface object that resides at the Gateway.

This operation carries the result which contains the BER

encoded application data that is the result of the invoked

operation. Interactions with the TcSignaling::

TcPduProviderFacotory object, which is prescribed by

the specification, are not included in the test application

as it is assumed that a single TcPduProvider object may

handle many dialogue sessions at the same time. The

TcPduProviderFactory is used to initialise the Gateway

with a number of TcPduProvider objects but is not

contacted during normal running of the Gateway.

References to these TcPduProvider objects are cached

by the test application during initialisation and used as

required thereafter. Note that the specification does not

mandate the use of the Factory for every TCAP dialogue

session.

The size of the MAP application data was chosen to

reflect a typical application. Each message initiated at

the Generator is timed at various points during its

processing. Performance measures derived from this

timing data are discussed in the following section.

4.3 Performance Measures

In order to obtain initial performance metrics for the

IN/CORBA Gateway, various timing measures for

processing in the test application were collected from

the test environment. The complete transaction time for

the application is decomposed into a number of relevant

time points at the Gateway node and Test node as shown

in Figure 5. The processing times indicated are:

t2 - t1 : the processing time associated with the SS.7

stack on the Gateway node for message 1

t3 - t2 : the processing time in the Gateway module for

message 1. This includes processing in the

TCAP layer at the Gateway/SS.7 stack interface

t4 - t3 : the processing time in the ORB for message 1.

This includes the marshalling (protocol

encoding) time for the begin_ind CORBA

invocation at the Gateway node, the transport

time over the network and the demarshalling

(protocol decoding) time at the application node

t6 - t5 : the processing time in the ORB for message 2.

This includes the marshalling (protocol

encoding) time for the end_req CORBA

invocation at the Application node, the transport

GatewayGenerator SS.7 Service Test App.

1. begin_ind

1. begin_ind (Invoke)

1. TC begin / invoke

1. invoke_ind

2. end_req (ResultL)

2. result_req

2. end_req

2. TC end / result

Figure 4: Message Sequence for Test Application

time over the network and the demarshalling

(protocol decoding) time at the Gateway node

t7 - t6 : the processing time in the Gateway for Message

2. This includes processing in the TCAP layer at

the Gatway/SS7 stack interface

t8 - t7 : the processing time associated with the SS.7

stack on the Gateway node for message 2

4.4 Results and Analysis

The experimental results for the timing measures

identified above are given in Table 1. Of primary

interest to investigation of performance issues are the

metrics defined as follows:

g The total processing time, per message, at the

Gateway node. This is composed of the processing

related to the SS.7 stack, processing in the Gateway

module and processing related to encoding or

decoding of CORBA invocations. It is assumed that

marshalling and demarshalling times are equal and

that, compared to these times, the transport times in

the network are negligible. The total time may be

calculated as follows:

 message 1 : g = (t2-t1) + (t3-t2) + [(t4-t3)/2]

 message 2 : g = [(t6-t5)/2] + (t7-t6) + (t8-t7)

T The total time for a message to pass through the

entire system. This is composed of processing in the

SS7 Stack, processing in the Gateway module and

encoding and decoding of CORBA invocations at

the gateway, and encoding and decoding of CORBA

requests at the Application node. This time may be

calculated as follows:

 message 1 : T = (t2-t1) + (t3-t2) + (t4-t3)

 message 2 : T = (t6-t5) + (t7-t6) + (t8-t7)

The total processing time at the Gateway, g, gives an

indication of the obtainable throughput for the Gateway

node. It is independent of any particular implementation

of the application node. If measured when the Gateway

is very lightly loaded, i.e. there are negligible queueing

delays in the SS.7 and Gateway layers, then 1/ g gives

the theoretical service rate for the gateway node.

The total time for a message to pass through the entire

system, T, gives an indication of overall performance of

a typical CORBA-based system designed in accordance

with the specification.

t2-t1

(ms)

t3-t2

(ms)

t4-t3

(ms)

t6-t5

(ms)

t7-t6

(ms)

t8-t7

(ms)

0.42 0.38 0.85 0.75 0.47 0.61

(ms)
g T

message 1 1.23 1.65

message 2 1.46 1.83

average 1.35 1.74

Table 1. Experimental Results

5 CONCLUSIONS

There are many motivating factors, in terms of technical

advantages and business drivers, for the migration of

traditional INs toward object-oriented, distributed

computing middleware platforms such as CORBA. A

standardised interworking gateway is a key element in

this migration path, allowing CORBA-based systems to

coexist with legacy systems in an open environment.

This paper has presented a practical view of the OMG

standard for IN/CORBA Interworking based on the

authors’ experiences of implementing the specification.

Implementation work and performance analysis will

continue to be feedback into the review process in order

to maintain a practical and workable specification.

REFERENCES

[1] Object Management Group, “Intelligent Networking with

CORBA,” OMG DTC Document: telecom/96-12-02, December,

1996

[2] Object Management Group, “White Paper on CORBA as an

Enabling Factor for Migration from IN to TINA: A P508

Perspective,” OMG DTC Document: telecom/97-01-01,

January, 1997

[3] Object Management Group, “Interworking Between CORBA

and Intelligent Network Systems,” Request for Proposal, OMG

DTC Document: 97-12-06, December, 1997

[4] Object Management Group, “Interworking between CORBA

and TC Systems,” OMG document telecom/98-10-03, August,

1998

[5] EURESCOM Project P508, “Introduction of Distributed

Computing Middleware in Intelligent Networks White Paper,”

OMG DTC Document: 97-09-01, September, 1997

[6] The Open Group, Preliminary Specification Inter-Domain

Management: Specification Translation, X/Open Document:

P509, ISBN: 1-85912-150-0

[7] ITU-T, Rec. Q.772, “Signaling System No.7 - Transaction

Capabilities information element definitions,” White Book,

1993

[8] Nilo Mitra, Rob Brennan, “Design of the CORBA/TC Inter-

working Gateway,” Proceedings 6th International Conference

on Intelligence in Services and Networks, Han Zuidweg et. al.

(eds.), ISBN: 3-540-65895-5 Springer-Verlag, April, 1999

Test App.ORBGatewaySS7 StackGenerator

t8 t6 t5t7

t1 t3 t4t2

Figure 5: Timing Points for Test Application

