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1. INTRODUCTION
Interferometric synthetic aperture microscopy (ISAM) is a
promising technique for imaging into biological tissue, with
widespread potential applications in both biology and clinical
diagnosis [1–6]. It represents a significant improvement over
conventional optical coherence tomography (OCT) [7] image
reconstruction when the system aperture is large. Descrip-
tions of ISAM present it as a combination of OCT and syn-
thetic aperture radar. But the theory behind its operation,
and why it works, is not completely apparent from the pub-
lished papers. Here we describe the similarities and differ-
ences between ISAM and other techniques {OCT, optical
coherence microscopy (OCM) [8], full-field OCT (FFOCT)
[9–11], confocal interferometry [12], and digital holographic
microscopy (DHM) [13–17]} using the framework of the coher-
ent transfer function. The aim is to put ISAM on a strong
theoretical foundation and to explore the advantages of the
different methods and their optical implementation.

2. HOLOGRAPHIC MICROSCOPY
We start with considering DHM. Of course holography is ba-
sically interferometry. What makes it holography could be re-
cognized as the reconstruction process, nowadays usually
performed digitally. Holography can be performed in the Fres-
nel regime, but image plane holograms can also be generated
[16]. An analysis of the three-dimensional (3D) imaging prop-
erties of holography was presented many years ago by Wolf
[18]. An incident planar wave, with wave vector k1, is scat-
tered by the object, which can be considered as a superposi-
tion of 3D gratings oriented in different directions. As the
wavelength of the scattered wave, with wave vector k2, is
the same as that of the illuminating wave, the grating vector
K ! Kxi" Kyj" Kzk must necessarily lie on the surface of a
sphere in K -space, radius jk1j ! jk2j ! k, passing through the

origin. This sphere is called the Ewald sphere, after the con-
struction in x-ray diffraction. The result is that only a very lim-
ited range of 3D spatial frequencies of the object is imaged: we
can introduce a coherent transfer function (CTF), c#K$, which
is zero everywhere except on the surface of the sphere. But
another consequence is that, during the reconstruction pro-
cess, the hologram can be refocused at any focal distance
from a single hologram [19,20]. Wolf did not give any diagrams
to illustrate his results, but Dändliker and Weiss presented fig-
ures to show how the Ewald sphere rotates with the direction
of illumination [21]. Taking the illuminating wave to be travel-
ing in the z direction, the equation of the sphere is
K2

x " K2
y " #Kz " k$2 ! k2, so that

Kz ! −k%
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
k2 − K2

x − K2
y

q
. (1)

The two roots of Eq. (2) correspond to transmission and re-
flection geometry, respectively. Sheppard gave figures show-
ing the form of the CTF for these cases [22]. If the object’s
scattering potential is T#K$, the 3D image amplitude is the in-
verse Fourier transform of the product c#K$T#K$ [23,24]. By
the projection/slice theorem, the image amplitude at a parti-
cular plane z is given by the projection in the Kz direction of
exp#iKzz$c#K$T#K$. The refocusing process in holographic
reconstruction can be understood in terms of a propagation
of the angular spectrum. Measurement of the image amplitude
in any plane can be mapped on to the surface of the Ewald
sphere and projected back into any plane using the projection
slice theorem. The projection process is often performed by
Fresnel diffraction theory, which approximates the Ewald
sphere to a paraboloid of revolution (a different paraboloid
for transmission or reflection geometry). Measurement of
the hologram on different planes does not lead to any addi-
tional information. A range of wavelengths can, however,
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be then used to sweep out a region of K -space, from which
a 3D image can be reconstructed [17,20]. This is multiple-
wavelength DHM, or MWDHM.

