Resolution for Synchrony and No Learning

CLAUDIA NALON, CLARE DIXON, AND MICHAEL FISHER

ABSTRACT. We present a clausal resolution method for temporal logics of knowledge with synchrony and no learning. This and related logics admit axioms which include operators from both the temporal and epistemic logics, which allow the description of how knowledge evolves over time. Instead of proposing new resolution rules, further information is added to the set of clauses in order to deal with this particular interaction.

1 Introduction

Logics have been used in Computer Science for many years as a natural way for describing properties of complex systems. More recently, there has been an increasing interest in combined modal logics, as different logical languages are more suitable to specify different properties within a system. Typical examples are the specification and verification of distributed [5] and agent-based systems [11, 12]. Given such logical characterisation of a system, it is then desirable to have the appropriate tools in order to verify whether a particular property holds for this system. By verifying that a property holds, we mean to prove that the property is a logical consequence of the specification.

There is a wide range of logics that could be chosen in order to model and characterise such systems. Moreover, there is a variety of ways of combining the chosen logics. In the following, we concentrate on a particular combination that has been proved useful in modelling distributed and agent-based systems, namely, we are looking at Propositional Temporal Logics of Knowledge ($\text{KL}_{(n)}$, for short). In such logics, the dynamic component is described by a propositional linear temporal logic and the informational component is described by a propositional logic of knowledge. When the combined logics are independent, i.e. the combination is
given by the union of the axiomatic systems of both logics, proof methods can be obtained by taking the union of proof methods for the logics considered alone and making sure that enough information is passed to each component. Proof methods for combined logics cannot be obtained in a straightforward way, however, when the logics interact, i.e. when further axioms, including operators of both logics, are needed in order to model a specific situation. Contexts where we are particularly interested in how the knowledge of an agent evolves over time is a typical example where interaction axioms are required. Interactions often increase the complexity of the validity problem for the language and proof methods for such logics are, to our knowledge, rare.

In this paper, we introduce a proof method for a particular interaction between time and knowledge: synchrony and no learning. This property was firstly discussed in the context of blindfold games [9]. Recently, a similar characterisation has proved useful in the description of non-decreasing domains [8]. In such systems, once two situations are indistinguishable to an agent, the agent will never acquire any knowledge that would allow her to distinguish between such situations. Although the complexity of the interacting logic is high (non-elementary, for the multi-agent case), the axiom that expresses this property has a simple form, which allowed us to investigate in detail the requirements for its proof method.

The structure of the paper is as follows. In Section 2, we review $\mathit{KL}(n)$. In Section 3, we present a resolution method for synchronous systems with no learning. The method introduces additional information into the set of clauses, instead of introducing new (possibly complicated) inference rules. The multi-agent case is non-trivial, therefore we discuss the granularity of the information that needs to be provided in order to obtain completeness for these systems. Correctness results for the multi-agent case are given in Section 4. We discuss our results and future research in Section 5.

2 Temporal Logics of Knowledge

The syntax of $\mathit{KL}(n)$ comprises a set of modal operators and a set of temporal operators. Formulae are constructed from a denumerable set, $\mathcal{P} = \{p, q, p', q', \ldots\}$, of propositional symbols; nullary connectives, true and false; propositional connectives, $\neg, \wedge, \vee, \Rightarrow$, and \Leftrightarrow; temporal connectives, $\Diamond, \Box, \bigcirc, \mathcal{U}$, and \mathcal{W}; and a set of unary modal operators \mathcal{K}_i, for
all $i \in \mathcal{A}$, where $\mathcal{A} = \{1, \ldots, n\}$ is the set of agents. The set of well-formed formulae WFF is defined as usual: the nullary connectives and propositional symbols are in WFF; if ϕ and φ are in WFF, then so are $\neg \varphi$, $(\varphi \land \phi)$, $(\varphi \lor \phi)$, $(\varphi \Rightarrow \phi)$, $(\varphi \Leftrightarrow \phi)$, $\Diamond \varphi$, $\Box \varphi$, $\circ \varphi$, $(\varphi \mathcal{U} \phi)$, $(\varphi \mathcal{W} \phi)$ and $K_i \varphi$. $\forall i \in \mathcal{A}$. A literal is p or $\neg p$, where $p \in \mathcal{P}$; a modal literal is $K_i l$ or $\neg K_i l$, where l is a literal and $i \in \mathcal{A}$; and an eventuality is in the form $\Diamond l$, where l is a literal.

The semantics of $KL(n)$ interprets formulae over a set of temporal lines, each of which corresponds to a discrete, linear model of time with finite past and infinite future, together with the agents’ accessibility relations K_i. We define a timeline t as an infinitely long, linear, discrete sequence of states, indexed by the natural numbers. Let $T\text{Lines}$ be the set of all timelines. A point q is a pair $q = (t, u)$, where $t \in T\text{Lines}$ and $u \in \mathbb{N}$ is a temporal index to t. Let Points be the set of all points. A model is a structure $M = \langle TL, K_1, \ldots, K_n, \pi \rangle$ where $TL \subseteq T\text{Lines}$ is a set of timelines with a distinguished timeline t_0; K_i, for all $i \in \mathcal{A}$, is an equivalence relation over points, i.e., $K_i \subseteq \text{Points} \times \text{Points}$, and π is a function $\pi : \text{Points} \times \mathcal{P} \rightarrow \{\text{true, false}\}$. Truth of a formula is given as follows:

- $\langle M, (t, u) \rangle \models \text{true}$
- $\langle M, (t, u) \rangle \models p$ iff $\pi(t, u)(p) = \text{true}$, where $p \in \mathcal{P}$
- $\langle M, (t, u) \rangle \models \neg \varphi$ iff $\langle M, (t, u) \rangle \not\models \varphi$
- $\langle M, (t, u) \rangle \models (\varphi \land \phi)$ iff $\langle M, (t, u) \rangle \models \varphi$ and $\langle M, (t, u) \rangle \models \phi$
- $\langle M, (t, u) \rangle \models \Box \varphi$ iff $\langle M, (t, u + 1) \rangle \models \varphi$
- $\langle M, (t, u) \rangle \models \varphi \mathcal{U} \phi$ iff $\exists k \in \mathbb{N}$, $k \geq u$, $\langle M, (t, k) \rangle \models \phi$ and $\forall j \in \mathbb{N}$, $u \leq j < k$, $\langle M, (t, j) \rangle \models \varphi$
- $\langle M, (t, u) \rangle \models K_i \varphi$ iff $\forall t', u'$, such that $((t, u), (t', u')) \in K_i$, $\langle M, (t', u') \rangle \models \varphi$.

The semantics of the other connectives are given by $\text{false} \equiv \neg \text{true}$, $(\varphi \lor \psi) \equiv \neg (\neg \varphi \land \neg \psi)$, $(\varphi \Rightarrow \psi) \equiv (\neg \varphi \lor \psi)$, $(\varphi \Leftrightarrow \psi) \equiv ((\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi))$, $\Diamond \varphi \equiv (\text{true} \mathcal{U} \varphi)$, $\Box \varphi \equiv \neg \Diamond \neg \varphi$, and $(\varphi \mathcal{W} \psi) \equiv (\Box \neg \varphi \lor \varphi \mathcal{U} \psi)$. We write $(t, u) \sim_i (t', u')$, if $((t, u), (t', u')) \in K_i$. A formula φ is said to be satisfiable if there is a model M such that $\langle M, (t_0, 0) \rangle \models \varphi$; φ is valid if $\langle M, (t_0, 0) \rangle \models \varphi$, for every model M.

Resolution for Synchrony and No Learning 3
The resolution-based proof method for $\mathcal{KL}_{(n)}$ in [3] combines the inference rules for temporal and multi-modal knowledge logics when considered alone. A formula is first translated into a normal form, called Separated Normal Form for Logics of Knowledge (SNF_K). A nullary connective, start, which intuitively represents the beginning of time, is introduced. Formally, $\langle M, (t, u) \rangle \models \text{start}$ if, and only if, $t = t_0$ and $u = 0$, where M is a model and (t, u) is a point. Formulae are represented by a conjunction of clauses, which are true in all states, i.e. they have the general form $\Box^* \bigwedge_i A_i$, where the universal operator is defined as $\Box^* \varphi \equiv \Box^+(\varphi \land C \Box^* \varphi)$ (with $\Box^\pm \varphi \equiv \Box \varphi \land \Box \neg \varphi$ and $\langle M, (t, u) \rangle \models \Box \neg \varphi$ if, and only if, $\forall k, k \in \mathbb{N}$, if $0 \leq k \leq u$, then $\langle M, (t, k) \rangle \models \varphi$), C is the common knowledge operator (i.e. $C \varphi \equiv E(\varphi \land C \varphi)$, where $E \varphi \equiv \bigwedge_{i \in A} K_i \varphi$), and A_i is a clause which is in one of the following forms, where l, l_i, k_i are literals, m_{ij} are literals or modal literals in the form $K_i l$ or $\neg K_i l$:

<table>
<thead>
<tr>
<th>Initial clause</th>
<th>start $\Rightarrow \bigvee_{b=1}^r \ l_b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sometime clause</td>
<td>$\bigwedge_{a=1}^g k_a \Rightarrow \Diamond \ l$</td>
</tr>
<tr>
<td>Step clause</td>
<td>$\bigwedge_{a=1}^g k_a \Rightarrow \Box \bigvee_{b=1}^r \ l_b$</td>
</tr>
<tr>
<td>K_i-clause</td>
<td>true $\Rightarrow \bigvee_{b=1}^r \ m_{ib}$</td>
</tr>
<tr>
<td>Literal clause</td>
<td>true $\Rightarrow \bigvee_{b=1}^r \ l_b$</td>
</tr>
</tbody>
</table>

Transformation into the SNF_K, whose satisfiability preserving transformation rules are given in [4] and [3], depends on three main operations: the renaming of complex subformulae; the removal of temporal operators; and classical style rewrite operations. Once a formula has been transformed into SNF_K, the resolution method can be applied. The method consists of two main procedures: the first performs initial, modal and step resolution; the second performs temporal resolution. Each procedure is performed until a contradiction (either $\text{true} \Rightarrow \text{false}$ or $\text{start} \Rightarrow \text{false}$) is generated or no new clauses can be generated. In the following l, l_i are literals; m_i are literals.
or modal literals; D, D' are disjunctions of literals; M, M' are disjunction of literals or modal literals; and C, C' are conjunctions of literals.

Initial Resolution is applied to clauses that hold at the beginning of time:

$$
\begin{align*}
\text{[IRES1]} & \quad \text{true} \implies (D \lor l) \\
& \quad \text{start} \implies (D' \lor \neg l) \\
\text{[IRES2]} & \quad \text{true} \implies (D \lor l) \\
& \quad \text{start} \implies (D' \lor \neg l) \\
\end{align*}
$$

Modal Resolution is applied between clauses of same index (i.e. two K_i-clauses; a literal and a K_i-clause; or two literal clauses):

$$
\begin{align*}
\text{[MRES1]} & \quad \text{true} \implies (M \lor m_i) \\
& \quad \text{true} \implies (M' \lor \neg m_i) \\
\text{[MRES2]} & \quad \text{true} \implies (M \lor K_i l) \\
& \quad \text{true} \implies (M' \lor \neg K_i \neg l) \\
\text{[MRES3]} & \quad \text{true} \implies (M \lor K_i l) \\
& \quad \text{true} \implies (M' \lor \neg l) \\
\text{[MRES4]} & \quad \text{true} \implies (M \lor \neg K_i l) \\
& \quad \text{true} \implies (M' \lor \neg l) \\
\text{[MRES5]} & \quad \text{true} \implies (D \lor K_i I_2 \lor K_i l_2 \lor \ldots) \\
& \quad \text{true} \implies (D' \lor I_2 \lor l_2 \lor \ldots) \\
\end{align*}
$$

MRES1 corresponds to classical resolution. MRES2 is justified by the axiom D, i.e. $\vdash K_i \varphi \implies \neg K_i \neg \varphi$, for any formula φ. The rules MRES3 and MRES5 are justified by the axiom T, i.e. $\vdash K_i \varphi \implies \varphi$, for any formula φ. The rule MRES4 is justified by the external universal operator surrounding each clause. By modal and propositional reasoning, the clause $\Box^*(\text{true} \implies (D' \lor l))$ implies $\Box^*(\text{true} \implies \neg K_i \neg D' \lor K_i l)$. The resolution inference rule is, then, applied between the clauses containing the complementary modal literals $\neg K_i \neg l$ (from the first premise) and $K_i \neg l$ (from the transformation of the second premise). The function mod_i makes use of the axioms K (for distributing the knowledge operator over D'), 4, and 5 (for modal simplification) to generate the clausal form of $\neg K_i \neg D'$.