3. INTERFERENCE MICROSCOPES
A very general expression was given by Sheppard and Wilson
for image formation in the general class of scanning interfer-
ence microscopes [25]. In particular, this can be applied to
both confocal interference microscopes and correlation mi-
croscopes. In a confocal microscope (which uses a detector
pinhole), the effective CTF is given by the convolution P1 ⊗

P2 of the pupil functions of the illuminating and collection
lenses. This holds for the case of two-dimensional (2D) pupils
but also gives the 3D CTF for the 3D case, using the 3D (gen-
eralized) pupil (a cap of a sphere) for P1, P2. The concept of
the generalized pupil was introduced by McCutchen [26].
Using interference techniques, the complex amplitude of
the confocal signal can be extracted. The 3D CTF for confocal
interference microscopy with equal (illumination and detec-
tion) lens apertures and a small pinhole has been presented
previously [19]. For a single wavenumber k, the 3D CTF
has the same form as the CTF for confocal microscopy
[27,28]. The CTF cutoff is given by

K2
x " K2

y " K2
z ! K2 < 4k2;−2k < Kz < −2k cos α; (2)

where α is the semiangle subtended by the lens. The behavior
is very different from holography in that now a finite volume
of K -space is imaged. For scanning correlation microscopy,
there is no physical pinhole, but the reference beamwavefront
acts as a synthetic pinhole [29,30]. This approach has usually
been performed using a heterodyne scheme but can also be
done using homodyne detection and phase shifting or other
digital processing. Scanning correlation microscopy has the
advantage over confocal microscopy that signal detection is
more efficient. If the correlation signal is detected over a large
detector area, the effective CTF is P1 ⊗ #P2P&

ref$, where Pref is
the reference beam pupil [25,30], which is identical to that in
the confocal case if the reference pupil is sufficiently large.

4. OCT AND OCM
OCT [7] is basically a confocal interference microscope with
an additional optical sectioning effect arising from the limited
temporal coherence of the illuminating light. OCM [8] refers to
a system using lenses of numerical aperture high enough that
the confocal sectioning is appreciable. Thus, for each spectral
component, the 3D CTF is identical to that in a confocal inter-
ference system of the same geometry. In conventional OCT,
the apertures of the illuminating and collecting pupils (in prac-
tice from the same lens) are small and equal. If the aperture is
small enough that we can neglect the contribution to longitu-
dinal resolution from the confocal effect, the longitudinal
resolution comes only from temporal coherence effects. This
means that the 3D CTF for a single spectral component is sim-
ply #P1 ⊗2 P2$#Kx; Ky$δ#Kz " 2k$, where ⊗2represents 2D
convolution. Assuming the pupils to be fully filled circular
apertures, as is normally the case in confocal microscopy,
the 3D CTF for OCT has been presented elsewhere [19]. In
practice, the lenses in OCT are usually not fully filled, and
for a system using single-mode fiber-optic implementation,

the pupils are equal and close to Gaussians. The fiber mode
in this case acts as a synthetic pinhole in the detection process
[31]. The CTF model has recently been applied to imaging in
OCM [32]. The behavior of confocal microscopes with Gaus-
sian pupils has also been previously explored in depth [33,34].
In the paraxial approximation the CTF is very simple
[31,34,35]:

c#K$ ! exp#−AKz$;

K2
x " K2

y " K2
z ! K2

≤ 4k2 & Kz < 0; (3)

where A is a constant that depends on the width of the Gaus-
sian pupil, i.e., on the fiber spot size and the geometry, and we
have retained the spherical form of the cutoff rather than ap-
proximating it to a paraboloid. Again the CTF for a single
wavelength is nonzero over a finite volume of K -space. It is
noted that, for constantKx,Ky, the CTF has a maximum value
on the spherical boundary

Kz ! −

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4k2 − K2

x − K2
y

q
: (4)

After performing a 2D Fourier transform of a single trans-
verse image, we can map on to the surface of the sphere, as-
suming that the signal comes from this particular value of Kz.
We note also that the spatial frequencies for a single wave-
length do not all lie on the surface of the sphere. Assuming
they do is equivalent to assuming that the major contribution
to the scattering comes from exact backscattering (i.e., light
scattered back in the direction fromwhich it came). We recog-
nize the similarity of exact backscattering with synthetic aper-
ture nondestructive testing, where the sample is scanned by a
point source and a point detector scanned in unison (like uni-
static radar), so that, in the synthetic aperture case, true exact
backscattering is indeed recorded [36]. Once the information
from a single wavelength is mapped on to the sphere, using a
spread of wavelengths, a 3D image can be reconstructed in a
similar way to digital holographic reconstruction, except that
the scattering data are assumed to lie on the sphere K ! 2
[Eq. (5)] rather than the Ewald sphere, which passes through
the origin [Eq. (2)] [17,20]. This is the method of ISAM. Taking
a smaller value for A increases the lateral resolution but
also increases the confocal sectioning, thus decreasing the
longitudinal depth of field.