Step Resolution is applied to clauses that hold at the same moment in time:

$$
\begin{align*}
\text{[SRES1]} & \quad C \implies \Box (D \lor l) \\
& \quad C' \implies \Box (D' \lor \neg l) \\
& \quad (C \land C') \implies \Box (D \lor D') \\
\text{[SRES2]} & \quad \text{true} \implies (D \lor l) \\
& \quad C \implies \Box (D' \lor \neg l) \\
\end{align*}
$$

Together with the following simplification rule:
Temporal Resolution is applied between an eventuality ♦₁ and a set of clauses which forces ₁ always to be false. In detail, the temporal resolution rule is (where \(A_j\) is a conjunction of literals, \(B_j\) is a disjunction of literals, and \(C\) and ₁ are as above):

\[
\begin{array}{c}
\text{(TRES)} \quad A_0 \Rightarrow \circ B_0 \\
\vdots \\
A_n \Rightarrow \circ B_n \\
C \Rightarrow \diamond ₁ \\
\hline
C \Rightarrow \left(\bigwedge_{i=0}^{n}(\neg A_i) \right) \\
\forall ₁
\end{array}
\]

where \(\forall i, 0 \leq i \leq n, \vdash B_i \Rightarrow ₁\)

The set of clauses that satisfy the side conditions are together known as a loop in \(\neg ₁\). Algorithms for finding such a loop can be found in [1]. We note that each \(A_j \Rightarrow \circ B_j\) are step clauses in merged \(\text{SNF}_K\), that is, they correspond to a conjunction of step clauses in \(\text{SNF}_K\). A translation of the resolvent into the normal form is given by the following clauses (where \(t\) is a new proposition): \(\text{true} \Rightarrow (\neg C \lor \neg A_i \lor ₁)\), \(t \Rightarrow \circ (\neg A_i \lor ₁)\), \(\text{true} \Rightarrow (\neg C \lor t \lor ₁)\), and \(t \Rightarrow \circ (t \lor ₁)\). Clauses are kept in their simplest form by performing classical style simplification. Classical subsumption is also applied and valid formulae can be removed during simplification as they cannot contribute to the generation of a contradiction.

3 Synchronous Systems with No Learning

We now describe a clausal resolution system for temporal logics of knowledge in synchronous systems with no learning (\(\text{KL}^{snl}_{(n)}\)). A system is synchronous if the agent has access to a common external clock. Intuitively, if the system is synchronous, the agent knows the time, which is common to all agents. The agent has the property of no learning, if her knowledge does not increase over time. Formally, in the class of models for synchronous system with no learning, if two points, \((s, m)\) and \((t, n)\), are in the accessibility relation of agent \(i\), i.e. \((s, m) \sim_i (t, n)\), then, because of synchrony,
they share the same time index \((m = n)\) and, because of no learning, their successors are also indistinguishable to agent \(i\), i.e. \((s, m + 1) \sim_i (t, n + 1)\).

The syntax and semantics for \(\mathit{KL}^{\text{snl}}_{(n)}\) are the same as for \(\mathit{KL}_{(n)}\). A complete axiomatisation for \(\mathit{KL}^{\text{snl}}_{(n)}\) comprises the set of axioms of both PTL and \(\mathit{S5}_{(n)}\), together with the axioms \(\vdash \bigcirc_i \varphi \Rightarrow K_i \bigcirc \varphi\) (SNL), for all agents \(i \in A\) [7]. The validity problem for such systems is EXPSPACE for \(n = 1\) and non-elementary space for \(n \geq 2\) [7].

3.1 Proof Method

The general approach for dealing with synchrony and no learning is as follows. Given a set of clauses in \(\mathit{SNF}_K\), we first add some new clauses which ensure that the constraints expressed by the SNL axiom are made explicit before applying the rules given in Section 2. As making such constraints explicit is essential part of the method, we explain better its motivation.

In resolution-based proof methods, generally speaking, one has to identify complementary formulae (or sets of formulae) in order to apply the inference rules. This procedure can be relatively easy for basic logics. For instance, for propositional logics, there is only one resolution inference rule, which is applied to clauses containing complementary literals, \(l\) and \(\neg l\). However, for more complex logics, trying to identify complementary formulae can be non-trivial, costly, and often achieved by the introduction of new inference rules. This is the case, for instance, in the modal epistemic case, where several modal (resolution) inference rules are introduced in order to resolve a literal \(l\) with its possible complements, namely \(\neg l\) and \(K_i \neg l\). The apparent simplicity of the method for the combined logics of knowledge and time comes from the separation of the different dimensions (via the normal form) and from making sure that all relevant information is made available to these different dimensions (through the propositional language, which is shared by all logics, via simplification rules). Thus, there is no need for new inference rules: separation provides an elegant way to deal with the combined logic.

Although elegance and simplicity are desirable features for any proof method, this cannot be achieved in a straightforward way when dealing with interactions. In this case, by definition, different dimensions are not separated. We have chosen to adopt the same set of inference rules of \(\mathit{KL}_{(n)}\), as the proof method for the interacting logic must still comprise all the
inference rules for the underlying languages, so that we are still able to provide refutations for formulae in those languages. Having chosen that, some extra mechanism should be added to the proof method in order to deal with the interactions. For synchrony and no learning, instead of adding rather complex inference rules or trying to identify two complementary sets of clauses, we have chosen to add further information to the set of clauses.