Equation (5) gives the locus of the maximum of the CTF,
which is the same as is used in published papers on ISAM.
But a more accurate reconstruction would result by approx-
imating the CTF to its mean position rather than its maximum
(the mode). From Eq. (3), we see that this simply translates
the sphere axially so that

Kz !
1!!!!!!!
πA

p −

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4k2 − K2

x − K2
y

q
: (5)

As the final step of the ISAM reconstruction is to find the
modulus of the scattering potential, which is also equivalent to
a shift of the sphere, the additional term in Eq. (4) cancels out.
OCT usually uses only a moderate value for the numerical
aperture, but if a nonparaxial theory is applied, we would
expect that it could result in a small deformation of the
sphere rather than a simple shift. Based on the scalar
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complex-source point (CSP) theory of nonparaxial Gaussian
beams for simplicity, the pupil function for a wavenumber k is

P#K$ ! exp'−B#k" Kz$(; K ! k; (6)

where B is a constant [37,38]. Then the CTF can be calculated
analytically as [28]

c#K$ !
2k
K

exp'−B#2k" Kz$(; K ≤ 2k; (7)

which is shown in Fig. 1 for B ! 2. The factor 1∕K results
from the angle of intersection of the two spherical shells when
calculating the convolution and distorts the exponential de-
pendence on Kz. For a system satisfying the sine condition,

Fig. 1. (Color online) CTF and its contour plot for a CSP Gaussian beam: (a) B ! 2, (b) B1 ! 20, B2 ! 2, (c) B1 ! B2 ! 11.
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this 1∕K factor tends to cancel with the aplanatic factor. For
example, for a different, and more realistic, model for a non-
paraxial Gaussian, that of a Gaussian beam focused by
an aplanatic lens, the pupil function is P#K$ ! #−Kz$1∕2
exp'−B#k2 − K2

z$∕2(. The general CTF cannot be expressed
analytically, but for Kx ! Ky ! 0 it is given by

c#Kz$ ! exp'−B#4k2 − K2
z$∕4( (8)

and is shown in Fig. 2. The behavior of a focused Gaussian
beam without the aplanatic weighting is also shown and com-
pared with the CSP solution. Figure 3 shows cross sections
through the CTF at a constant value of #K2

x " K2
y$1∕2 for a

Gaussian beam focused by an aplanatic lens, assuming the an-
gle of cutoff of the pupil is a full 90°, illustrating that the
shapes of the cross sections vary.

ISAM uses exactly the same hardware as in normal spectral
domain OCT, and the novelty is in the image reconstruction,
which resembles holographic image reconstruction. We note
that the ISAM papers do not mention specifically the 3D CTF
framework. In particular, in [1], Eq. (3.17a) is the defocused
2D CTF (the Fourier transform of the 3D CTF). The defocused
2D pupil is given in Eq. (3.5) and is assumed to be equal for

illumination and detection [Eq. (3.17b)]. The signal is recon-
structed in the spatial z domain. In [2], Eq. (5) gives the signal
spectrum in terms of the 2D CTF. This is evaluated by an
asymptotic method for large values of π∕NA and Gaussian-
weighted pupils, giving in their Eq. (9) the signal spectrum
as the product of the scattering potential and other terms that
in fact are equivalent to the 3D CTF.

An advantage of the presented generic model based on the
3D CTF is that we can explore the behavior of different system
configurations and can look at the effect of different pupils.
For example, if the illumination is a CSP Gaussian with
parameter B1 in Eq. (7), while the reference beam is a CSP
Gaussian with parameter B2, B2 ≤ B1, the CTF is

c#K$ !
2k
K

I0

"
#B2 − B1$

!!!!!!!!!!!!!!!!!!!!
K2

x " K2
y

q

K

!!!!!!!!!!!!!!