We remark that we use the contrapositive form of the SNL axiom: \(\neg K_i \neg \bigcirc \varphi \Rightarrow \bigcirc \neg K_i \neg \varphi \). A set of clauses satisfying its antecedent is written into the normal form as (at least) two clauses: a clause (or a set of clauses which imply) \(\text{true} \Rightarrow \psi \lor \neg K_i \neg l \) and a step clause (or a set of step clauses which imply) \(l \Rightarrow \bigcirc \varphi \), where \(\psi \) is a disjunction of literals or modal literals, and \(\varphi \) and \(l \) are literals. That is, those clauses together imply \(\neg \psi \Rightarrow \neg K_i \neg \bigcirc \varphi \). Because of the SNL axiom, those clauses also imply \(\neg \psi \Rightarrow \bigcirc \neg K_i \neg \varphi \). This is the extra information that we make available by introducing the new clauses. Instead of looking for such a set of clauses, we introduce new clauses for every step clause.

Recall that a step clause is in the general form \(X \Rightarrow \bigcirc Y \), where \(X \) is a conjunction and \(Y \) is a disjunction of literals. The information we wish to make explicit is \(\neg K_i \neg X \Rightarrow \bigcirc \neg K_i \neg Y \). The general approach to generating the new clauses consists of taking the contrapositive form of a step clause and distributing the knowledge operator \(K_i \) through this clause. Then, we take the contrapositive form of the resulting clause, exchange the knowledge and temporal operators, and rename the modal literals to keep the normal form. That is, if \(X \) is a conjunction, then we replace \(X \) by a new propositional symbol \(\text{new}_X \), called \&-proposition; then, the modal literals in the temporal clause are renamed by new propositional symbols, \(nkn_i(X) \) and \(nkn_i(Y) \), called \(\text{SNL}_i \) propositions. The resulting clause, with the new propositional symbols representing the modal literals, is called a \(\text{SNL}_i \) clause. The \(\text{SNL}_i \) clauses and the clauses defining the new propositional symbols are those added to the set of clauses.

3.2 Generating New Clauses

Here we give formal definitions for the new literals and clauses informally discussed in the previous section. First, we make the distinction between the already existing literals and the new ones to be added. Basic literals are any literals in the original formula and any new literals introduced during translation into \(\text{SNF}_K \). We use the term literal alone, if there is no need to
distinguish which type of literal we are referring.

We firstly rename conjunctions of basic literals, adding the corresponding definitions to the set of clauses. To aid this process, we define a function, \(\text{NEW} \), which takes a conjunction of literals, \(\varphi \), as its argument and returns the new name for this conjunction, \(\text{new}_\varphi \). Those new propositions are called \(\land \)-propositions.

DEFINITION 1. Let \(c_1 \land \ldots \land c_n, d_1 \land \ldots \land d_m, d'_1 \land \ldots \land d''_{m'} \), \(n, m, m' \geq 2 \), be conjunctions of basic and/or \(SNL_i \) literals in the language of \(KL_{I(n)}^{mt} \). Assume there is an order over the set of literals, such that \(l_i < \neg l_i < l_j < \neg l_j \), if \(i < j \), for all positive literals \(l_i \) and \(l_j \). Let \(SIMP(\varphi) \) be the result of applying simplification rules to \(\varphi \) and of ordering the conjuncts. We define the function \(\text{NEW} \) as follows:

- \(\text{NEW}(\text{false}) = \text{false} \)
- \(\text{NEW}(\text{true}) = \text{true} \)
- \(\text{NEW}(l) = l \), for any literal \(l \)
- \(\text{NEW}(c_1 \land \ldots \land c_n) = \text{new}_\text{SIMP}(c_1 \land \ldots \land c_n) \)
- \(\text{NEW}(c_1 \land \ldots \land c_n \land \text{new} \, d_1 \land \ldots \land d_m \land d'_1 \land \ldots \land d''_{m'}) = \text{NEW}(\text{SIMP}(c_1 \land \ldots \land c_n \land d_1 \land \ldots \land d_m \land d'_1 \land \ldots \land d''_{m'})) \)

The new proposition is labelled by the simplified, ordered form of the conjunction it is renaming. Simplification is given by usual rules, i.e. by deleting repeated literals and/or \(\text{true} \) from conjunctions, and by reducing contradictions to \(\text{false} \) and tautologies to \(\text{true} \). Note that we do not need to rename either a constant, a literal or conjuncts which are \(\land \)-propositions (e.g. \(\text{NEW}(a \land \text{new} \, b \land c) \) is \(\text{new} \, a \land \text{new} \, b \land c \)).

DEFINITION 2. For each \(\land \)-proposition, \(\text{new} \, c_1 \land \ldots \land c_n \), \(n \geq 2 \), we add \(\text{true} \Rightarrow \text{new} \, c_1 \land \ldots \land c_n \lor \neg c_1 \lor \ldots \lor \neg c_n \) to the set of clauses.

These clauses, called \(\land \)-clauses, correspond to the normal form of one direction of the double implication \(\text{new} \, c_1 \land \ldots \land c_n \Leftrightarrow c_1 \land \ldots \land c_n \), which defines the \(\land \)-propositions. As we rename conjunctions on the left-hand side of step clauses (i.e. formulae of negative polarity), we only need the equivalent (in \(\text{SNF}_K \)) to \(c_1 \land \ldots \land c_n \Rightarrow \text{new} \, c_1 \land \ldots \land c_n \).

Once the \(\land \)-propositions have been generated, we define the new names for modal literals, which are the result of distributing the knowledge operator through step clauses. Renaming is used here in order to retain the normal form. We define a set of renaming functions, \(\text{REN}_i \), one for each agent.
i \in \mathcal{A}, each of which takes as its argument a conjunction or a disjunction of literals, say \varphi, returning the new name for \neg K_i \neg \varphi, that is, nkn_i(\varphi). Because conjunctions are firstly renamed and the knowledge operator can be distributed over disjunctions, these functions will only be applied to literals. The new names, nkn_i(l), where l is a literal, are called SNL_i-propositions. A SNL_i-literal is a SNL_i-proposition or its negation.

DEFINITION 3. Let \bigvee_j l_j be a disjunction of literals and \bigwedge b_i, \bigwedge k_i, \bigwedge s_i, and \bigwedge l_{A_k} be conjuctions of basic, SNL_i, SNL_j (j \neq i), and \wedge-literals respectively.

- REN_i(l) = nkn_i(l), if l is either a basic, SNL_j (j \neq i) or \wedge-literal;
- REN_i(l) = l, if l is a SNL_i-literal;
- REN_i(\bigvee_j l_j) = \bigvee_j REN_i(l_j), for any literal \bigvee_j l_j;
- REN_i(\bigwedge l_{s_i} \wedge \bigwedge l_{b_i} \wedge \bigwedge l_b \wedge \bigwedge l_{A_k}) = \bigwedge l_{s_i} \wedge REN_i(NEW(\bigwedge l_{s_i} \wedge \bigwedge l_b \wedge \bigwedge l_{A_k})), where j \neq i.

The last case says that we rename the conjunctions which involve SNL_j literals, for j \neq i by the corresponding \wedge-proposition before renaming the modal literal, but we do not need to rename the SNL_i literals in the conjunction (because \vdash \neg K_i \neg (\neg K_i \neg \varphi \wedge \neg K_i \neg \psi) \iff (\neg K_i \neg \varphi \wedge \neg K_i \neg \psi), for any formula \varphi and \psi). For instance, REN_i(a \wedge new_{b \wedge c \wedge nkn_j(e)}(d) \wedge nkn_j(e)) = nkn_i(d) \wedge nkn_i(NEW(b \wedge c \wedge nkn_j(e))). We also remark that clauses are kept in their simplest form (e.g. REN_i(a \wedge nkn_i(a)) = nkn_i(a)).

DEFINITION 4. Let l be a basic, a SNL_j (j \neq i) or a \wedge-literal l. We add SNL_i^\neg(l) : true \Rightarrow \neg nkn_i(l) \vee \neg K_i \neg l and SNL_i^e(l) : true \Rightarrow nkn_i(l) \vee K_i \neg l to the set of clauses.

These clauses, called SNL_i definition clauses, correspond to the definitions of the SNL_i literals, i.e. the equivalence nkn_i(l) \iff \neg K_i \neg l for each literal l. We need both sides of the double implication, because SNL_i literals can occur with both negative and positive polarities in the set of clauses.

DEFINITION 5. Given a step clause X \Rightarrow \bigcirc Y, the corresponding SNL_i-clause is REN_i(X) \Rightarrow \bigcirc (REN_i(Y)), where X is a conjunction and Y is a disjunction of literals, and REN_i is the function defined above.

Note that the SNL_i-clauses are defined for both the initial set of step clauses and those step clauses generated while performing resolution.

Note also that these definitions alone could lead to the generation of an infinite number of new literals. If we consider only one agent, it is clear that
this process terminates, because once the \(\land \)-propositions have been generated, due to simplification, we can determine all the \(SNL_1 \) literals that need to be generated. However, when we consider multiple agents, it is not clear where we could stop generating new literals. Suppose, for instance, that \(\mathcal{A} = \{1, 2\} \) and the set of basic literals is \(\{a, b\} \). In this case, we generate (among others) the \(\land \)-proposition \(new_{a \land b} \), and the \(SNL_1 \) and \(SNL_2 \) literals, \(nkn_1(new_{a \land b}) \) and \(nkn_2(new_{a \land b}) \). We might need, now, to consider these new propositions as part of possible conjunctions (e.g. \(new_{a \land nkn_1(new_{a \land b})} \)) and generate the respective \(SNL_i \) literals (e.g. \(nkn_2(new_{a \land nkn_1(new_{a \land b})}) \)), as simplification might not apply in this case.

We can prove that the number of literals that need to be generated depends on the structure of the original formula that we are trying to refute. We define the nesting depth of a \(SNL_i \) literal, \(|nkn_i(l)|_{snl} \), as being the number of times that different \(REN_i \) renaming functions have been applied to any literal: \(|l|_{snl} = 0 \), if \(l \) is a basic literal; \(|new_{l_1 \land \ldots \land l_n}|_{snl} = \max(|l_1|_{snl}, \ldots, |l_n|_{snl}) \), if \(new_{l_1 \land \ldots \land l_n} \) is a \(\land \)-literal; and \(|nkn_i(l)|_{snl} = 1 + |l|_{snl} \), otherwise. The maximum nesting depth of \(SNL_i \)-literals needed in the resolution method is at most the same as the number of alternations of distinct knowledge operators in the original formula, that is, the \textit{alternating modal depth} of the formula. Thus, by allowing only a finite number of literals, termination of the method is guaranteed.

We call \(SNF_{snl} \) the set of clauses resulting from the transformation of a formula into \(SNF_K \), the \(SNL_i \), the \(\land \), and the \(SNL_i \) definition clauses. The resolution method applied to a set of \(SNF_{snl} \) clauses is essentially the same as that described in Section 2, except that we extend the function \(mod_i \) so that \(mod_i(l) = l \), if \(l \) is a \(SNL_i \)-literal.

Below, we illustrate the use of the method. The example is the proof that \(\Box K_1 K_2 \varphi \Rightarrow K_1 K_2 \varphi \) is valid in \(KL^{snl}_{\Box n} \). We start by transforming the negation of this formula into its normal form.

1. \(\text{start} \Rightarrow x \)
2. \(\text{true} \Rightarrow \neg x \lor y \)
3. \(\text{true} \Rightarrow \neg x \lor z \)
4. \(z \Rightarrow \Box y \)
5. \(z \Rightarrow \Box z \)
6. \(\text{true} \Rightarrow \neg y \lor K_1 w \)
7. \(\text{true} \Rightarrow \neg w \lor K_2 \varphi \)
8. \(\text{true} \Rightarrow \neg x \lor \neg K_1 \neg r \)
9. \(\text{true} \Rightarrow \neg r \lor \neg K_2 \neg s \)
10. \(s \Rightarrow \Diamond \neg \varphi \)