1 −
K2

4

s #
exp

"
−#B1

" B2$
$
k"

Kz

2

%#
;

K ≤ 2k;

(9)

where I0 is a modified Bessel function. The behavior is shown
in Figs. 1 and 3 for B2 ! 2, B1 ! 10 or 20. As B1 increases for
constant B2, the width of the CTF in the Kz direction de-
creases, making the approximation of fixed Kz for a given
Kx, Ky better. The transverse resolution also decreases.
But an important observation is that the CTF does not neces-
sarily lie on the backscattering sphere of Eq. (5). Indeed, we
know that, for large B1, the system degenerates to DHM, for
which the CTF is the Ewald sphere given by Eq. (2). In fact
Eq. (9) represents the CTF for holographic microscopy for a
coherent focused Gaussian illumination. Any combination of
B1 and B2, such that B1 " B2 is constant, results in similar
transverse resolution and depth of focus. But the locus of
Kz for the maximum value of the CTF as a function of Kx,
Ky is different. Thus, MWDHM could prove equally as suitable
as OCM as a basis for implementation of ISAM, using an ap-
propriate reconstruction algorithm [based on Eq. (2)].

The 3D CTF for a scalar aplanatic system of high aperture
has been presented previously [28]. The form is similar to that
for a Gaussian-weighted pupil. But without the aplanatic
weighting, i.e., for a uniform spherical wave, the system
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Fig. 2. Comparison of three different Gaussian beam models for
B ! 2: CSP model, a Gaussian beam focused by an aplanatic lens,
and a Gaussian beam focused without aplanatic weighting.
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Fig. 3. Cross sections through the CTF for Ky ! 0 for (a) a Gaussian beam focused by an aplanatic lens, B ! 2, (b) for CSP Gaussian beams
B1 ! 20, B2 ! 2.
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behaves quite differently. For constant Kx, Ky the CTF has a
maximum value on a toroidal surface

Kz ! −k cos α −

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
k2 cos2 α" 2kKρ − K2

ρ

q
; (10)

where Kρ ! K2
x " K2

y, rather than a sphere. It is also interest-
ing to note that an OCT system with annular pupils can give a
CTF that exhibits a maximum on a plane of constant Kz [39],
so that this optical arrangement might prove desirable when
using the standard, simple, OCT reconstruction algorithm.
The effect on the CTF of using Bessel beams in an OCM sys-
tem has also been recently investigated [32]. Use of a Bessel
beam together with a circular collection pupil in confocal mi-
croscopy has been investigated extensively [40–42]. The CTF
is nonzero only on the toroidal surface of Eq. (10), where α is
the angle of propagation of the Bessel beam.

In [6], the figure shows a free-space optical system, i.e.,
without optical fibers. It is not clear if this was just for artistic
impression or the implementation used, but nevertheless we
now investigate briefly free-space systems, as in FFOCT [9].
For illumination by a Gaussian beam, the illuminating pupil
is Gaussian, so the effect is similar to using a fiber. For the
detection side, the behavior depends on the geometry of
the detector. If the detector pixel size is small (i.e., if using
a line CCD if the width of the device is small compared with
the size of the focused spot on the detector), the system be-
haves as a confocal system, so the collection pupil has no
Gaussian weighting, and its aperture could also be designed
to be larger than the illumination pupil to improve overall
transverse resolution. If, on the other hand, the pixel size is
large, the system is a correlation microscope, and the collec-
tion pupil is weighted by the pupil of the reference beam Pref
[25,30]. In this latter case, imaging can be made to be identical
to the fiber-based system, for an appropriate geometry.