Then, we add the new \(SNL_i \) clauses:
Now, we give the results for soundness, termination, and completeness of the inference rules in \(KL_{snl} \). The proofs for (b) is by construction: given a model \(M \) for a set of clauses \(T \), we build a model \(M' \) for \(T' \), the set of clauses augmented with \(\wedge \)-clauses. For every state \((t, u)\) in \(M \), let the corresponding state \((t', u')\)
in M' be exactly as (t,u), except that $\pi(t',u')(new_{l_1 \land \ldots \land l_n}) = true$, if $\langle M, (t,u) \rangle \models l_1 \land \ldots \land l_n$ for all possible conjunctions of literals. Temporal and equivalence relations are kept as in the original model. Obviously, M' satisfies all clauses in T; also, it follows from its construction that M' satisfies all definition clauses for the \land-literals. A model M for T is obtained from M' by ignoring the values of the \land-literals. The proof for (c) is similar, except that we take $\pi(t',u')(\neg kn_i(l)) = true$ if, and only if, $\langle M, (t,u) \rangle \models \neg K_i \neg l$ for all agents $i \in A$ and literals l. The proof for (d) is by the semantics of the universal operator, \Box^*, which surrounds all clauses, propositional reasoning and applications of the axioms K and SNL.

The inference rules are the same as those in [3], except that we add to the definition of the function mod_i that $mod_i(l) = l$, if l is a SNL$_i$-literal. Redefining the function is not essential, but it saves steps in the refutation. Thus, soundness for KL$_{snl}^n$ follows from the results in [3], that is, that all inference rules are sound, and from the observation that the same resolvent from the modified MRES4 can also be obtained from successive applications of the original MRES4 and MRES1 to the original resolvent and the SNL$_i$ definition clauses.

Termination. The method presented here is based on that for KL$_{(n)}$. The difference is that SNL$_i$ and \land-literals, together with their corresponding definition clauses, are introduced before starting the application of the resolution method. Also, SNL$_i$-clauses, corresponding to existing or newly generated step clauses, are introduced when applying the method. It has been shown in [3] that the method for KL$_{(n)}$ terminates, i.e. given a finite number of clauses only a finite number of clauses (modulo order and simplification) can be generated, so at some point either false is generated or no new clauses are generated. In order to transfer the termination results from KL$_{(n)}$ to KL$_{sync,nl}^n$, we show that all propositional symbols needed in the refutation can be defined before the resolution rules are applied.

Firstly, it has been shown in [6] that the new propositional symbols required for translating the resolvent obtained by an application of the temporal resolution rule can be added at the beginning of the proof. No other inference rule requires the introduction of new symbols. As there is a finite number of symbols, due to simplification, only a finite number of clauses is generated. Secondly, simplification is applied when generating the \land-literals and SNL$_i$-literals, so the number of definition clauses for these liter-
als is also finite. Thirdly, the number of step clauses is (at any point) finite, and so it is the number of SNL_i clauses. Finally, given the alternating modal depth of the original formula, the maximum nesting depth of SNL_i-literals is determined, and so the number of new literals that might be needed in the refutation is finite. Given that only a finite number of symbols and clauses is introduced, a finite number of clauses that is defined. Thus, as the resolution method applied to the set of clauses in the SNF_{snl} is the same as the method for $\text{KL}_{(n)}$, termination follows from the results in [3].

Completeness. This proof is based on that given in [6], where a graph is built from a set of clauses. The construction of the graph is given in more detail in [10]. The proof consists in showing that an empty graph corresponds to an unsatisfiable set of clauses and that, in this case, there is a refutation by the resolution method presented here.

Let T be a set of clauses into SNF_{snl}. We construct a finite direct graph $G = \langle N, E \rangle$ for T, where N is a set of nodes and E is a set of labelled edges, as follows. A node $\eta = (V, Y)$ is a pair, where V is a maximal consistent set of literals and modal literals; and Y is a subset of basic literals occurring on the right hand side of a sometime clause. Intuitively, V corresponds to states and Y corresponds to eventualities that have not been satisfied by the predecessors of V. There are $n + 1$ types of edges: one for the temporal dimension plus one for each agent in $A = \{1, \ldots, n\}$. For every set V, we construct nodes $\eta = (V, Y)$, where Y is any of the possible subsets of literals occurring on the right-hand side of sometime clauses in the set of clauses. We delete any nodes that do not immediately satisfy the literal and modal clauses, including the definition clauses, in T.

Given a non-empty set of nodes, we construct the set of labelled edges for each agent $i \in A$. There is an i-edge between two nodes $\eta = (V, Y)$ and $\eta' = (V', Y')$, if, and only if, V and V' contain the same set of modal literals for that agent. We say that a node η' is i-reachable from η, if there is an i-edge between η and η'. We say that a node η' is $\{i_0, \ldots, i_m\}$-reachable from η, if there is a sequence of nodes $\eta_0, \ldots, \eta_{m+1}$, such that $\eta_0 = \eta$, $\eta_{m+1} = \eta'$, and there is an i_j-edge between every two nodes η_j and η_{j+1}, for $0 \leq j \leq m$. We define $[\eta]_i$ as the set of nodes that are i-reachable from η. Clearly, $[\eta]_i$ defines an equivalence relation over the set of nodes.

Then, we construct the temporal edges. We start with a full (temporal) graph, i.e. there is a t-edge linking every two nodes in the graph (because
true ⇒ ◦ true). We say that a node \(\eta \) is \(t \)-reachable from \(\eta \), if there is a sequence of nodes \(\eta_0, \ldots, \eta_m \), such that \(\eta_0 = \eta \), \(\eta_m = \eta' \), and there is a \(t \)-edge between every two nodes \(\eta_j \) and \(\eta_{j+1} \), for \(0 \leq j < m \). We say that \(\eta \) is a predecessor of \(\eta' \), if \(\eta' \) is \(t \)-reachable from \(\eta \).

For every step clause \((\bigwedge l \Rightarrow \Box l') \in T \), we delete a \(t \)-edge between \(\eta = (V,Y) \) and \(\eta' = (V',Y') \), if \(\eta \models \bigwedge l \) and \(\eta' \not\models \bigvee l' \). For every sometime clause \(\varphi \Rightarrow \Diamond l \in T \), we also delete a node \(\eta = (V,Y) \), if \(V \models \varphi \) and \(l \not\in Y \); and a \(t \)-edge from \(\eta = (V,Y) \) to \(\eta' = (V',Y') \), if (a) \(l \in Y, l \not\in Y' \), and \(V \not\models l \); or (b) \(l \in Y', V \models l \), and \(V' \not\models \varphi \). This ensures that (a) eventualities not satisfied by a predecessor are not “forgotten” and (b) there will be no edge from a node that satisfies an eventuality to another node that is “waiting” for the same eventuality to be satisfied, unless this successor satisfies the left-hand side of a sometime clause that also says that this eventuality should hold at some moment in the future. In other words, we are only waiting for eventualities to occur that originally came from satisfying the left-hand side of a sometime clause.

A node \(\eta = (V,Y) \) is an initial node if, and only if, \(V \) satisfies all initial clauses in \(T \) and, for each sometime clause \(\varphi \Rightarrow \Diamond l \), such that \(V \models \varphi \), if, and only if, \(l \in Y \). We say that a node \(\eta' \) is reachable from a node \(\eta \), if, and only if, there is a sequence of nodes \(\eta_0, \ldots, \eta_m \), such that, \(\eta_0 = \eta \), \(\eta_m = \eta' \), and \(\eta_{j+1} \) is \(t \) or \(i \)-reachable from \(\eta_j \), for \(0 \leq j < m \) and \(i \in A \).

We further delete any nodes that are not predecessors of any node which is reachable from an initial node. This reduces the graph to (possibly disjoint) connected components which include at least one initial node. The resulting graph is called a behaviour graph for \(T \). Given a behaviour graph for \(T \), we recursively delete any nodes \((V,Y) \) (and edges to it) that have no temporal successors (no infinite temporal line can be built from the node, so it is not part of any model); satisfy the left-hand side of a sometime clause, but there is no node satisfying the eventuality that is \(t \)-reachable from this node; and/or satisfy a formula as \(\neg K_i \neg p \) but there is no \(i \)-edge to a node which satisfies \(p \). The resulting graph is called reduced behaviour graph. Deletions of either nodes or edges are repeated non-deterministically until the graph is empty or no other deletion can be done. This procedure corresponds, respectively, to application of temporal simplification (SIMP1), temporal resolution (TRES), and modal resolution to the set of clauses. If the graph is empty, then the set of clauses is not satisfiable in \(KL_{snl} \).
If the reduced behaviour graph is not empty, we show that given two nodes η and μ in the same equivalence class, i.e. $[\eta]_i = [\mu]_i$, for agent $i \in A$, such that η' is a successor of η, then μ has also a successor in $[\eta']_i$.

THEOREM 6. Let G be a non-empty reduced behaviour graph for a set of clauses T in SNF_{snl}. Let η, μ, η', μ' be nodes in G, such that $[\eta]_i = [\mu]_i$, and there is a t-edge from η to η'. Then there is a node μ', $[\mu']_i = [\eta']_i$, such that there is a t-edge from μ to μ'.

PROOF. We show, by contradiction, that if the graph is not empty and we have a temporal edge from a node η to a node η', then all nodes in $[\eta]_i$ have successors in $[\eta']_i$. Suppose that there is a temporal edge from η to η' and $\mu \in [\eta]_i$ has no successors in $[\eta']_i$. Thus, we can identify a set of step clauses that together imply $\psi \Rightarrow \Box \chi$, such that μ satisfies ψ and, for all $\mu' \in [\eta']_i$, μ' satisfies $\neg \chi$. If we could not identify this set of clauses, the temporal edges would not have been removed. If all $\mu' \in [\eta']_i$ satisfies $\neg \chi$, then, by the semantics of the knowledge operator, $\mu' \models K_i \neg \chi$. The addition of the SNL_4-clause corresponding to $\psi \Rightarrow \Box \chi$, i.e. $\text{REN}_i(\psi) \Rightarrow \Box \text{REN}_i(\chi)$, ensures that every node must satisfy $\neg K_i \neg \psi \Rightarrow \Box \neg K_i \neg \chi$. We have that μ satisfies ψ and, by the semantics of the knowledge operator, it also satisfies $\neg K_i \neg \psi$ (or the corresponding \land-proposition, new_ψ, and the formula $\neg K_i \neg \text{new}_\psi$, in the case where ψ is a conjunction). In fact, every node in $[\eta]_i$ satisfies $\neg K_i \neg \psi$. If all nodes in $[\eta']_i$ satisfy $K_i \neg \chi$, because of the SNL_4 clause, then there must be no temporal edge from η to η'. This contradicts our initial assumptions, so there must be a temporal edge between μ and μ' or none of the nodes in $[\eta]_i$ have successors in $[\eta']_i$. □

Theorem 6 shows that every two nodes in the same equivalence class, say $[\eta]_i$, have successors in the same equivalence class, say $[\eta']_i$. However, there might be nodes in $[\eta']_i$ that have no predecessors in $[\eta]_i$. In order to be able to construct a model, we also show that every node has a predecessor.

THEOREM 7. Let G be a non-empty reduced behaviour graph for a set of clauses T in SNF_{snl}. Let η be a node in G. Then, there is a node η' such that η' is a predecessor of η.

PROOF. The node $\eta' = (V', E')$, where $V' \models \neg \text{start}$ and $V' \models \neg p$ for all propositional symbols occurring in the set of SNF_{snl} clauses, precedes all nodes, if the graph is not empty. Note that η' satisfies trivially all clauses in the set of SNF_{snl} clauses, either by falsifying the left-hand side of a (initial,
step, or sometime) clause or by satisfying the right-hand side of a modal or literal clause (from translation, there is at least one negative literal occurring on the right-hand side of such a clause).