5. SCATTERING POTENTIAL
Wolf analyzed the forward-scattered light in holography based
on the first Born approximation [18]. The scattering object is
described by the scattering potential

F#r$ ! −k20'n
2#r$ − 1(; (11)

where k0 is the free-space wavenumber. The quantity 'n2#r$ −
1( has been recognized as the electric susceptibility of the
sample. However, the Born approximation is known to be
valid only for very small changes in refractive index, so a more
accurate reconstruction is achieved if the changes in refrac-
tive index are measured relative to the background refractive
index nB rather than that of free space, to give a scattering
potential

F#r$ ! −k20'n
2#r$ − n2

B( ! −k2Bf'n
2#r$∕n2

B( − 1g: (12)

A constant background, of course, gives only a delta func-
tion in K -space so does not affect the final reconstruction
apart from a constant refractive index term. However, in many
application areas, including surface scattering [43], thin film
optics [44,45], and seismic imaging [46], it has been recognized
that the Born approximation is not accurate for backward
scattering and that a model based on the Kirchhoff approxi-
mation is preferable. Basically, the Kirchhoff approximation

shows that scattering occurs because of changes in refractive
index rather than resulting from the refractive index itself
[47–49]. According to this theory, the scattering potential is
of the form

F#r$ ∝
1
2
∇

2 ln
$
n#r$
nB

%
: (13)

This is seen to vanish in a region of constant refractive in-
dex, and choice of nB does not affect the value of the scatter-
ing potential. This scattering potential differs from that in the
Born approximation in two ways. First, the logarithm gives a
very good approximation to the Fresnel reflection coefficient
for normal incidence, #n − nB$∕#n" nB$. These two forms are
compared in Fig. 4 for the case nB ! 1. The logarithmic form
is also a good approximation to the rigorous prediction
for scattering by a small sphere given by Lorentz, 3

4 #n
2
− 1$∕

#n2 " 2$, which has been shown to give an improved form of
scattering potential for large permittivity [50]. All expressions
have been normalized so that they agree with the Fresnel re-
flection coefficient for small refractive index changes. The
second difference is that, as a result of the ∇

2 in Eq. (13),
in K -space the object spectrum is weighted by a factor K2.
This factor results from the fact that the reflection coefficient
is coherently averaged over s and p polarizations. Note that
this average is performed on reflection coefficients whose
signs are defined so that s and p give the same value of reflec-
tion coefficient for normal incidence, which is not the usual
convention for the Fresnel coefficients [48]. The factor K just
becomes a constant 2 either for exact backscattering or in the
small aperture limit. So it has no effect on the normal ISAM
reconstruction but could alter the alternative strategies men-
tioned above.

6. CONCLUSIONS AND DISCUSSION
It is argued that the hardware of ISAM is based on conven-
tional spectral domain interferometry with a reconstruction
algorithm that assumes that exact backscattering dominates.
The algorithm has been justified using a theory based on the
principle of the 3D CTF. Alternative algorithms could be
superior for modified optical systems.

We finish with a discussion on the differences between
OCT, OCM, and ISAM. Villiger and Lasser [32] comment that
our earlier paper [19] did not discuss “the specific effects of
frequency-domain OCT, because it considered a time-domain
system.” However, it can be seen that [19] makes the point
that OCT imaging for a particular wavelength is identical with
that in a confocal system, for which the CTF is given in [27,31]
and can be directly applied to frequency-domain OCT. In ad-
dition, Fig. 7 of [19] shows the overall CTF for OCT with a

Fig. 4. (Color online) Variation of various functions of refractive in-
dex: 1

2 #n − 1$ (linear), 1
4 #n

2
− 1$ (Born), 3

4 #n
2
− 1$∕#n2 " 2$ (Lorentz),

#n − 1$∕#n" 1$ (Fresnel), and 1
2 lnn (Kirchhoff).
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broadband source, neglecting the optical sectioning effect of
the confocal gating, which is the same for either time- or
frequency-domain systems. Reference [19] also says “these
CTFs will be spread out in the low-coherence case, in a
way similar to that in imaging with ultrashort pulses.” The
CTF for ultrashort pulsed imaging was presented by Gu and
Sheppard [51] and is the convolution of the 3D CTF with the
spectral distribution. It is again valid for both time- and
frequency-domain systems but only if the object is scanned
relative to the objective lens to generate a 3D image. This
stresses a major difference between OCT and OCM:
frequency-domain OCM requires information to be recorded
as function of both defocus and wavelength, as otherwise
3D image formation is space variant. In ISAM, defocus infor-
mation is not recorded, and hence the 3D reconstruction,
while being superior to standard OCT reconstruction, is ne-
cessarily approximate.
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