Hence, if the reduced behaviour graph is not empty, we can inductively construct a model in which, if two nodes, \((s, m)\) and \((t, m)\), are in the same equivalence class, i.e. \(s, m \sim_i t, m\), then their successors are also in the same equivalence class, i.e. \((s, m + 1) \sim_i t, m + 1\), which suffices to prove that the model is in the class of \(K_{1}^{snl}(n)\) [7]. In order to build the first timeline for the agent \(i\), we choose an initial node \(\eta_0\) from the graph, which corresponds to the point \((t_0, 0)\). Let the nodes of \([\eta_0]_i\) be the initial points of other timelines for agent \(i\). Note that only the first point at the first timeline needs to be an initial node in the graph. Then, we choose \(\eta_1\) from the immediate successors (i.e. \(t\)-reachable by one \(t\)-edge) of \(\eta_0\). We build the next point in each timeline, by choosing the immediate successors of each node in \([\eta_0]_i\) from the nodes in \([\eta_1]_i\). From Theorem 6, this is always possible. From Theorem 7, for points at time greater than zero, we can construct the predecessors of a node back to initial point of every timeline.

We note that the introduction of the \(SNL_i\)-clauses not only delete edges which are not part of a model for \(K_{1}^{snl}(n)\), but also contribute to the temporal resolution procedure. Temporal resolution between a sometime clause, say \(l \Rightarrow \Box p\), and a set of clauses that together imply \(\bigcirc \Box \neg p\), corresponds to removing from the graph subcomponents which satisfy \(l\), but never satisfy the eventuality \(p\). As we are considering the combined logics, a sometime clauses may be preceded by a chain of knowledge operators. For instance, the clauses (8) \(true \Rightarrow \neg x \lor \neg K_1 \neg r\), (9) \(true \Rightarrow \neg r \lor \neg K_2 \neg s\), and (10) \(s \Rightarrow \Box \neg \varphi\) (from the example on Page 11) show that the left-hand side of the sometime clause is preceded by \(\neg K_1 \neg r\) and \(\neg K_2 \neg s\). In \(K_{1}^{snl}(n)\), \(\neg K_1 \neg K_2 \neg \Box \neg \varphi\) implies \(\neg K_1 \neg K_2 \neg \varphi\), which should be resolved with a set of clauses that together imply \(\bigcirc \Box K_1 K_2 \varphi\). Note that because of the axiom T, the same loop implies \(\bigcirc \Box \varphi\). Although this loop can be resolved with the sometime clause, the resolvents generated by temporal resolution do not contribute to removing the chain of knowledge operators preceding the eventuality. The sometime clause occurs in a timeline that is \(\{1, 2\}\)-reachable from the initial timeline. Therefore, we are interested in a loop that is also \(\{1, 2\}\)-reachable from that timeline. In Figure 1, we show this loop, where the states are represented by circles; each state is labelled by the
propositional symbols which hold at that state; and the edges are labelled either by t (indicating the temporal successor) or by the agent index (indicating that those states are in the same equivalence class). We note that we could have introduced SNL_i-literals in sometime clauses in the same way that those literals where introduced in step clauses, but this is not necessary for completeness. The next theorem ensures that, in this situation, the appropriate loop is found.

THEOREM 8. Let C be the set of SNF_{snl} clauses that together imply $\neg K_{i_1} K_{i_2} \ldots K_{i_m} \neg \varphi$ where φ is a basic literal and every two consecutive knowledge operators differ in their index. If there is a set of clauses that imply $\Box K_{i_1} K_{i_2} \ldots K_{i_m} \varphi$, then there is a set of nested SNL_i clauses C' that imply $\Box \varphi$.

Specifically, if χ is the conjunction of literals on the left-hand side of the step clauses which satisfy the loop conditions, then we can prove that there is a loop given by $nkni_{m-1}(\chi) \Rightarrow \Box \varphi$ (where $nkni_{m-1}(l)$ is an abbreviation for successively applying the renaming functions REN_1, \ldots, REN_m to a literal l). The temporal resolvents, the set of clauses that represent the chain of knowledge operators preceding the sometime clause, and the (nested) SNL_i definitions of χ can be successively resolved by applying the modal inference rules. We assume that subsequent knowledge operators in the chain preceding a temporal formula had different indices. This corresponds to the alternating modal depth of the knowledge operators in the original formula and gives an upper bound for the maximum nesting of SNL_i literals. Note that this assumption can be made without loss of
generality, as chains of modal clauses with same index can be successively resolved together, resulting in one modal clause of that index.

5 Conclusions

We have shown how to extend the method presented in [3] to deal with $K_{snl}^{snl(n)}$. The addition of new information to the set of clauses, together with the use of renaming, provides an intuitive way of dealing with this particular interaction. Although the introduction of new clauses is costly, we avoid the introduction of new inference rules and, potentially, expensive searches over the set of clauses. As there is no change in the set of inference rules, implementation is relatively easily obtained by adapting and re-using existing theorem-provers. Correctness for the multi-agent case has been established. Results for the multi-agent case for synchrony and perfect recall [2] can be established in a similar way and it is ongoing work.

Synchronous systems with either perfect recall or no learning have complete axiomatisations given by axioms with simple structures. We have been investigating how the ideas behind our proof method could be applied to logics that include axioms of the (simple) form $K_i \bigcirc^p \varphi \Rightarrow \bigcirc^q K_i \varphi$ or $\bigcirc^p K_i \varphi \Rightarrow K_i \bigcirc^q \varphi$ where p and q are integers ($p, q > 0$), and the iterated next operator is defined as $\bigcirc^0 \varphi = \varphi$, and $\bigcirc^p \varphi = \bigcirc^{p-1} \bigcirc \varphi$, for $p > 0$, where φ is a formula. Although the generation of new clauses would not be straightforward, we have also been investigating other interactions expressed by finite axiomatisations which include more complex axioms, as, for instance, the no learning axiom, $\vdash (K_i \varphi_1 \cup K_i \varphi_2) \Rightarrow K_i (\varphi_1 \cup K_i \varphi_2)$, when synchrony is not required.

BIBLIOGRAPHY

Acknowledgments

This work was partially supported by CAPES (BEX 1158-99-6), FINATEC (Proc. 8820), and the EPSRC research grants GR/R45376 and GR/S63182.

Cláudia Nalon
Departmento de Ciência da Computação
Universidade de Brasília
Caixa Postal 4466
Brasília - DF - Brazil
CEP: 70.910-090
nalon@unb.br

Clare Dixon & Michael Fisher
Department of Computer Science
University of Liverpool
Liverpool, L69 7ZF, UK.
{C.Dixon, M.Fisher}@esc.liv.ac.uk